Welcome to CS 5!

Wally Wart, a protrusive advocate of concrete computing

We don't have words strong enough to describe this class. - US News and Course Report

Everyone will get out of this course - a lot!

- NYTimes Review of Courses

1 handout...
slides \& syllabus

We give this course two thumbs...

- Metametacritic

A word on 5 spots...

Welcome, not only to HMC, but to all 5Cs!

Introductions...

Zach Dodds Olin B163 (HMC) dodds@cs.hmc.edu pursuer of low-level AI \Rightarrow

- taker of low-quality selfies fan of low-tech games

Speaking of introductions

How I spend my summers ...?

actually, this "I" is not quite accurate

*

Outreach
Chairs?
Robots

Who?!??
Dinos!

... to formal pitches

CS Staff: Rising sophomores, unite!

Teacher Outreach in S.F.

CS Staff: Rising sophomores, unite!

CS Staff: Rising sophomores, unite!
 surrounding computing... (at the 5Cs and beyond)

Take-home message...

CS 5: Welcome!

Administration	Using Python	Class Resources	Midterm
Final	Related Courses		

Homework Assignments and Labs

Homework Assignments and Labs		
		Yay! in 2019:
Week 0	Week 1	... just Google for
Week 3	Week 4	hmi vveek 5
Week 6	Week 7/8	Week9

www.cs.hmc.edu/cs5

You're here ~ what's next?

1) How CS 5 runs...

2) Python?!
the first Python HW is choice!

3) What is CS?

CS vs. programming?

Spot the difference here?

print('hi')

print 'hi'

I still confuse these!

Spot the difference here?

print 'hi'

We'll be using python 3 this term...

Spot the difference here?

We'll be using python 3 this term...

A minute of cs5 programming...

Lab 0: getting everything running on your own machine

A minute of cs5 programming...

Python source code, a plain-text file

Lab 0: getting everything running on your own machine

Lab 0: Happiness Suggestion

Download the software BEFORE coming to lab:

https://www.cs.hmc.edu/twiki/bin/view/CS5/OwnMachines

Homework Assignments and Labs

rock - paper - scissors - lizard - Spock!

hw0: rock-paper-scissors

Let's play! Maybe two out of three?

Soundbite Syllabus

Lectures

T and Th: 8:10-9:25 am

Lab
recommended by 4 out of 5
CS5 alums!

Office hrs

T or W: 2:45-4:45pm or 6-8 pm

Monda. Hw is due on Monday nights...

Syllabus, briefly

Lectures

T and Th: 8:10-9:25 am
Key skills, topics, and their motivation
Insight into the HW problems (what, why, how)
We'd like to see you! Let me know if you'll be sick...

Lab
recommended by 4 out of 5
CS5 alums!

Office hrs

T or W: 2:45-4:45pm or 6-8 pm
Guided progress on the week's hw Not required, but encouraged: full credit for lab Will SAVE you time and effort in CS 5

F: 2:30-4:30 pm, Linde Activities Center lab feel free to work on HW, to just stop by, or, come to any of the many tutoring hrs!

HW
Monday nights: due by 11:59 pm

Each week's lab...

0) Find the lab! Sign in...

1) Get Python running....
demo 2) Edit, run, + submit a file...

Encouraged: bring your laptop

Each week's lab...

Labs are optional, but incentivized.
If you come to lab, give a goodfaith effort, and sign in, you'll receive full credit for the lab problems even if you don't finish
(you do need to submit by the usual hwk due date)

Encouraged: bring your laptop

Evening lab?

Shan

Map to CS Labs

Laptop? Bring it!

Submissions: GradeScope

Homework

Assignments ~ 5 problems/week

Due Monday evenings by 11:59 pm.
Extra credit is usually available...
You have 3 CS 5 Euros to use...
"Late Days"

Eur-ollowed to use one Euro for up to three hwks.

No need to let us know, even.

Collaborate! $\left\{\begin{array}{l}\text { Some problems are specified "individual-only." } \\ \text { Others offer the option of working as pairs/partners: } \\ \text { • You don't have to work in pairs/partners (that said, it's fun!) } \\ \text { •If you do, you must share the work equally - typing and coaching } \\ \text { • Be sure to indicate who your partner was at the submission site! }\end{array}\right.$

Pairs

Partners

two computers

both partners type/debug ~ provide help as needed
same either way:

Standard is the After finishing the hw, (a) each person has contributed equally and (b) both could complete the problems on their own

Submit with a partner as full co-owners of the work.

Honor Code

- You're encouraged to discuss problems with other students - or tutors - or any instructors.
- You may not share written, electronic or verbal solutions with other students, present or past:

Even with
Please do use the internet for Python language references.
Pleas do use other's eyes for finding syntax erorrs.
Do not use the internet (or intranet) to (try to) find solutions...
If you work as a pair/partners, the rules apply for the duo.

Sign \& submit CS's honesty policy online in this week's lab.

Grading

~ 65\% Assignments
~ 30\% Exams
~ 5\% Participation/"quizzes"

```
if perc > .95:
    print('A')
elif perc > .90:
    print('A-')
elif perc > .70:
    print('Pass')
many take cs5 P/NC
```

see online syllabus for the full grade list...

Midterm
Final

Th, Nov. 7, in-class
Wed., Dec. 18
using a page of notes is OK on exams
the exams are written, not coded
the problems are modeled on the in-class "quizzes"

Choices, choices!

Let's set the value of perc to 0.91 ...

$$
\begin{aligned}
& \text { perc }=0.91 \\
& \text { if perc }>0.95: \\
& \text { print 'A' } \\
& \text { elif perc > } 0.90: \\
& \text { print 'A-' } \\
& \text { elif perc > } 0.70: \\
& \text { print 'Pass' } \\
& \text { else: } \\
& \text { print 'Aargh!' }
\end{aligned}
$$

What will this program print, if perc is 0.91 ?

First - do you see the occs beere
syntax errors here !? Esss here

Choices, choices!

Let's set the value of perc to 0.91 ...

```
perc = = 0.91
```

if perc > 0.95:
print('A')
elif perc > 0.90:
print('A-')
elif perc > 0.70:
print('Pass')
else:
print('Aargh!')

Aargh! ;-)

What will this program print, if perc is 0.91 ?
\# of BLOCKS here:
\# of TESTS here:
how many tests are executed?

Choices, choices!

Let's set the value of perc to 0.91 ...

```
perc = \ = .91
```

if perc > 0.95:
print('A')
elif perc > 0.90:
print('A-')
elif perc > 0.70:
print('Pass')
else:
print('Aargh!')

What will this program print, if perc is 0.91 ?
how many tests are executed?

Choices, choices!

```
perc = 0.80
if perc > 0.95:
    print('A')
elif perc > 0.90:
    print('A-')
elif perc > 0.70:
    print('Pass')
else:
    print('Aargh!')
perc = 0.80
```

What does each of these programs print out, if perc is 0.8 ?
What value of perc gives an 'A-' on the right?
How can you get a better grade on the right than the left?

Exclusive Choices

if ... elif ... else

```
if perc > 0.95:
    print('A')
elif perc > 0.90:
        print('A-')
elif perc > 0.70:
        print('Pass')
else:
    print('Aargh!')
```


if . elif else
at most one block will run: the first whose test is True. If all fail, the else will run

4 mutually exclusive blocks

in a single control structure
elif and else are optional

Exclusive Choices

What's the difference?

mutually exclusive blocks

nonexclusive blocks

What if perc $==.99$? (How would we set it?) How many separate control structures does each side have?
perc
if perc>.95: print('A')
elif perc>.90:
print('A-')
elif perc>.70: print('Pass')
perc
if perc>.95: print('A')
if perc>.90:
print('A-')
if perc>.70:
print('Pass')

What's the difference?

Nesting

for decision-making, we now have it all...

Nesting

for decision-making, we now have it all...

Nesting

for decision-making, we now have it all...

So, let's catch 'em all...

Nesting

```
comp = 'rock'
user = 'paper'
if comp == 'paper' and user == 'paper':
    print('We tie. Try again?')
elif comp == 'rock':
    if user == 'scissors':
    print('I win! *_*')
    else:
    print('You win. Aargh!')
```

Does this program print the correct RPS result this time? Does it always?

Pair up with someone nearby - answer these questions together...

Name \qquad _

Your favorite \qquad is \qquad .

Your least favorite \qquad is \qquad .

Name \qquad
Your favorite \qquad is \qquad .

Your least favorite \qquad is \qquad .

What is something non-Claremont-collegey you have in common?

Then, try these Python q's:
(0) Find the 3 tests and 4 blocks here.
(1) What does this code print?

```
comp = 'rock'
user = 'rock'
```

if comp == 'rock':
if user == 'paper':
print('I win *_*!')
elif user == 'scissors':
print('You win.')
else:
print('Tie.')
(2) As written, what output does this print?

```
comp = 'rock'
```

user = 'rock'
if comp == 'rock':
print('I win *_*!')
if user $==$ 'paper':
print('You win.')
else:
print('Tie: Ugh')
(5) What is the smallest number of blocks and tests you'd need for a full game of RPS?
(Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?
(3) Change these inputs to produce a completely correct RPS output here.
(4) How many of the 9 RPS input cases are fully correctly handled here?

	'rock'	comp	
		'paper'	'scissors'
user			
号			

Pair up with someone nearby - answer these questions together...

Name
Your favo
Your least 1

Name
Your favorite \qquad is \qquad .

Your least favorite \qquad

Paper

What is son.culing non-Claremont-collegey you have in common?

Then, try these Python q's:
(0) Find the 3 tests and 4 blocks here.
(1) What does this code print?

```
comp = 'rock'
user = 'rock'
if comp == 'roc
    if user == '1
        print('I h
```

\section*{'rock':

```
(Q win *_*!')
\(\square<\) paper':
print('Tie: Ugh')
```

print('Tie: Ugh')

```
    elif user == 'scissors':
        print('You win.')
else:
    print('Tie.')
(2) As written, what output does this print?
comp = 'rock'
user \(=\) ' \(\mathrm{ck}{ }^{\prime}\)
(5) What is the smallest number of blocks and tests you'd need for a full game of RPS?
(Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?
(3) Change these inputs to produce a completely correct RPS output here.
(4) How many of the 9 RPS input cases are fully correctly handled here?


Pair up with someone nearby - answer these questions together...


Pair up with someone nearby - answer these questions together...

Name \(\qquad\) _

Your favorite \(\qquad\) is \(\qquad\) .

Your least favorite \(\qquad\) is \(\qquad\) .

Name \(\qquad\)
Your favorite \(\qquad\) is \(\qquad\) .

Your least favorite \(\qquad\) is \(\qquad\) .

What is something non-Claremont-collegey you have in common?

Then, try these Python q's:
(0) Find the 3 tests and 4 blocks here.
(1) What does this code print?
```

comp = 'rock'
user = 'rock'

```
if comp == 'rock':
    if user == 'paper':
        print('I win *_*!')
    elif user == 'scissors':
        print('You win.')
else:
    print('Tie.')
(2) As written, what output does this print?
```

comp = 'rock'

```
user = 'rock'
if comp == 'rock':
    print('I win *_*!')
if user \(==\) 'paper':
    print('You win.')
else:
    print('Tie: Ugh')
(5) What is the smallest number of blocks and tests you'd need for a full game of RPS?
(Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?
(3) Change these inputs to produce a completely correct RPS output here.
(4) How many of the 9 RPS input cases are fully correctly handled here?
\begin{tabular}{|c|c|c|c|}
\hline & \multirow[b]{2}{*}{'rock'} & \multicolumn{2}{|l|}{comp} \\
\hline & & 'paper' & 'scissors' \\
\hline user & & & \\
\hline  & & & \\
\hline 号 & & & \\
\hline
\end{tabular}

Pair up with someone nearby - answer these questions togeth -
Name
Your favorite
You

Wha
(0) Find t
(1) What c
comp \(=\)
user \(=\)
if comp =
then, turn
the notes
else:
print('T: \(\qquad\)
.o the smallest number of blocks and tests you'd need for a full game of RPS? (Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?


\section*{"Quiz" ~ problems 1+2}
```

comp = 'rock'
user = 'rock'

```
if comp == 'rock':
if user == 'paper':
print('I win *_*!')
elif user == 'scissors': print('You win.')
```

else:
print('Tie.')

```
\(\qquad\)

\section*{"Quiz" ~ problems 3-5}

\section*{comp \(=\) 'rock' \\ user \(=\) 'rock'}
if comp == 'rock':
print('I win *_*!')
if user \(==\) 'paper':
print('You win.')
else:
print('Tie: Ugh')

What does this program print?

\section*{"Quiz" ~ problems 3-5}
```

comp = 'rack'\
user = 'rock''
if comp == 'rock':
print('I win *_*!')
if user == 'paper':
print('You win.')
else:
print('Tie: Ugh')

```

How many possible "input cases" are there?
For how many is this program correct?

How efficient can we be? For RPS-3? RPS-5? RPS-101?

\section*{"Quiz" ~ problems 3-5}
```

comp = 'rack'\
user = 'rock''
if comp == 'rock':
print('I win *_*!')
if user == 'paper':
print('You win.')
else:
print('Tie: Ugh')

```

How many possible "input cases" are there?
For how many is this program correct?


How efficient can we be? For RPS-3? RPS-5? RPS-101?

\section*{"Quiz" ~ problems 3-5}


Pair up with someone nearby - answer these questions togeth -
Name
...
You
ok! Pass thes "upward"
(0) Find \(t\)
(1) What c
reser
if comp =
\[
\begin{aligned}
& \text { comp }= \\
& \text { if use: } \\
& \text { prin } \\
& \text { elifus }
\end{aligned}
\] and tests you'd need for a full game of RPS? (Extra) What if it were RPS-5, which includes Lizard and Spock? How about RPS-101?


\section*{CS != programming}
programming : CS ::
longboards : HMC maybe 5 cs ?
capital : business venture
equations: mathematics
language : ideas
web search : knowledge


Tesla : Google
programs are a vehicle, but not the destination

\section*{CS != programming \\ }
"not equal to"

\section*{CS != programming}

\section*{So, what is CS ?}

Punctuation matters!
So what? is CS

\section*{Today in CS5}

\section*{1) How CS 5 runs...}

\section*{2) Python?!}


\section*{3) What is CS?}

Whatever it is, it's definitely alien!


\section*{What is CS a science of?}
the study of complexity:
How can it be done?
it ~ information
How well can it be done?
Can it be done at all?
or, more precisely, a process
transforming information
from one form to another

We'll look at 3 examples - each of which you'll construct in CS 5
...at least to some extent!

\section*{What is CS?}

\section*{'HUMAN'}

\section*{'CHIMPANZEE'}
- How can it be done?


What is the Longest Common Subsequence between 2 strings?
biology's string-matching problem, "LCS"
Can it be done at all?

Can you solve the problem?
'CGCTGAGCTAGGCC...'
'ATCCTAGGTAACTG...'
Can you create a process to solve such problems?

\section*{What is CS?}

How can it be done?
- How well can it be done? \(\rightarrow\) Can it be done at all?

How quickly can you find a solution?

Is your solution the "best" possible?


How much work is needed to simulate \(N\) stars?
chemistry's + physics's " N -body" problem

What if \(N\) is a
million-and-one...?

\section*{What is CS?}

\section*{How can it be done?}

How well can it be done?


How can you tell !?
many problems are uncomputable... ... and you'll prove this!

\section*{What is CS?}

CS is the study of complexity
Can you solve this problem?

Can you create a process to solve such problems?
How can it be done?
How well can it be done?
Can it be done at all?

\section*{CS's 6 big questions}

Is every problem solvable?
Is there a way to tell?
There isn't always!
Only one is programming. Which one?
How quickly can you find solutions?

Do you have the "best" solution?

\section*{What is CS?}

CS is the study of complexity
How can it be done?
How well can it be done?
Can it be done at all?

\section*{CS's 6 big questions}

Only one is programming. Which one?

Can you solve this problems
Can you create a process to solve such problems? ming Hiocy + Cs

How quickly can you finds solutions?

Do you have the "best" solution? CS

Is every problem solvable?
Is there a way to tell
There isn't always!

\section*{CS's - and CS5's philosophy:}

\title{
Whatever you are, be a good one.
}
- Abraham Lincoln

More and more, CS can help!

\section*{Remember ~ Lab this week}

Tue. or Wed. ~ afternoon or evening Bring your laptop to Beckman B126 (here)
- or use one of the CS machines in B105/B102

Get started with Python/text editor/cmdline...

\section*{See you in lab! (perhaps at 2:44:44 today...?)}

Alien defeats everything -
even Alien```

