Automatic Relevance Detection And Bayesian Neural Networks

Christopher Kain
Automatic Relevance Detection

- Gain insight into the meaning of network!
- Figure out what inputs are important!
- Prevent over-fitting of data!

An instance where relevance detection would have been useful
How Do We Get There?

- Bayesian Neural Networks
 - Bayesian Learning
- Automatic Relevance Detection
Bayesian Learning

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

- Generate a model, $P(\theta)$, called the prior
- Observe dataset D
- Find probability of the model given the dataset, $P(\theta|D)$, the posterior distribution
Bayesian Neural Nets

- The parameters for a neural net model θ are the weights and biases
- The prior $P(\theta)$ is assumed to be Gaussian with mean zero and variance $1/\alpha$
- Error function is data error E_D plus a “weight error” term

$$\alpha E_W = \frac{\alpha}{2} \sum_{i=1}^{W} \omega_i^2$$

$$E = \beta E_D + \alpha E_W$$
Bayesian Neural Nets

- α is a “hyperparameter” that controls the size of the weights
 - Better to break α down into smaller, α_i
 - α_i: Covers weights fanning out from node i
Fitting the Model

- Alternately minimize the error function

\[E = \beta E_D + \alpha E_W \]

- And refit the posterior distribution \(p(\theta|D) \) with the evidence method (too long to explain here)
 - This refits the \(\alpha \) parameter
Automatic Relevance Detection

- Fitting the weights to the data and α results in smoother functions
 - Prevents over-fitting
- Fitting α to the data and the weights results in low influence nodes being further marginalized
 - Nodes with mostly small weights get assigned a smaller standard deviation
 - When fitting weights, more error from large weights
Automatic Relevance Detection

- α_i is the inverse variance of the Gaussian distribution for the weights leading from node i
 - Variance increases with weights
 - Therefore α_i provides a measure of the relevance for the node i.
Automatic Relevance Detection
Demo

- $X_1 = \sin(2\pi x_1) + .002 \cdot \text{randn}$
- $X_2 = X_1 - .02 \cdot \text{randn}$
- $X_3 = 0.5 + 0.2 \cdot \text{randn}$