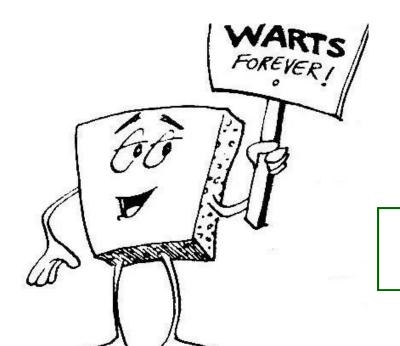

Welcome to CS 5!

I LEARNED IT LAST
NIGHT! EVERYTHING
IS SO SIMPLE!
HELLO WORLD IS JUST
Print "Hello, world!"

I DUNNO...
DYNAMIC TYPING?
WHITESPACE?

COME JOIN US!
PROGRAMMING
IS FUN AGAIN!
IT'S A WHOLE
NEW WORLD
UP HERE!


BUT HOW ARE
YOU FLYING?

I JUST TYPED
import antigravity
THAT'S IT?

... I ALSO SAMPLED
EVERYTHING IN THE
MEDICINE CABINET
FOR COMPARISON.

BUT I THINK THIS
IS THE PYTHON.

xkcd, CS's id

Welcome to CS 5!

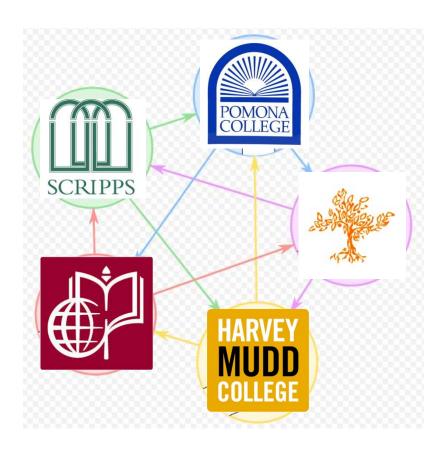
Grab these lecture notes...

Introduction to CS

Wally Wart, a protrusive advocate of *concrete* computing

We don't have words strong enough to describe this class.

- US News and Course Report


Everyone will get out of this course – a lot!

- NYTimes Review of Courses

1 handout... slides & syllabus

We give this course two thumbs...
- Metametacritic

A word on 5 spots...

Welcome, not only to HMC, but to all 5Cs!

Introductions...

Zach Dodds Olin B163 (HMC) dodds@cs.hmc.edu

taker of *low-quality* selfies fan of *low-tech* games

How I spend my summers ...?

Chairs?

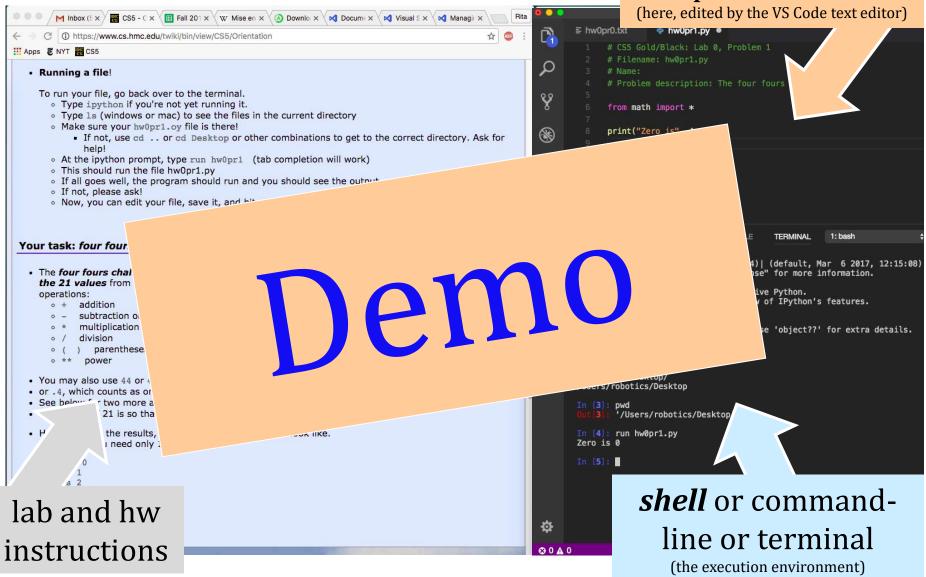
Outreach

Teacher Outreach in S.F.

Today in CS5

2) How CS 5 runs...

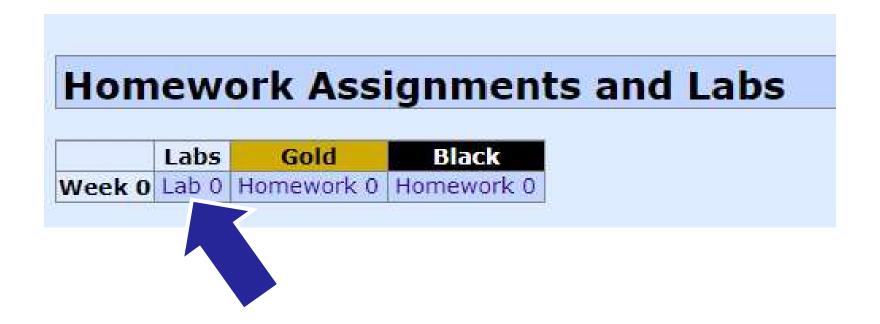
3) Python?!



CS vs. programming?

A minute of cs5 programming...

Python source code, a plain-text file



Lab 0: getting everything running on your own machine

Lab 0: Happiness Suggestion

Download the software BEFORE coming to lab:

https://www.cs.hmc.edu/twiki/bin/view/CS5/OwnMachines

Spot the difference here?

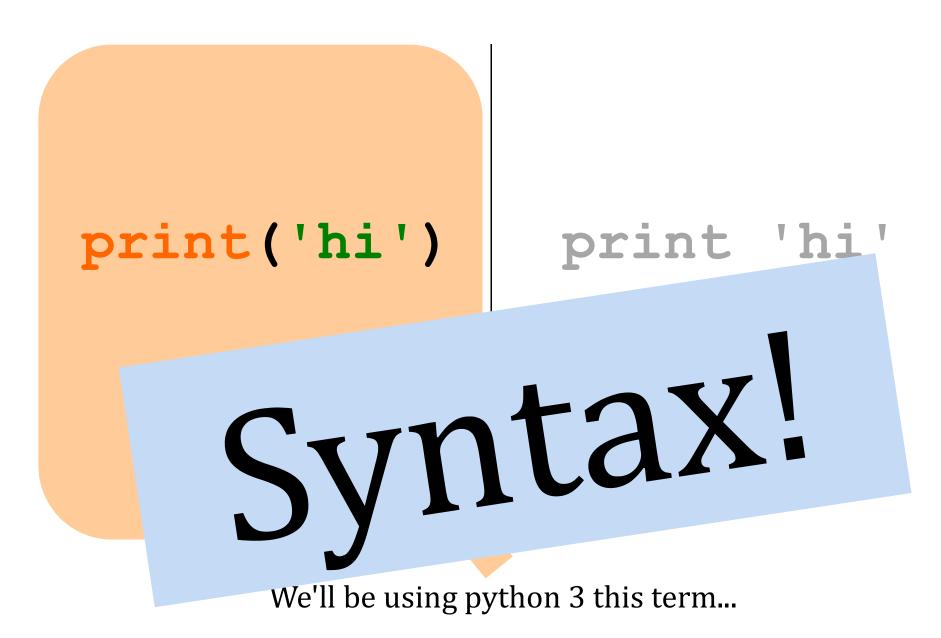
```
print('hi') p:
```

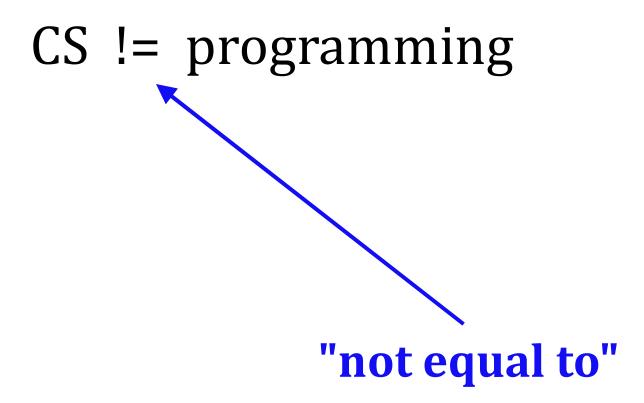
print 'hi'

I still confuse these!

Spot the difference here?

print('hi')


python 3


print 'hi'

python 2

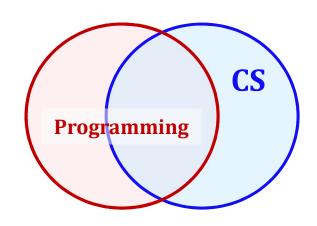
We'll be using python 3 this term...

Spot the difference here?

CS != programming

programming : CS ::

longboards: HMC maybe 5Cs?


capital: business venture

equations: mathematics

language: ideas

web search: knowledge

Tesla: Google

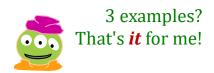
programs are a *vehicle*, but not the destination

CS != programming

So, what is CS?

What is CS a science of?

the study of *complexity*:


How can **it** be done?

How well can **it** be done?

Can **it** be done at all?

it ~ information

or, more precisely, a process transforming information from one form to another

We'll look at 3 examples – each of which you'll *construct* in CS 5 ...at least to some extent!

'HUMAN'

'CHIMPANZEE'

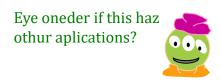
How can it be done?

How well can it be done?

Can it be done at all?

Can you solve the problem?

Can you create a *process* to solve such problems?

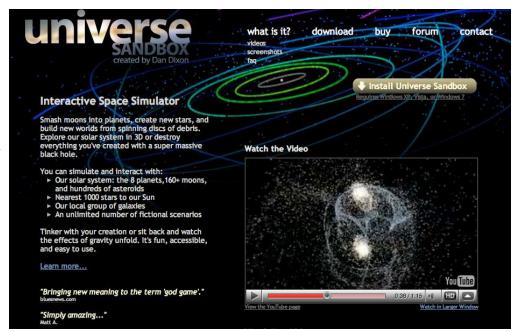

What is the *Longest Common Subsequence* between 2 strings?

biology's string-matching problem, "LCS"

'CGCTGAGCTAGGCC...'

'ATCCTAGGTAACTG...'

+10⁹more


How can **it** be done?

How well can **it** be done? \rightarrow

Can it be done at all?

How *quickly* can you find a solution?

Is your solution the "best" possible?

How much work is needed to simulate N stars?

chemistry's + physics's "N-body" problem

What if N is a million-and-one...?

How can **it** be done? How well can **it** be done?

Can **it** be done at all?

Is your problem *solvable*?

How can you tell !?

Can we build a 3d model

Andrew Ng's "Make3d"

from one 2d image?

many problems are *uncomputable*... ... and you'll *prove* this!

All three eyes tell me that Make3d has just failed ~ epically!

CS is the study of *complexity*

How can **it** be done?

How well can it be done?

Can **it** be done at all?

CS's **6** big questions

Only one is programming. Which one?

Can you solve this problem?

Can you create a process to solve such problems?

How quickly can you find solutions?

Do you have the "best" solution?

Is every problem solvable?

Is there a way to tell?

There isn't always!

CS is the study of *complexity*

How can **it** be done?

How well can it be done?

Can it be done at all?

CS's **6** big questions

Only one is programming. Which one?

Can you solve this problems

Can you create a process to solve such problems?

How quickly can you finds solutions?

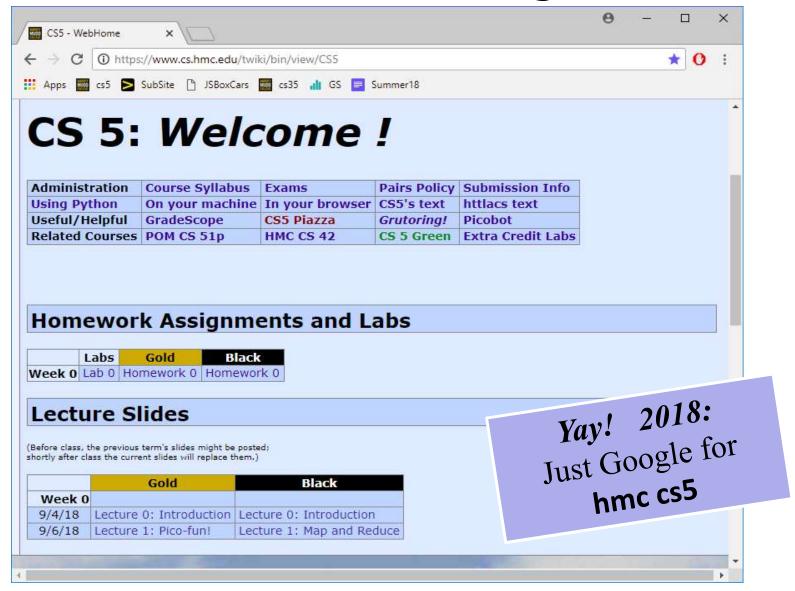
Do you have the "best" solution?

Is every problem solvable.

Is there a way to tell?

There isn't always!

CS's – and CS5's – philosophy:

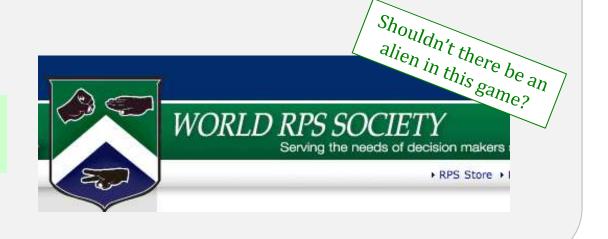

Whatever you are, be a good one.

- Abraham Lincoln

More and more, CS can help!

depending on where "home" is, perhaps...

Take-home message...

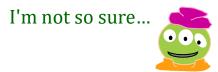

www.cs.hmc.edu/cs5

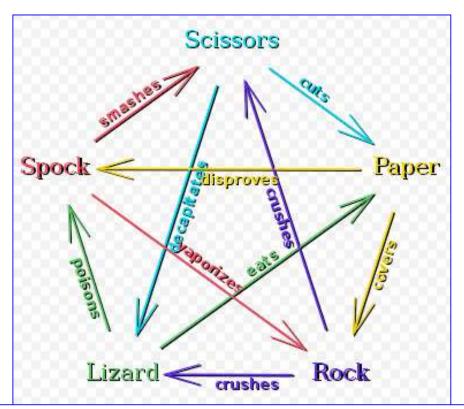
You're here ~ what's next?

2) How CS 5 runs...

3) Python?!

the first Python HW is *choice!*





CS is just programming, right?

1) What *is* CS?

rock – paper – scissors – lizard – Spock!

Let's play! Maybe two out of three?

Logically, I've got game!

Soundbite Syllabus

Lectures

T and Th: 8:10-9:25 am

Ins Come to Lectures! y, how)
We a like to see you! Let me know if you'll be sick...

Lab recommended by 4 o

recommended by 4 out of 5 CS5 alums!

Come to Labs! for lab

Win Div Dyou time and enorting as a

Office hrs

Lots of help is available!

HW

Monday Hw is due on Monday nights...

come to any or the many tatoring mo.

Syllabus, briefly

Lectures

T and Th: 8:10-9:25 am

Key skills, topics, and their motivation
Insight into the HW problems (what, *why*, how) **We'd like to see you!** Let me know if you'll be sick...

T or W: 2:45 - 4:45pm or 6-8 pm
Guided progress on the week's hw
Not required, but encouraged: *full credit for lab*Will **SAVE** you time and effort in CS 5

Office hrs

F: 2:30-4:30 pm, Linde Activities Center lab feel free to work on HW, to just stop by, or, come to any of the **many** tutoring hrs!

HW

Monday nights: *due by 11:59 pm*

Each week's lab...

- 0) Find the lab! Sign in...
- 1) Get Python running..."

```
← → C https://www.cs.hmc.edu/twiki/bin/view/CS5/OwnMachines

Apps CS5

How to download and install this software?
```

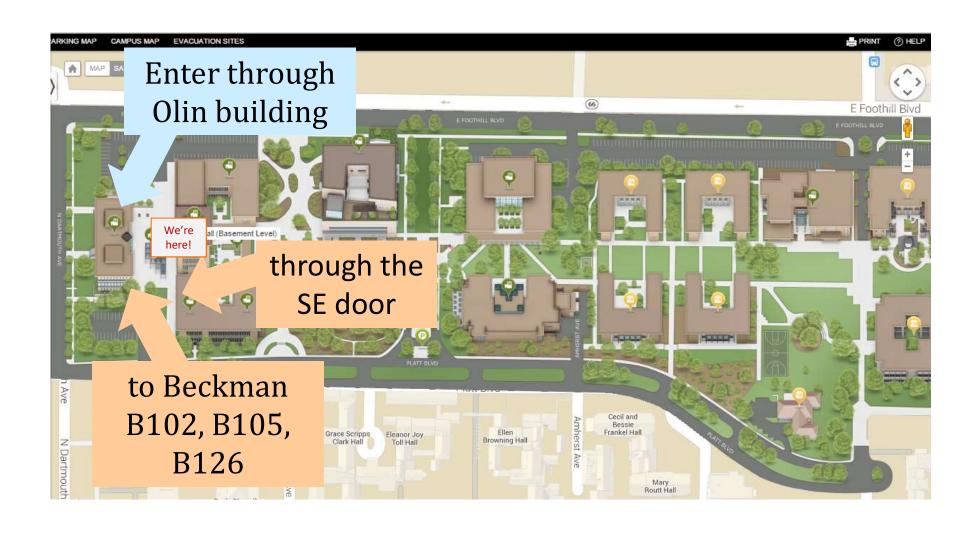
demo 2) Edit, run, + submit a file...

Encouraged: bring your laptop

Each week's lab...

Labs are optional, but incentivized.

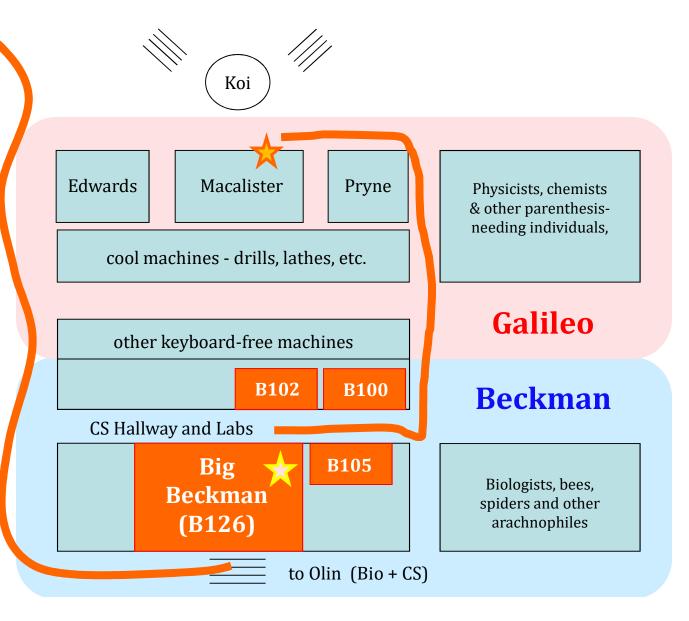
If you come to lab, give a goodfaith effort, and sign in, you'll receive **full credit for the lab problems** even if you don't finish


den

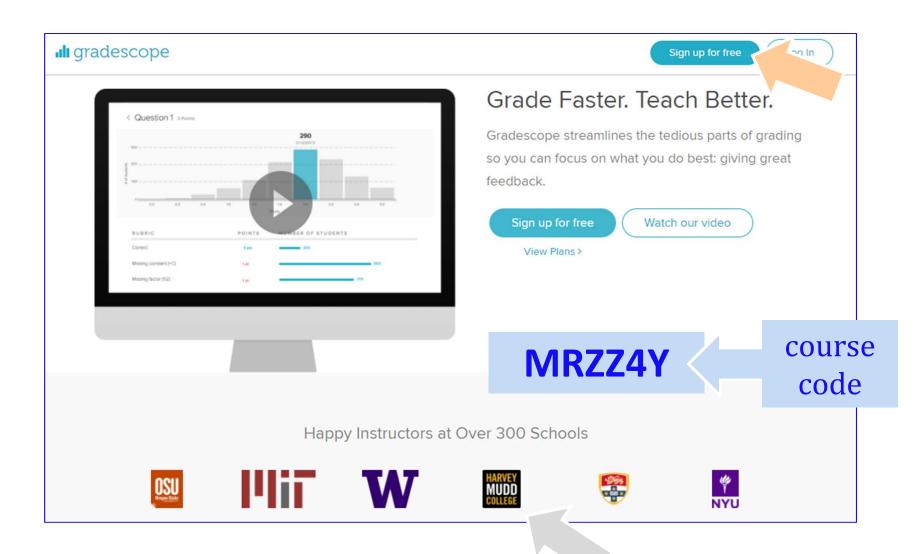
(you do need to submit by the usual hwk due date)

Encouraged: bring your laptop

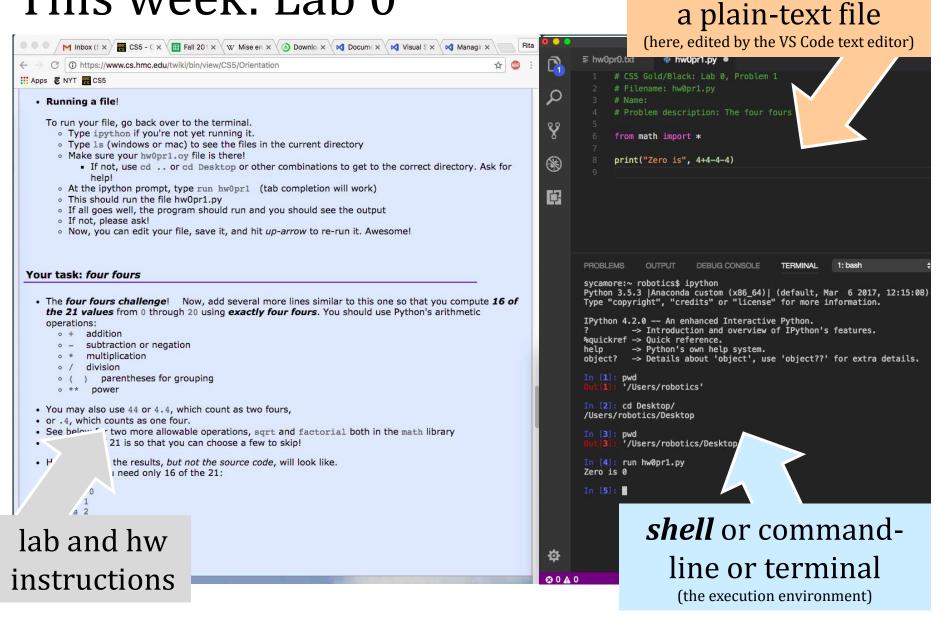
Evening lab?


Olin's Southeast door is open!

Shan


Map to CS Lab

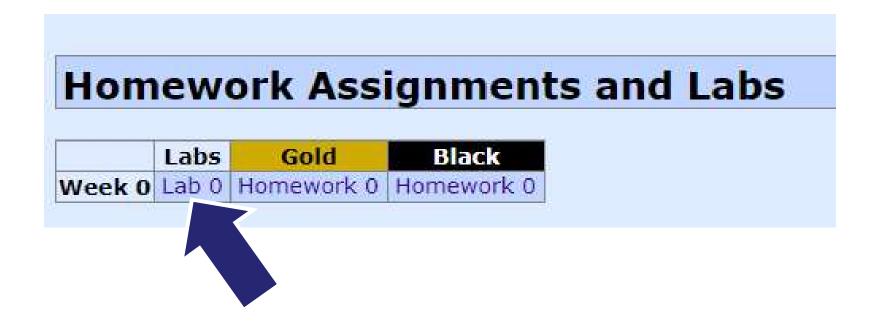
coffee



Laptop? **Bring it!**

Submissions: GradeScope

This week: Lab 0


Python source code,

getting everything running on your own machine

Lab 0: Happiness Suggestion

Download the software BEFORE coming to lab:

https://www.cs.hmc.edu/twiki/bin/view/CS5/OwnMachines

Homework

Assignments

~ 5 problems/week

Due **Monday** evenings by 11:59 pm.

Extra credit is usually available...

You have 3 *CS 5 Euros* to use... "Late Days"

No need to let us know, even.

Collaborate!

Some problems are specified "individual-only."
Others offer the option of working as pairs/partners:

- You don't have to work in pairs/partners (that said, it's fun!)
- If you do, you must share the work equally typing and coaching
- Be sure to indicate who your partner was at the submission site!

Pairs

one computer

tradeoff typing/debugging ~ about every 20 minutes

Partners

two computers

both partners type/debug ~ provide help as needed

Standard is the same either way:

After finishing the hw, (a) each person has contributed equally and (b) both could complete the problems on their own

Submit with a partner as *full co-owners* of the work.

Honor Code

- You're *encouraged* to **discuss** problems with other students or tutors or any instructors.
- You may **not** share written, electronic or verbal solutions with other students, present or past:

Please *do* use the internet for Python language references.

Even with three eyes, I need to borrow others' to find the syntax errors here!

Pleas *do* use other's eyes for finding syntax erorrs.

Do *not* use the internet (or intranet) to (try to) find solutions...

If you work as a pair/partners, the rules apply for the duo.

Sign & submit CS's honesty policy *online* in this week's lab.

Grading

- ~ 65% Assignments
- ~ 30% Exams
- ~ 5% Participation/"quizzes"

```
if perc > .95:
    print('A')
elif perc > .90:
    print('A-')
elif perc > .70:
    many take
    print('Pass')
```

see online syllabus for the full grade list...

Exams

Midterm

Final

Th, Nov. 8, in-class

Tue. Dec 17th (7pm) or Wed. 18th (9am)

using a page of notes is OK on exams

the exams are written, not coded

the problems are modeled on the in-class "quizzes"

Midterm? This feels more like a 2/3-term!

```
Let's set the value of perc to 0.91...
```

```
perc = 0.91

if perc > 0.95:
    print 'A'
elif perc > 0.90:
    print 'A-'
elif perc > 0.70:
    print 'Pass'
else:
```

What will this program print, if **perc** is 0.91?

First – who sees the syntax errors here!?

```
Let's <u>set</u> the value of perc to 0.91...

perc = 0.91

if perc > 0.95:
    print('A')

elif perc > 0.90:
    print('A-')

elif perc > 0.70:
    print('Pass')

else:
    print('Aargh!')
```

What will this program print, if **perc** is 0.91?

Aargh! ;-)

What's here?

of **BLOCKS** here:

of **TESTS** here:

of CONTROL here:

how many tests are executed?

```
Let's set the value of perc to 0.91...
perc = 0.91
                                What will this program print,
                                    if perc is 0.91?
if perc > 0.95:
     print('A')
elif perc > 0.90:
     print('A-')
elif perc > 0.70:
     print('Pass')
else:
     print('Aargh!')
```

What's here?

of **BLOCKS** here:

of **TESTS** here:

of CONTROL here:

how many tests are executed?

```
perc = 0.80
                            perc = 0.80
if perc > 0.95:
                            if perc > 0.00:
    print('A')
                                print('Aargh!')
elif perc > 0.90:
                            elif perc > 0.70:
    print('A-')
                                print('Pass')
elif perc > 0.70:
                            elif perc > 0.90:
    print('Pass')
                                print('A-')
else:
                            else:
    print('Aargh!')
                                print('A')
```

What does each of these programs print out, if perc is 0.8?

What value of perc gives an 'A-' on the right?

How can you get a *better* grade on the right than the left?

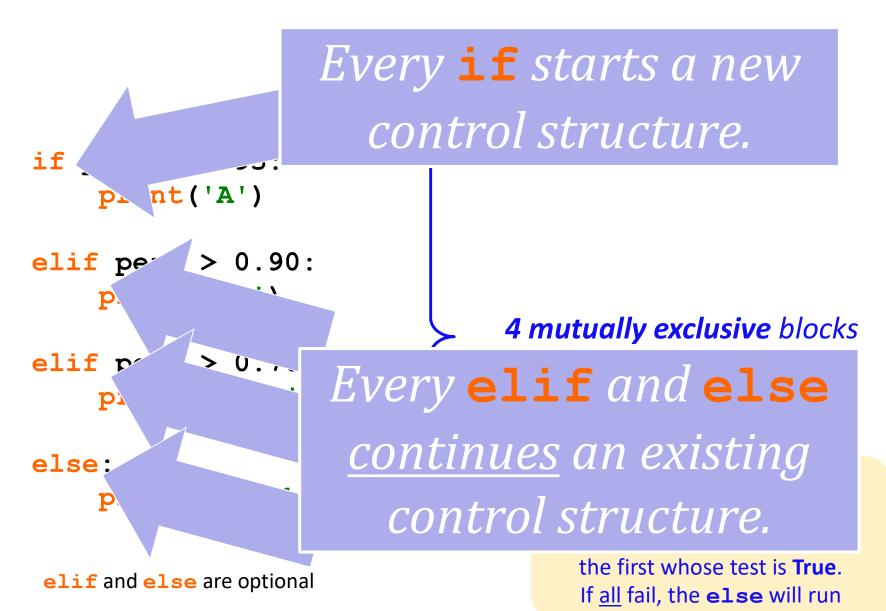
Exclusive Choices

if ... elif ... else

```
if perc > 0.95:
    print('A')
elif perc > 0.90:
    print('A-')
elif perc > 0.70:
    print('Pass')
else:
    print('Aargh!')
elif and else are optional
```

4 mutually exclusive blocks

in a single control structure


```
When using

if . elif ... . else

at most one block will run:
the first whose test is True.

If <u>all</u> fail, the else will run
```

Exclusive Choices

What's the difference?

mutually exclusive blocks

if perc > .95: print('A') elif perc > .90: print('A-')

elif perc > .70:

print('Pass')

perc

*non*exclusive blocks

```
if perc > .95:
    print('A')

if perc > .90:
    print('A-')

if perc > .70:
    print('Pass')
```

What if **perc == .99**? (How would we <u>set</u> it?)

How many separate *control structures* does each side have?

What's the difference?

nonexclusive blocks mutually exclusive blocks perc perc perc > .95: perc > .95: print('A') print('A') elif perc > .90: **if** perc > .90: print('A-') print('A-') elif perc > .70: **if** perc > .70: thing things print('Pass') print('Pass')

What if **perc == .99**? (How would we <u>set</u> it?)

How many separate *control structures* does each side have?

Nesting

for *decision-making*, we now have it *all*...

Nesting

for *decision-making*, we now have it *all*...

Nesting

for *decision-making*, we now have it *all*...

So, let's catch 'em *all*...

Does this program print the correct RPS result <u>this time</u>?

Does it <u>always</u>?

```
comp = 'rock'
user = 'paper'
if comp == 'paper' and user == 'paper':
    print('We tie. Try again?')
elif comp == 'rock':
    if user == 'scissors':
        print('I win! * *')
    else:
        print('You win. Aargh!')
                                              # Blocks?
                                               # Tests?
                                          # C. Structures?
```

Pair up with someone nearby – answer these questions together...

Name

Name ____

Your favorite is .

Your favorite _____ is ____

Your least favorite is

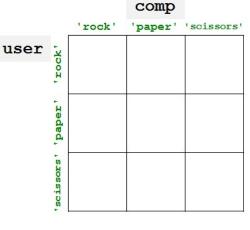
Your least favorite _____ is ____.

What is something non-Claremont-collegey you have in common?

Then, try these Python q's:

- (0) Find the 3 tests and 4 blocks here.
- (1) What does this code print?

```
comp = 'rock'
user = 'rock':
if comp == 'rock':
   if user == 'paper':
      print('I win *_*!')
   elif user == 'scissors':
      print('You win.')
else:
   print('Tie.')
```


(2) As written, what output does this print?

```
if comp == 'rock':
    print('I win *_*!')
if user == 'paper':
    print('You win.')
else:
    print('Tie.')
```

(5) What is the *smallest* number of **blocks** and **tests** you'd need for a full game of RPS?

(Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?

- (3) **Change** these inputs to produce a completely correct RPS output here.
- (4) How many of the 9 RPS **input cases** are *fully correctly* handled here?

Pair up with someone nearby – answer these questions together...

Name ____

Your favo

Your least i

people

Name ____

Your favorite _____ is ____

use

Your least favorite

'rock':

paper

What is son. cuing non-Claremont-collegey you have in common?

Then, try these Python q's:

- (0) Find the 3 tests and 4 blocks here.
- (1) What does this code print?

(2) As written, what output does this print?

(3) **Change** these inputs to produce a completely correct RPS output here.

(4) How many of the 9 RPS **input cases** are *fully correctly* handled here?

paper':
You win.')

print('Tie.')

(5) What is the *smallest* number of **blocks** and **tests** you'd need for a full game of RPS?

(Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?

			Comp		
		'rock'	'paper'	'scissors'	
r	rock'				
	paper				
	scissors				

Pair up with someone nearby – answer these questions together...

Name

Name ____

Your favorite is .

Your favorite _____ is ____

Your least favorite is

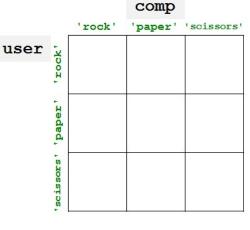
Your least favorite _____ is ____.

What is something non-Claremont-collegey you have in common?

Then, try these Python q's:

- (0) Find the 3 tests and 4 blocks here.
- (1) What does this code print?

```
comp = 'rock'
user = 'rock':
if comp == 'rock':
   if user == 'paper':
      print('I win *_*!')
   elif user == 'scissors':
      print('You win.')
else:
   print('Tie.')
```


(2) As written, what output does this print?

```
if comp == 'rock':
    print('I win *_*!')
if user == 'paper':
    print('You win.')
else:
    print('Tie.')
```

(5) What is the *smallest* number of **blocks** and **tests** you'd need for a full game of RPS?

(Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?

- (3) **Change** these inputs to produce a completely correct RPS output here.
- (4) How many of the 9 RPS **input cases** are *fully correctly* handled here?

"Quiz"

- Name Zach Dodds
 - †
- Your favorite show is Modern Family tho
- Your least favorite coffee is decaffeinated

- Name T. E. Alien
- Your favorite food product is spam
- Your least favorite ____# is _41.999

Something in common?

Our taste in hats!

'Zuiz" Pair up with someone nearby – answer these questions together Please pass these up Name Your favorite the aisles... You Wha (take a picture, if you'd like) Th inputs letely (0) Find t here. ... then, turn back to (1) What c 9 ully ٦? comp = user = the notes if comp = if use prin elif us print ം നല **smallest** number of **blocks** else: and tests you'd need for a full game of RPS? print('T: (Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?

"Quiz" ~ problems 1+2

```
comp = 'rock'
user = 'rock'
if comp == 'rock':
   if user == 'paper':
      print('I win * *!')
   elif user == 'scissors':
      print('You win.')
else:
   print('Tie.')
   print('Ties go to the runner.')
   print(' - and I am running!')
       ... what if this else block were indented?
```

```
comp = 'rock'
user = 'rock'
if comp == 'rock':
   print('I win * *!')
if user == 'paper':
   print('You win.')
else:
   print('An awful tie')
```

What does this program print?

```
comp = <del>'reck'</del>
                                                 comp
user = <del>'rock'</del>
                                         'rock'
                                                'paper' 'scissors'
                               user
                                      rock'
if comp == 'rock':
    print('I win * *!')
                                      'paper'
if user == 'paper':
    print('You win.')
                                      scissors
else:
    print('An awful tie')
```

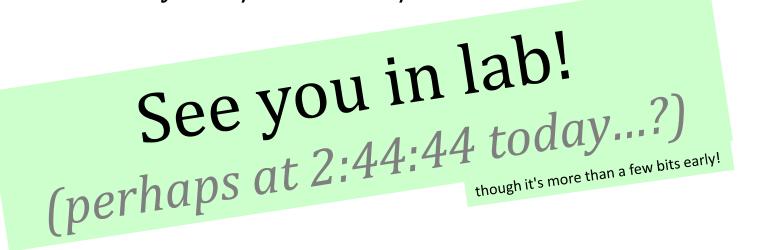
How many possible "input cases" are there? For how many is this program correct?

How **efficient** can we be? For RPS-3? RPS-5? RPS-101?

```
comp = 'reck'
                                                     comp
user = <del>'rock'</del>
                                            'rock'
                                                    'paper'
                                                            'scissors'
                                 user
                                         rock'
                                              not
                                                      not
                                                               not
if comp == 'rock':
                                             quite
                                                      quite
                                                               quite
    print('I win * *!')
                                         'paper'
                                              not
                                                      not
                                                               not
if user == 'paper':
                                             quite
                                                      quite
                                                               quite
    print('You win.')
                                         scissors
                                              not
                                                      not
else:
                                             quite
                                                      auite
                                                              correct
    print('An awful tie')
```

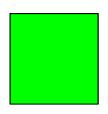
How many possible "input cases" are there? For how many is this program correct?

How **efficient** can we be? For RPS-3? RPS-5? RPS-101?


```
comp = 'reck'
                                        comp
user = <del>'rock'</del>
                                 'rock'
                                       'paper' 'scissors'
                         user
if comp == 'rock':
   print 'I win * *!'
          A correct RPS is
if use
   pr:
         possible with only
else:
       if ... elif ... else!
```

How many possible "input cases" are the For how many is this program correct?

How **efficient** can we be? or RPS-3? RPS-5? RPS-101?


Remember ~ Lab this week

Tue. or Wed. ~ afternoon or evening
Bring your laptop to Beckman B126 (here)
- or use one of the CS machines in B105/B102
Get started with Python/text editor/cmdline...

Alien defeats everything – even Alien

