

Challenge:

use Hmmm code somewhere in your first <u>Writ1</u> or <u>SpecRel</u> assignment...

Next Tues

Guest Lecture \sim Tues. Prof. Julie Medero!

Loop of life, **Prof. Medero's** take:

enge:

use Hmmm code somewhere in your rst <u>Writ1</u> or <u>SpecRel</u> assignment...

t Tues

uest Lecture ~ Tues. Prof. Julie Medero!

CS 5 Today

infinitely *nested* structure...

Homework 8 *Loops!* due Mon. 11/4

CS Midterm

Thursday, Nov. 7

In-class, written Page of notes is OK

- Recursion in Python
- Function composition
- Circuit design

Topics

- Hmmm assembly code
- Loops in Python

See online practice...

Accommodations...

Homework 8 preview

Algorithms ~ better angels... ?

Or ~ *louder* angels of human nature... ?

#0 When Algorithms Discriminate...

#1 ~ lab

TheUpshot

When Algorithms Discriminate

Claire Cain Miller @clairecm JULY 9, 2015

The online world is shaped by forces beyond our control, determining the stories we read on Facebook, the people we meet on OkCupid and the search results we see on Google. Big data is used to make decisions about health care, employment, housing, education and policing. an?

But can computer programs be discriminatory?

Homework 8 preview

PythonBat loop practice...

google for "PythonBat" then...

CodingBat code practice	ab	out help code help+videos done prefs	id/email					
			forgot password create account					
Java Python								
String-2 > double_char prev next chance								
Given a string, return a string where for ev	ery char in the original, there are two chars.							
double_char('The') → 'TThhee' double_char('AAbb') → 'AAAAbbbb' double_char('Hi-There') → 'HHiiTThheerre	ee'							
GoSave, Com	pile, Run (ctrl-enter) Show Hint	Our Solution:						
		<pre>def double_char(str):</pre>						
<pre>def double_char(str): result = ''</pre>		for i in range(len(str)):						
for c in str: result += 2*c return result		result += str[i] + str[i] return result						
1		A11	Correct					
		▼ All Correct						
		Good job problem solved. You can	see our solution as an alternative.					
	and the second							

5 points required, up to 11 points available...

Thinking in *loops* for while $\mathbf{x} = 1$ for x in "range(42): while x < 42: print(x) print(x) x *= 2

What are the design differences between these two types of Python loops?

Loop design...

HOW TO BREATHE EASIER

- 1 Inhale deeply through your nose.
- 2 Hold your breath for 5 long seconds counting "1-Mississippi, 2-Mississippi, etc."
- **3 DO NOT EXHALE.** Breathe in another short breath and hold for 5 long seconds.
- 4 DO NOT EXHALE. Repeat one more time.
- 5 Exhale **SLOWLY** to a slow count of 10 long seconds.
- 6 Repeat the whole sequence until you feel the stress, anger or frustration exit your body.

Is this a for or a while loop?

Table tent...

Careful here!

Loop design...

Lather.

Rinse.

Repeat.

HOW TO BREATHE EASIER

- 1 Inhale deeply through your nose.
- 2 Hold your breath for 5 long seconds counting "1-Mississippi, 2-Mississippi, etc."
- **3 DO NOT EXHALE.** Breathe in another short breath and hold for 5 long seconds.
- 4 DO NOT EXHALE. Repeat one more time.
- 5 Exhale **SLOWLY** to a slow count of 10 long seconds.
- 6 Repeat the whole sequence until you feel the stress, anger or frustration exit your body.

MORE TIPS? www.cuc.claremont.edu/heo/balance find your balance! Is this a for or a while loop?

Thinking in *loops*

for

while

definite iteration

For a **known** list or # of iterations

indefinite iteration

For an **unknown** number of iterations

Homework 8 preview

Hw8 Pr3

Pi from Pie?

Pizza is the universal constant, after all...

Hw8 Pr3

Pi from Pie?

This couldn't be just a coincidence!

Hw8 Pr3

Pi-design challenge...

Estimating π from pie?

(1) Suppose you throw100 darts at the square(All of them hit the square)

(2) Suppose 80 of the 100 hit <u>inside the circle</u>.

(3) How could you estimate π from these throws?

Hints

How big is a **side** of the square? its **area**?

How big is the **radius** of the circle? its **area**?

How do these help!?

Pi-design challenge...

Loops: **for** or **while**?

pi_one(e)

e == how close to π we need to get

pi_two(n)

n == number of darts to throw

Which function will use which kind of loop?

Loops: **for** or **while**?

pi_one(e) while

e == how close to π we need to get

pi_two(n) for

n == number of
darts to throw

π day!

3/14/15 9:26:53

Homework 8 preview

Nested loops are familiar, too!

for mn in "range(60): for s in "range(60): tick()

Nested loops are familiar, too!

Nested loops!

In Manuelland

for s in "range(60): tick()

Creating 2d structure ~ in ASCII

for row in "range(3): for col in "range(4): print("#")

Creating 2d structure

for row in "range(3): for col in "range(4): print("#", end='')

Creating 2d structure

row = 0 col = 0 col = 1 col = 2 col = 3

row = 1 col = 0 col = 1 col = 2col = 3

row = 2 col = 0 col = 1 col = 2 col = 3

for r in range(3): for c in range(6): **if** c%2 == 1: B print('#',end=") else: print(' ', end=") print()

Name(s)

#

#

2

#

if not (c==r or c+r==4)

#

#

#

2

1

3

cols

5

4

1

0

print() 2 0 C

#

2

rows

Nested loops' *2d structure*

What trends appear in this birthday data?

How might we be suspicious of the <u>fairness</u> of this data?!

Data represents the # of babies born in the United States between 1973 and 1999

how many *shared* birthdays are in CS5?

Nested loops: from ASCII Art

That's my **type** of alien!

....ttffjjttiiiii:::::: ,,DDtt,,;;iittjjGGGGGii:: ..ttjjttii,,::....DD:: ..ttDDtt.. .. GGKKKKKKKKKKKKKEEDDGGGGG.. ::ttLL ..::::: ... DD:::::::::... ..KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK ..ff:::::::::::: ,,,,,,,,,,,, ;;;;,,,, ,,,,,, ****** ;;##WW... ..;;:: ,,,,,, ;;tt WW##ff tt####;; ::;;:: ####GG ;;##WW... ,,;;,, ffKK;; ;;;; ;;LL;;,;;;;::EE##EE ,,,,,, ;;;;;;;;KK##KK ,,,,,, ,,;;;;;;;;;;ffKKii ,,,,,,

... to "real" images!

Python and images

Python and images

im.saveFile()

These functions are clearly **plotting something** – if only I knew what they were up to... from cs5png import *

```
def testImage():
    """ image demonstration """
    WD = 300
    HT = 200
    im = PNGImage( WD, HT )
    for row in range(HT):
        for col in range(WD):
```

Imagining Images

> thicker line? other diagonal? stripes ? thicker stripes? thatching?

if col == row:

im.plotPoint(col, row)

im.saveFile()

Complex #s ! $\sqrt{-1} = i$

i can't believe this!

1j * 1j == -1 (-1+0j)

Complex #s ! $\sqrt{-1} = i$

1j * 1j == -1
(-2+1j)*(-2+1j)

In[]: c = -2+1j

In[]: c**2 (3-4j)

i can't believe this!

Lab 8: the Mandelbrot Set

Mandelbrot Definition

Mandelbrot Definition

Mandelbrot Definition

Lab 8: the Mandelbrot Set

Consider an *update rule* for all complex numbers *c*

 $z_0 = 0$

$$z_{n+1} = z_n^2 + c$$


```
Click to choose c.
c is -1.21368948247 + -0.16290726817 * 1j
```

```
iter \# 0 : z = 0.0 + 0.0 * 1j
iter # 1 : z = -1.21368948247 + -0.16290726817 * 1j
          z = 0.232813899367 + 0.232530407823 * 1j
iter # 2 :
      3 : z = -1.21355756129 + -0.0546346462374 * 1j
           z = 0.256047527535 + -0.0303026920702 * 1i
iter #
             = -1.14904739926 + -0.1784251 6935 * 1j
           z = 0.0747849173552
                                           7964 * 1j
            some c's
                                           5977 * 1i
                                            88 * 1i
iter #
                                            08 * 1j
                                            )56431 * 1j
iter # 11
                                             602 * 1j
iter # 12
iter # 13
iter # 14
iter # 15
                                 -0.180471770237 *
                                                   1i
iter # 16 :
                    JJ360076381 + 0.255350697358 * 1i
iter # 17 :
           z = -1.26957426034 + -0.113606194
                                              29 * 1i
iter # 18 : z = 0.385222952638 + 0.125555732355 * 1j
iter # 19 : z = -1.08105700116 + -0.0661733682935 * 1j
iter \# 20 : z = -0.0493841573866 + -0.0198329020025 * 1j
iter # 21 : z = -1.21164403147 + -0.160948405863 * 1j
iter \# 22 : z = 0.228487387181 + 0.227117082506 * 1j
```

Lab 8: the Mandelbrot Set

Consider an *update rule* for all complex numbers *c*

 $z_0 = 0$

$$z_{n+1} = z_n^2 + c_n^2$$

CLICK to choose c.																		
c is	-0).7	57	92	298	83	139	+	-0.	1729	323	33082	7 *	• 1	j			
															_			
iter	#	0	:	z	=	ο.	0 +	ο.	0 *	11								
iter	÷.	1		-	=	-0	75	792	988	3139	+	-0.1	729	322	3308	327	*	14
	Т.	÷	1	2		š		227	776	6400	11	0 00		000	217	500		11
iter	Ŧ	2	۰.	z	=	-0	. 21	331	//0	6429	+	0.08	920	199	31/1	022		1]
iter	#	3	:	z	=	-0	.72	035	802	7597	+	-0.2	110	02	6933	361	*	1j
iter	#	4	:	z	=	-0	.28	353	633	1822	+	0.13	1101	5.	3718	38 3	* 1	j
iter	#	5	:	z	=	-0	. 69	471	444	6542				1	369	501	*	1j
iter	#	6	:	z	=	-0	. 33	e • -							3423	38 -	* 1	τ
iter	#	7	:	-						-	6	•' C			1973	352	*	Ĩi
iter	ü.	8	1				1	L	~ (Dr		<u> </u>			99	22	* 1	÷.
	ш.	š	:												EOI	1.0	<u>_</u>	J 1 -
iter	Ŧ	9	•												50:	91.0	÷.	13
iter	#	10													34(07	*	1j
iter	#	11	:							1	٢C	5P.			0.	519	*	1j
iter	#	12	:							12	\ 9	5			43	38 -	* 1	j
iter	#	13	:										543	379	2492	280	5 *	1i
iter	#	14	:		z					.001	8 -	+ 0.4	833	867	4763	36 9	* 1	ήĨ
iter	#	15	:		z			161	748	1534	8 -	+ -0.	839	48	8323	366:	3 *	Ĩ1i
iter	÷.	16				-	1.1	962	340	8871	÷+	0.69	371	31	3008	31	* 1	÷
	Щ. Ш	17					10	100	020	10071	1	_1 0	222	10	0100	- +	42	J
Tter	#	11	•		- 2	. 0		100	020	4990	. T.	-1.0	520	010	9100		÷,	
iter	#	18		- 1	z =	-	4.0	796	315	9717	+	-0.8	759	55	0213	339	*	1]
iter	#	19	:	- 2	z =	: 1	5.1	181	668	861	+ (5.974	215	523	468	* :	lj 🛛	
iter	#	20	:	- 1	z =	: 1	79.	161	361	.972	+ 2	210.7	017	67	303	* :	۱j	
																	-	

Mandelbrot Set ~ *points that stick around*

The shaded area are points that do *not* diverge for z = z**2 + c

Chaos?

Complex things always consisted of simple parts...

Before the M. Set, complex things were made of simple parts:

Chaos!

This was a *"naturally occurring"* object where zooming uncovers *more* detail, not less:

not self-similar but quasi-self-similar

http://www.youtube.com/watch?v=0jGaio87u3A

The black pixels are points that do *not* diverge for z = z**2 + c

What are these colors?

Happy Mandelbrotting!

www.cs.hmc.edu/~jgrasel/projects

http://www.youtube.com/watch?v=0jGaio87u3A