Variations and extensions
Many different methods for sorting have been invented. You could try sorting your weights using these:

*Insertion sort* works by removing each object from an unsorted group and inserting it into its correct position in a growing list (see picture below). With each insertion the group of unsorted objects shrinks and the sorted list grows, until eventually the whole list is sorted. Card players often use this method to sort a hand into order.

![Insertion sort diagram](image)

*Bubble sort* involves going through the list again and again, swapping any objects side-by-side that are in the wrong order. The list is sorted when no swaps occur during a pass through the list. This method is not very efficient, but some people find it easier to understand than the others.

![Bubble sort diagram](image)

*Mergesort* is another method that uses ‘divide and conquer’ to sort a list of items. First, the list is divided at random into two lists of equal size (or nearly equal if there are an odd number of items). Each of the two half-size lists is sorted, and the two lists are merged together. Merging two sorted lists is easy—you repeatedly remove the smaller of the two items at the front of the two lists. In the figure below, the 40 and 60-gram weights are at the front of the lists, so the next item to add is the 40-gram weight. How do you sort the smaller lists? Simple—just use mergesort! Eventually, all the lists will be cut down into individual items, so you don’t need to worry about knowing when to stop.

![Mergesort diagram](image)
What’s it all about?

Information is much easier to find in a sorted list. Telephone directories, dictionaries and book indexes all use alphabetical order, and life would be far more difficult if they didn’t. If a list of numbers (such as a list of expenses) is sorted into order, the extreme cases are easy to see because they are at the beginning and end of the list. Duplicates are also easy to find, because they end up together.

Computers spend a lot of their time sorting things into order, so computer scientists have to find fast and efficient ways of doing this. Some of the slower methods such as insertion sort, selection sort and bubble sort can be useful in special situations, but the fast ones such as quicksort are usually used.

Quicksort uses a concept called recursion. This means you keep dividing a list into smaller parts, and then performing the same kind of sort on each of the parts. This particular approach is called divide and conquer. The list is divided repeatedly until it is small enough to conquer. For quicksort, the lists are divided until they contain only one item. It is trivial to sort one item into order! Although this seems very involved, in practice it is dramatically faster than other methods.