
Day Two

Problem Solving

Exploring Computer Science

Unit 1: Human Computer Interaction
Unit 2: Problem Solving
 Days 1-2: Intro to Data collection and problem solving
 Day 3: Steps in Problem Solving
 Days 4-6: Problem Solving Strategies
 Days 7-9: Reinforcing the phases in the problem solving process
 Days 10-12: Counting in Binary
 Days 13-14: Linear and binary search
 Days 15-16: Lists and sorting
 Days 17: Minimal spanning trees and graphs
 Days 18-21: Final unit projects
Unit 3: Web Design
Unit 4: Introduction to Programming
Unit 5: Computing Applications
Unit 6: Robotics

morning

afternoon

No computers!

Problem solving

The purpose of computing
is insight, not numbers.

Problem solving process

Here's a familiar problem.
How would you solve it?

Problem solving process

(1) experiment / understand
○
○
○
○

(2) describe a plan
○
○
○
○

(3) test your plan (execute it)
○

(4) reflect / evaluate
○
○
○
○

The process is much more
useful than the solution!!

solving one vs. solving many

Problem solving process

(1) experiment / understand
○ how to start?
○ what's the goal?
○ try a strategy... and/or another
○ try smaller pieces

(2) describe a plan
○ first step
○ next step...
○ are there choices?
○ if so, how do you handle them

(3) test your plan (execute it)
○ go through the steps in your plan

(4) reflect / evaluate
○ does it work in this case?
○ would it always work?
○ what are hard or easy cases?
○ what are the applications of this?

Problem solving process

What is the path from the ring to the G?
"rook-jumping maze"

Problem solving process

What is the path?

(1) experiment / understand
○ how to start?
○ what's the goal?
○ try a strategy... and/or another
○ try smaller pieces

(2) describe a plan
○ first step
○ next step...
○ are there choices?
○ if so, how do you handle them

(3) test your plan (execute it)
○ go through the steps in your plan

(4) reflect / evaluate
○ does it work in this case?
○ would it always work?
○ what are hard or easy cases?
○ what are the applications of this?

Problem solving process
Brick-breaking!

Q: How many breaks are needed
to fully separate the pieces?

of chocolate...

Try smaller examples...

(1) experiment / understand

(2) describe a plan

(3) test your plan (execute it)

(4) reflect / evaluateQ: How many breaks
are needed?

of pieces
of breaks

needed

12 ?

#

#

#

may be a thought experiment (or taste!)

Other examples in the ECS curriculum

Q: How many handshakes do you
need in order to greet everyone?

in group
of h.shakes

needed

10 ?

#

#

There are 10 people
(including you) at a party.

Q: How many handshakes are needed
so everyone greets everyone?

in group
of h.shakes

needed

10 ?

#

#

There are 10 people
(including you) at a party.

N # N #

Other examples elsewhere...

Recognize this game show?
http://www.youtube.com/watch?v=WKR6dNDvHYQ

http://www.youtube.com/watch?v=WKR6dNDvHYQ

Let's Make a Deal...

1 2 3

Choose... Reveal... Switch or stay?

Let's Make a Deal...

A

B

C

D

E

F

G

1 2 3 4 5 6 7 8 9 10

Let's Make a Deal...

A

B

C

D

E

F

G

1 2 3 4 5 6 7 8 9 10

Two envelopes...
Both envelopes have some money in them (as a check). You also know

that one envelope has double the amount in the other envelope.

Suppose you choose an envelope and
it has M money in it. Say, $10.

Now you have the opportunity to trade.
Should you?

Take-home message
Understanding problems is the key to

solving them -- and is more important
than solving a particular one!

CS is the field that analyzes and
solves information-based problems, i.

e., those based on data.

But there is so much different data!

How can we represent data in a single, consistent
way so that machines can process it ?

Representing data: Binary

Binary Lab/Activity

Binary Decimal
101
0101
1111
11110

6
21
42
63
64

Complete the table by converting from binary to decimal, and
from decimal to binary:

beepin' ...

 boopin' ...

Other bases: Hexadecimal
Just like binary is base 2, we can create numbers in any base
we want!

Computers often use hexadecimal (base 16) to represent color
values.

Since we only have 10 arabic numerals, we also use 6 letters
(a-f) as the additional digits needed in this base. (We need to
represent 10 through 15 with only one character, so a=10,
b=11, c=12, d=13, e=14, f=15)

For example in hexadecimal:

ff= f *161 + f *160 = 15*16 + 15 *1 = 255

Other bases: Hexadecimal

Hex Decimal
10
31
A5
FF

20
40
100
254
0

Colors in Hexadecimal!
Each color has an RGB (Red-Green-Blue) value which
represents how much of each primary additive color is needed
to make that color (with a value from 0-255).

For example Red = 255, 0, 0,
 Black = 0, 0, 0,
 White = 255, 255, 255

Since these numbers can all be represented by only 2 digits, to
save space, computers represent them in hexadecimal.

So, Red = FF0000
 Black = 000000
 White = FFFFFF

In reality, people just look up
hexadecimal color codes online.

RGB values!
Red Value Green Value Blue Value

255
(FF)

0
(00)

0
(00)

255
(FF)

255
(FF)

255
(FF)

0
(0)

0
(0)

0
(0)

check your guess...

http://drpeterjones.com/colorcalc/

Estimate the RGB values!
Red Value Green Value Blue Value

0 0 255

255 0

50 50 50

check your guess...

http://drpeterjones.com/colorcalc/

Coffee Break

Unit 2 Lab: Lego Encoding (Part 1)

Challenge:

To encode a lego structure with
binary numbers.

Then to decode those numbers
to build the structure.

Lego example!
If we want to encode the blocks at right:

color

red 0
yellow 1

brick type

2X3 0

2X2 1

orientation

horizontal 0
vertical 1

x- coordinate y-coordinate color brick type orientation

0 0 red 2X3 vertical

1 3 yellow 2X2 horizontal

x- coordinate y-coordinate color brick type orientation

00 00 0 0 1

01 11 1 1 0

Legend:

Unit 2 Lab: Lego Encoding (Part 1)

● Make a structure out of your 8 legos.

● REMEMBER the order in which you
placed the legos!

Unit 2 Lab: Lego Encoding (Part 1)

● Make a structure out of your 8 legos.
● In binary, encode the information to

build the structure, so that it is
reproducible.

● Swap instructions and try to build
another group's structure.

You will have to supply the position (in xyz
coordinates), color, brick type, and rotation
of each lego.

Let red = 0, yellow = 1, white = 2, blue = 3.
Convert these numbers into binary.

Unit 2 Lab: Legos!
color
red 000
yellow 001

brick type
2X4 0000
2X2 0001

orientation

horizontal 0

vertical 1

Brick x-coordinate y-coordinate color brick type orientation

Finish filling in the legend
tables, and encode your

tower!

Then, another group will
decode your instructions

and try to build your tower.

Pause. Thoughts... ?

Exploring Computer Science

Unit 1: Human Computer Interaction
Unit 2: Problem Solving
 Days 1-2: Intro to Data collection and problem solving
 Day 3: Steps in Problem Solving
 Days 4-6: Problem Solving Strategies
 Days 7-9: Reinforcing the phases in the problem solving process
 Days 10-12: Counting in Binary
 Days 13-14: Linear and binary search
 Days 15-16: Lists and sorting
 Days 17: Minimal spanning trees and graphs
 Days 18-21: Final unit projects
Unit 3: Web Design
Unit 4: Introduction to Programming
Unit 5: Computing Applications
Unit 6: Robotics

morning

afternoon

No computers!

Unit 2 Lab: Treasure Island Game
We will demonstrate a shortened version of the game:

Starting at Jolly Roger Bay, you must discover directions that
will get you to Treasure Island without a map. (by guessing)

As you watch, think about the following questions,
● Is there only one set of "correct" directions?
● How can you get to Treasure Island in the least number

of steps?
and write your observations in your journal.

After, you will have an opportunity to share your thoughts.

Unit 2 Lab: Treasure Island Solution

This set of islands can be represented by
what we call a Finite State Machine.

Which circle represents Jolly Roger Bay? How
is it marked as the start of your journey?

Which circle represents Treasure Island? How
is it marked as your desired destination?

Unit 2 Lab: Finite State Machines (Part 2)

● Take an input (instructions)
and then either accept or
reject the input.

● Each circle represents a
"state."

● Here, the input is a binary
string.

● Start at triangle, follow the
arrows.

● Double circles accept, single
circles reject.

● Does this FSM accept or
reject the string 1101001?

Mystery FSM

Input Accepted?

0 Yes

1 No

01 No
11 No

10 Yes
111 No
101 No
110 Yes
010 Yes
011 No
010 Yes

Which strings does this
FSM accept,
generally?

What do the states
(circles) represent?

Mystery FSM 2!

Input Accepted?
0
1
10
111
100
101
110
111
1000
1001
1010
1011 Which strings does this

FSM accept,
generally?

Mystery FSM 3! (from the first slide)
Robyn & Johnny

Input Accepted?
0 Yes
1
10
111
100
101
110
111
1000
10010.1010

1011

1100

1101
1110

1111

10000

101010
Which strings does this
FSM accept,
generally?

Mystery FSM 3! (from the first slide)
Patrick Susan

Input Accepted?
0 yes
1
10
111
100 no
101 no
110
111 yes
1000 no
1001 no
1010 no

1011 no

1100 no

1101 no
1110 yes
1111 no
10000 no

101010 yes

Which strings does this
FSM accept,
generally?

Mystery FSM 3! (from the first slide)
Cheryl and Jen!

Input Accepted?
0 y
1
10
111
100 n g
101 n f
110
111 YES
1000
1001
1010
1011

1100
1101
1110
1111

10000
101010

Which strings does this
FSM accept,
generally?

ours

Input Accepted?
0 yes
1
10
111
100
101
110
111
1000
1001
1010

1011
1100
1101

1110
1111
10000

101010

Which strings does this
FSM accept,
generally?

Applications of Finite State Machines
The principles of finite state machines show up everywhere in
our everyday life. Guess which of these use finite state machines
to operate.

JFLAP

How did we make these
beautiful FSMs?

JFLAP is a cross-platform utility for
creating and testing finite state
machines (and lots of other abstract
machines!)

http://www.cs.duke.edu/csed/jflap/

Lunch Videos

The Creation of the Computer- middle section

https://www.youtube.com/watch?v=CmPA7zE8mx0

Data

Up until now, we've been looking at ones and
zeros. These are really abstract pieces of data!

All of the little ones and zeroes (bits) are used to
represent pieces of information that are useful to
us, like bank records, or grade books.

Lots of compelling problem solving in Computer
Science happens at the data structure level.

One of the simplest data structures we can imagine
is a list.

Tower Building Activity
Prompt:

Donald Trump wants to build a 100 meter high tower as quickly
as possible. He has unlimited resources and unlimited budget
and is willing to spend any amount to get the job done.

He has chosen to build the tower with blocks that are only 1
meter tall. The blocks interlock on top and bottom (like legos).
They cannot be stacked sideways.

Using special lifters, putting one block on top of another block
takes one week regardless of how high the stacks are.

What is the shortest amount of time that it will take to build the
tower?

Tower Building
Think about your tower building strategy.
How many weeks will it take to build the tower?

Can you think of any faster strategies?
(you can use as many machines as you want!)

Tower-building strategies

What are different strategies that were used to solve the tower
building problem?

What's the slowest (straightforward) way?

What's the fastest way to build the tower?

Searching!

Webster's
Dictionary

Wubster's
Dictionary

"spam"

What algorithm do we use to find "spam"?

Linear Search
● Start at the first word.
● "Is this the word we want?"
● If it's not, go to the next word.

How many words did we
have to look at before we
got to the right one?

Binary Search
● Start in the middle.
● "Is this the word we want?"

○ If it's before the word we want, go to the middle of the
second half.

○ If it's after the word we want, go to the middle of the first
half.

Binary Search
● Start in the middle.
● "Is this the word we want?"

○ If it's before the word we want, go to the middle of the
second half.

○ If it's after the word we want, go to the middle of the first
half.

Binary Search
● Start in the middle.
● "Is this the word we want?"

○ If it's before the word we want, go to the middle of the
second half.

○ If it's after the word we want, go to the middle of the first
half.

Binary Search
● Start in the middle.
● "Is this the word we want?"

○ If it's before the word we want, go to the middle of the
second half.

○ If it's after the word we want, go to the middle of the first
half.

Binary Search
● Start in the middle.
● "Is this the word we want?"

○ If it's before the word we want, go to the middle of the
second half.

○ If it's after the word we want, go to the middle of the first
half.

If the dictionary had 100 words in it,
how many words did we have to look

at before we got to the right one?

Is this binary searching going to be
better than linear searching?

Linear vs. Binary Search

With a large amount of sorted data, binary search is
almost always more efficient.

But how do we get our data sorted?

Sorting

Challenge: Sort a list of numbers
in increasing order using as few

comparisons at possible.

Let's sort!

Put your blinders on!

We can only compare two elements at a time.

Computer's can't tell when a list is sorted "by inspection" like
we can. They need a concrete set of conditions that lets them
know that a list is sorted.

Thinking Like A Computer

Binary vs. linear sorting ?!?

Let's try two sorting strategies:

(1) "Minsort"

(2) "Mergesort"

We'll keep track of the number of comparisons.

Stop!

Photo Op!

Binary vs. linear sorting ?!?

How did they compare?

(1) "Minsort"

(2) "Mergesort"

How does this relate to dictionary-searching?

ECS sorting material

Video

● minsort/maxsort
● bubble sort
● merge sort
● quick sort

Different sorting algorithms

● minsort/maxsort
● bubble sort
● merge sort
● quick sort

Which of these do you think is the fastest (requires
the least comparisons)?

Minsort

The vague, handwavey idea:

Search for the first element, then the second, and so on...

Minsort

● Compare elements pairwise and find the minimum element
in the list. Remove this element from the unsorted list.

● Place this element at the end of the sorted list.

Repeat to find the second, third...

● We know we are finished when there are no elements in the
unsorted list. (This means all of the elements are sorted, in
the other list!)

Minsort

Let's try it!

How many comparisons did minsort take?

Bubble Sort

The vague, handwavey idea:

Sort the entire list at once by switching elements if we notice
them out of order.

Bubble Sort

● Compare each set of adjacent elements.
● If we find two elements that are "out of order", swap them.

Repeat.

● We know we are finished when there are no elements "out
of order".

Bubble Sort

Let's try it!

How many comparisons did bubble sort take?

Merge Sort

Can we sort faster than this?

When we have two lists that are already sorted, making one
larger sorted list from them is very easy.

Merge Sort

To merge two sorted lists:

● Compare the first element of each list, and remove the
lesser.

● This element should be the first element of the sorted list.

 Repeat to find the second, third, ...

● When there are no elements in one of the lists, we can
simply append the other list to the sorted list.

Merge Sort

● Split the list in half(ish) again and again until you have a
bunch of lists of one element.

○ One element lists are already sorted.
● Merge these one-element sorted lists to get two-element

sorted lists.
● Merge the two-element sorted lists to get four-element

sorted lists...
● And so on, until all of your lists have been merged into one

big sorted list!

Merge Sort

Let's try it!

How many comparisons did merge sort take?

Quick Sort

● Pick an element in the list. (Any element will do.)
○ "Weirdo"

● Compare each element in the list to the Weirdo.
○ If the element is greater than the Weirdo, put it to

the Weirdo's right.
○ If it's less than the Weirdo, put it to the Weirdo's left.

● We now have two smaller unsorted lists!
● Sort the smaller lists.

○ How? Using quick sort!

Sorting CSUnplugged Video

Which sorting algorithm is your favorite? Why?

View animations of different sorting algorithms here:
http://commons.wikimedia.org/wiki/Category:
Animations_of_sort_algorithms

https://www.youtube.com/watch?v=cVMKXKoGu_Y

Muddy City
The Muddy City Activity from CS Unplugged

The Muddy City Activity from CS Unplugged

(1) Complete page one of the activity, then
(2) with your elbow partner, discuss the following points:

● What strategies did you use to solve the problem?
● Describe the algorithm (process) that you used.
● Would your strategy work for another city? (Why or why not?)

● For any city?

Muddy City

Graphs
As we saw, we can also represent the city as a graph, like this:

The dots are called vertices (singular- vertex) and the lines
are called edges.

What is your solution?

on the board...

Graphs
Since the edges have numbers associated with them, this is
called a weighted graph.

The solution to the muddy city
problem is called a minimum
spanning tree.

It is spanning because it
includes all of the vertices.

It is a tree because there is a
unique path connecting every
pair of vertices.

It is minimum because no other
spanning tree "costs" less.

Is this minimum spanning
tree unique?

Why are there multiple solutions?

Other problems in graph theory
Euler's Bridges of Königsberg: Can you go for a walk and cross
every bridge only once and end up where you started?

A D

C

B

Graph RepresentationMap Representation

Other problems in graph theory
The Utilities Problem: Can you connect all three utilities to each
of the three houses without any lines crossing?

Final Unit 2 Project

● Students collect data about places they visit.
● Students find the best carpooling route: starting here

(the school), visiting their locations, and returning.

See you tomorrow!
Unit 1: Human Computer Interaction
Unit 2: Problem Solving
Unit 3: Web Design
 Days 1-2: Web & Society
 Days 3-4: Basic HTML
 Day 5: HTML Formatting
 Days 6-7: Image editing for the web
 Days 8-10: Basic CSS
 Days 11-13: Style vs structure: HTML & CSS
 Day 14: Linking websites
 Days15-16: Page layout styles
 Days 17-19: Practice using design elements
 Days 20-21: Enhancements for web design
 Days 22-25: Final unit projects
Unit 4: Introduction to Programming
Unit 5: Computing Applications
Unit 6: Robotics

