
CS 5:   Putting loops to work…

[ 1, 11, 21, 1211, 111221, ?  ]

[ -35, -24,   -13, -2, 9, 20, 31,   ? ]

[ 26250, 5250, 1050, 210,   ? ]

[ 90123241791111 , 93551622, 121074, 3111, ? ]

Homework 8: due Mon., 10/31 by midnight
"Office" hrs.   Fri!  + lots of tutoring, LAC & ...

Midterm 11/3; review on the CS5 homepage
Final Exam:  choice of  12/16 or 17 @ 7pm

What's next?
I'm glad you asked!

quizzes!



Pop tarts > candy Official CS5 snack 
comparison

But this 
should
exist!



Next Thursday will be the CS 5 in-class midterm

Un-warnings:

worth 1 hw assignment

Suggestions:

go over in-class exercises and hwk problems

consider small variations of the problems –
and how they would change the solutions…

score worries?   Extra extra-credit in hw9 and beyond

create a page of notes, 2-sided is OK

worries? concerns?   See me…

five problems, written

only 5 minutes? Try list 
comprehensions & LoL!

all quizzes so far?  
they're posted!



Mid-term feedback…
I would love to know any thoughts you have about CS5 thus far in the term.    

In particular, how you feel about the time and effort CS5 requires…

Don't put your name

On average, how much time 
per week do you spend on 
CS5 outside class + lab? 

Something you'd keep about CS5 …? 

Something you'd change about  / get rid of / add to CS5 …? 

Other thoughts optional, but 142% welcome:

How does CS5's workload 
compare to other classes 
you're taking this term? 

How would you judge 
the pace of CS5?

much 
heavier

about 
the same

much 
lighter

much too 
fast

about 
right

much too 
slow

Circle your year:         First-year       Sophomore         Junior         Senior          Other



CS 5:   Putting loops to work…

[ 1, 11, 21, 1211, 111221, ?  ]

[ -35, -24,   -13, -2, 9, 20, 31,   ? ]

[ 26250, 5250, 1050, 210,   ? ]

[ 90123241791111 , 93551622, 121074, 3111, ? ]

Homework 8: due Mon., 10/31 by midnight
"Office" hrs.   Fri!  + lots of tutoring, LAC & ...

Midterm 11/3; review on the CS5 homepage
Final Exam:  choice of  12/16 or 17 @ 7pm

What's next?
I'm glad you asked!

quizzes!



When does the 
first 4 appear?

str vs. int

How fast do these 
terms grow?

The read it and weep sequence

Extra extra credit: in wk9!

1
11
21

1211
111221
312211

13112221
…



1
11
21

1211
111221
312211

13112221
…

In the limit, the length of the 
Nth term of the read-it-and-

weep sequence is

(1.303577...)
exponential 

growth

Growth determined empirically…

N

this base was found computationally by 
taking repeated ratios of term lengths...



λ = 1.30357726034296…

"Conway's Constant" has an 
analytic definition!

It is the largest real root of this 
71st-degree polynomial !!

Growth determined analytically…

the 71 roots      
(complex plane)

http://www.njohnston.ca/2010/10/a-derivation-of-conways-degree-71-look-and-say-polynomial/



Happy Oct 31!



def fac( N ):
result = 1
for x in range(1,N+1):

result *= x
return result

def fac( N ):
if N == 1:

return 1
else:

return N*fac(N-1)

Is one more reasonable
than the other?



def fac( N ):
result = 1
for x in range(1,N+1):

result *= x
return result

def fac( N ):
if N == 1:

return 1
else:

return N*fac(N-1)

Is one more reasonable
than the other?



for: two types

L = [3, 15, 17, 7]

for x in L:
print x

element-based loops

x

"deceptively 
easy"



for: two types

L = [3, 15, 17, 7]

for x in L:
print x

element-based loops

for i in range(len(L))

print L[i]
index-based loops

i

0 1 2 3

L[3]L[2]L[1]L[0]

list



x

def sum(L):
total = 0
for x in L:
total += x

return total

element-based loops

elements vs. indices

def sum(L):
total = 0
for i in range(len(L))

total += L[i]
return total

index-based loops

L = [3, 15, 17, 7]

i

0 1 2 3

L[3]L[2]L[1]L[0]

list



Implement a (text) menu:

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

hw8pr3:    T. T. Securities (TTS)

L = [ 40, 80, 10, 30, 27, 52, 5, 15 ] 

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzes a sequence of stock prices

x

i



User input…

What will Python think?

meters = input('How many m? ') 

cm = meters * 100

print('That is', cm, 'cm.')

I think I like these units better 
than light years per year!



User input…

What will Python think?

meters = input('How many m? ') 

cm = meters * 100

print('That is', cm, 'cm.')

I think I like these units better 
than light years per year!



Fix #1:  convert to the right type

m_str = input('How many m? ') 

meters = float( m_str )

cm = meters * 100
print('That is', cm, 'cm.')

name: meters
type: float

name: cm
type: float

42.0 4200.0

name: m_str
type: string

'42'



Fix #2:  convert and check
m_str = input('How many m? ')

try: 
meters = float( m_str )

except:
print("What? Does not compute!")
print("Setting meters = 42")
meters = 42.0

cm = meters * 100
print('That is', cm, 'cm.')



Fix #2:  convert and check
m_str = input('How many m? ')

try: 
meters = float( m_str )

except:
print("What? Does not compute!")
print("Setting meters = 42")
meters = 42.0

cm = meters * 100
print('That is', cm, 'cm.')



Fix #3:  eval executes Python code!

m_str = input('How many m? ') 

meters = eval( m_str )

cm = meters * 100
print('That is', cm, 'cm.')



Fix #3:  eval executes Python code!
m_str = input('How many m? ')

try: 
meters = eval( m_str )

except:
print("What? Does not compute!")
print("Setting meters = 42")
meters = 42.0

cm = meters * 100
print('That is', cm, 'cm.')



A larger application
def menu():

""" prints our menu of options """
print("(0) Continue")
print("(1) Enter a new list")
print("(2) Predict")
print("(9) Break (quit)")

def main():
""" handles user input for our menu """

while True:
menu()
uc = input('Which option? ')

try:
uc = int(uc)    # was it an int?

except:
continue # back to the top!

Perhaps  uc the 
reason for this?

Calls a helper 
function



def main():
""" handles user input for our menu """
L = [30,10,20]  # a starting list

while True:
menu()  # print menu
uc = input('Which option? ') ...

if uc == 9:

elif uc == 0:

elif uc == 1:

elif uc == 2:

(9) Quit

(1) Get new list

(2) Predict !

(0) Continue

... and so on ...



def main():
""" handles user input for our menu """
L = [30,10,20]  # a starting list

while True:
menu()  # print menu
uc = input('Which option? ')

if uc == 9:
break

elif uc == 0:
continue

elif uc == 1:
... input ... eval ...

elif uc == 2:

(9) Quit

(1) Get new list

(2) Predict !

(0) Continue

... and so on ...

break jumps out of the loop

uses eval (+check) for a new L

continue jumps back to the top

other functions as needed...



 
        elif uc == 1:  # we want to enter a new list 
            newL = input("Enter a new list: ")    # enter _something_ 
             
            # "clean and check" the user's input 
            # 
            try:  
                newL = eval(newL)   # eval runs Python's interpreter! Note: Danger
                if type(newL) != type([]):  
                    print("That didn't seem like a list. Not changing L.") 
                else:  
                    L = newL  # here, things were OK, so let's set our list, L 
            except: 
                print("I didn't understand your input. Not changing L.") 
 
        elif uc == 2:        # predict and add the next element 
            n = predict(L)   # get the next element from the predict function 
            print("The next element is", n) 
            print("Adding it to your list...") 
            L = L + [n]      # and add it to the list 
 
        elif uc == 3:  # unannounced menu option! 
            pass       # this is the "nop" (do-nothing) statement in Python 
 
        elif uc == 4:  # unannounced menu option (slightly more interesting...) 
            m = find_min(L) 
            print("The minimum value in L is", m) 
 
        elif uc == 5:  # another unannounced menu option (even more interesting...
            minval, minloc = find_min_loc(L) 
            print("The minimum value in L is", minval, "at day #", minloc) 
 
        else:          # if the input uc was anything else 
            print(uc, " ?      That's not on the menu!") 
 
        print("Running again...\n") 
 
    print("\nI predict... \n\n        ... that you'll be back!") 

 
# example looping program with user-input 
 
def menu(): 
    """ a function that simply prints the menu """ 
    print() 
    print("(0) Continue!") 
    print("(1) Enter a new list") 
    print("(2) Predict the next element") 
    print("(9) Break! (quit)") 
    print() 
 
def main(): 
    """ the main user-interaction loop """ 
    print() 
    print("+++++++++++++++++++++++++") 
    print("Welcome to the PREDICTOR!") 
    print("+++++++++++++++++++++++++") 
    print() 
 
    secret_value = 4.2 
 
    L = [30,10,20]  # an initial list 
 
    while True:     # the user-interaction loop 
        print("\n\nThe list is", L) 
        menu() 
        uc = input( "Choose an option: " ) 
 
        # "clean and check" the user's input 
        #  
        try: 
            uc = int(uc)   # make into an int! 
        except: 
            print("I didn't understand your input! Continuing...") 
            continue 
 
        # run the appropriate menu option 
        # 
        if uc == 9:    # we want to quit 
            break      # leaves the while loop altogether 
 
        elif uc == 0:  # we want to continue... 
            continue   # goes back to the top of the while loop 
 

(1) Which block below handles an input of 7 ? 

(2) What does choice 0 not print that 3 does?

(5) What could you 
type for newL that 
would print this?

(4) What could you 
input for newL that 
would print this?

(6) predict is a function defined 
elsewhere (off this page) Find the 
two other functions called here, but 
defined elsewhere: they both 
include find in their names!

(EC) How could a user learn the 
value of secret_value if they 
knew that variable name and 
could run the program -- but 
didn't have this code?

(3) What line of code 
runs after this break ?

main function

while  True:

Full program example of user-interactions



Functions you'll write All use loops…

def average( L )Menu

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

def stdev( L )

def minday( L )

def maxday( L )

(L[i] - Lav)
2

len(L)
i

webbrowser.open_new_tab(url)



Min price

What's the idea for finding the smallest (minimum) price?

m =

track the value of the minimum so far as you loop over L

m is the 
"min so far"

Just call min ?

L = [ 40, 80, 10, 30, 27, 52, 5, 15 ] 

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7



Min price vs. min day

def minprice( L ):

m = L[0]

for x in L:

if x < m:

m = x

return m

L = [ 40, 80, 10, 30, 27, 52, 5, 15 ] 

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

What about 
the day of the 

minimum 
price?

m = 
40

m = 
10

m = 
5 5 is 

returned



Mid-term feedback …
I would love to know any thoughts you have about CS5 thus far in the term.    

In particular, how you feel about the time and effort CS5 requires…

Don't put your name

On average, how much time 
per week do you spend on 
CS5 outside class + lab? 

Something you'd keep about CS5 …? 

Something you'd change about  / get rid of / add to CS5 …? 

Other thoughts optional, but 142% welcome:

How does CS5's workload 
compare to other classes 
you're taking this term? 

How would you judge 
the pace of CS5?

much 
heavier

about 
the same

much 
lighter

much too 
fast

about 
right

much too 
slow

Circle your year:         First-year       Sophomore         Junior         Senior          Other



>>> mindiff( [42,3,47,100,-9] )

Quiz, p.2

What does this print? 

for i in range(4):

for j in range(4):

print(abs(i-j),end='')
print()

def i_min( L ):

minval = L[0]

minloc = 0

for i in range(len(L)):
if :

minval = 

minloc = 

return minloc

Finish this code to return the 
index (location) of L's min.

def mindiff( L ):

Write mindiff to return the smallest absolute 
difference between any two elements from L.

L will be a list of numbers.
Hint: Use a nested loop!

Only consider abs differences. 

>>> i_min(  [9, 8, 5, 7, 42] )
2 0 1 2 3 4

L

Hints: 
track of the minimum value in minval
track the location of the min inside minloc

0 1 2 3

i

0

1

2

3

j

5
list

list

list



Brots… !Neel and Chaitanya



L = [ 40, 80, 10, 30, 27, 52, 5, 15 ] 

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

= 
40

= 
10

= 
5

6 is 
returned

= 0 = 2 = 6

def i_min( L ):
minval = L[0]
minloc = 0
for i in range(len(L)):                 

if 

return minloc

track both day 
and price

update when 
needed

loop!

minval

minloc

i



L = [ 40, 80, 10, 30, 27, 52, 5, 15 ] 

= 
40

= 
10

= 
5

def i_min( L ):
minval = L[0]
minloc = 0
for i in range(len(L)):                 
if  L[i] < minval:

minval = L[i]
minloc = i

return minloc

track both day 
and price

update when 
needed

loop!

minval

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

6 is 
returned

= 0 = 2 = 6minloc

i



Nested loops...

for i in range(4):

for j in range(4):

print(abs(i-j),end='')
print()

0   1   2   3

j
i

1 0 1 2
2 1   0   1
3 2 1 0

0 1 2 3

0

1

2

3

[0,1,2,3]
list

list



for i in range(4):

for j in range(4):

def mindiff( L ):

m = abs(L[1]-L[0])

for i in range(len(L)):

for j in range(   ,len(L)):

if

return m

Track the value of the 
minimum so far as you 

loop over L twice…

Hint: Use nested loops:

mindiff( [42,3,7,100,-9])

4
Write mindiff to return the smallest abs. diff. 

between any two elements from L.
L



for i in range(4):

for j in range(4):

def mindiff( L ):

m = abs(L[1]-L[0])

for i in range(len(L)):

for j in range(i+1,len(L)):

if abs(L[j]-L[i]) < m:

m = abs(L[j]-L[i])

return m

Track the value of the 
minimum so far as you 

loop over L twice…

Hint: Use nested loops:

mindiff( [42,3,7,100,-9])

4
Write mindiff to return the smallest abs. diff. 

between any two elements from L.
L



Investment analysis for the 21st century … and beyond

Software side …

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

T. T. Securities

Hardware 
side…



The TTS advantage!

Your stock's prices:

What is the best 
TTS investment 
strategy here?

L = [ 40, 80, 10, 30, 27, 52, 5, 15 ] 

Day  Price
0    40.0
1    80.0
2    10.0
3    30.0
4    27.0
5    52.0
6     5.0
7    15.0

To make our business plan realistic, however, we only allow selling after buying.

Important fine print:



Day  Price
0    40.0
1    80.0
2    10.0
3    30.0
4    27.0
5    52.0
6     5.0
7    15.0

Important fine print:

for each buy-day, b:

for each sell-day, s:

compute the profit

if it's the max-so-far:

remember it in a variable!

The TTS advantage!

Your stock's prices:

What is the best 
TTS investment 
strategy here?

L = [ 40, 80, 10, 30, 27, 52, 5, 15 ] 

To make our business plan realistic, however, we only allow selling after buying.


