

The 邹泟Times

Today's whether: if, elif, or else!
... in any
language?

Three-eyed troubles: GradeScope, Python, \& VSCode...

Aliens Attack! Picobot programmer Z. Dodds was subject of a bizarre encounter yesterday with three-eyed aliens. The trinocular tourists, it seems, were conducting experiments that would help them understand "how humans think."

It seems the aliens used a shrinking ray, which let them enter the programmer's head in order to see what was happening. A witness reports deeply disappointed voices emanating from within.

To escape the attack, Dodds had to turn the ray on himself - as he shrank, the aliens quickly flew off, departing so fast that he was unable to use the reverse ray before they left. "No worries," Dodds mused - in fact, this might help me tomorrow..."
see three-eyed alien attack, p. 42

Composite sketch of one of the attackers drawn from three-eyewitness accounts

Homework \#1

Due Mon., 9/16
0) Reading + response

1) Lab: data
2) Lab: functions
3) The fun in functions!
(ExCr) Pig Latin, et alia

Automatic translation: if it's possible for human languages... perhaps for CS , too?

CS5 Favorites!

In-person help: Tutoring hours...

CS5 at HMC's LAC (up to 5)	CS5 away from HMC (up to 5) Be sure to include WHERE you'll be!	CS 42 (up to 2)	CS 60 (up to 2)
Alicia Pentico (apentico@g.hmc.edu; green)	Frankie Konner (Pitzer Grovehouse) fkonner@students.pitzer.edu	Christina Lau (cllau@g.hmc.edu)	Elena Ehrlich (eehrlich@g.hmc.edu)
Aely Aronoff (aaronoff@hmc.edu)	Graham Brady (pitzer grove house) (gbrady@students.pitzer.edu)	David Mindlin	Harris McCullers (harrismccullers@gmail.com) *l am willing to switch, email me
	8-11pm		
Jenna Kahn (Green) (imkahn@hmc.edu)	Kate Emery (New Hall Kitchen) (kemery5437@scrippscollege.edu)		
Jerry Liang (jyliang@hmc.edu)	Jacob Adolphe (Chall lounge probably somewhere by the TV) jadolphe21@cmc.edu		
Isaiah Fujii Bresnihan			

I don't know how many Scripps CS5 grutors there are this semester, but it has come to my attention that there are not enough CS5 tutoring opportunities on Scripps right now. I had my first Scripps hours yesterday, which at the time were the only tutoring hours available on Scripps, and I had a lot of people show up (especially considering the fact that it was 3 or 4 days before the first deadline of the

Katherine T.

Yes, we have hours at Scripps!

In-person help: Tutoring hours...

Monday 8pm-10pm or 11 pm Grutors: if you want to stay until 11pm, great! But, please don't stay later than that... !

In-person help: Tutoring hours...

Ready for Picobot!

Homework 0... The adventure begins!

The challenge of programming...

syntax
How it looks
semantics
What it does
intent
What it should do

humantyped input

machineproduced output

learning a language \sim syntax

unavoidable, but not the point

... but learning CS ~ semantics

learning how machines think!

Inside the machine...

What's behind the scenes (processing + memory):

Data Storage

memory location 312

memory location 324
variables ~boxes

Memory!

Random Access Memory

a big list of boxes, each with a name, type, location, and value

All languages use datatypes

Type

Example

What is it?

numeric values with a fractional part, even if the fractional part is . 0
integers - Python has infinite precision ints!
the T / F results from a
test or comparison:
==, !=, <, >, <=, >=
"Boolean operators"

Operate!

higher precedence

$$
\left(\begin{array}{l}
\text { (} \\
* *
\end{array}\right.
$$

\uparrow

$$
\begin{aligned}
& \text { * } / \mathrm{\circ} \text { // } \\
& \\
& +- \\
& >==
\end{aligned}
$$

$$
\rightleftarrows
$$

O-per-ate!

higher precedence

Python operators

parens

higher precedence

power

negate
times, mod, divide

**

\% the mod operator

$7 \div 3$

$9 \% 3$

$8 \% 3$
$30 \% 7$

$\mathbf{x} \% \mathbf{y}$ is the remainder when \mathbf{x} is divided by \mathbf{y}

For what values of \mathbf{x} are these True?

```
x%2 == 0
x%2 == 1
x%4== 0
x%4== 3
If x is a year, what happens on these years!?
What happens on these
years, football-wise!?
```


// integer division

7 // 3

$$
\begin{aligned}
& 8 / / 3 \\
& 9 / / 3
\end{aligned}
$$

$\mathbf{x} / / \mathbf{y}$ is \mathbf{x} / \mathbf{y}, rounded-down to an integer

// integer division

7 // 3

$8 / / 3$

9 // 3

$\mathbf{x} / / \mathbf{y}$ is \mathbf{x} / \mathbf{y}, rounded-down to an integer

$30 / / 7$

Decomposition of 30 into 7's:

Decomposition of x into y 's:

$$
\begin{aligned}
& x=(x / / y) * y+ \\
& \text { (x\%y) } \\
& \text { \# of full } y \text { 's in } x
\end{aligned}
$$

the "equals" operators

This is true - but what is it saying!?

the "equals" operators

SET equals
isn't equal to

TEST equals

I want $\boldsymbol{\text { ニー }}$!

the "equals" operators

SET equals
 isn't equal to
 TEST equals

stack overflow
Questions Jobs

Difference between == and === in JavaScript

how = works

"Quiz"

$x=41$
$\begin{array}{ll}\substack{\text { Run } \\ \text { these } \\ \text { lines }} & \mathbf{y}=\mathbf{x}+\mathbf{1} \\ & \mathbf{z}=\mathbf{x}+\mathbf{y}\end{array}$
\longrightarrow What are \mathbf{x}, \mathbf{y}, and

Then run this line

$$
x=x+y
$$

$$
\begin{aligned}
\text { Extra! } \quad \mathrm{a} & =11 / / 2 \\
& \mathrm{~b} \\
& =\mathrm{a} \% 3 \\
\mathrm{c} & =\mathrm{b} * * \mathrm{a}+\mathrm{b} * \mathrm{a}
\end{aligned}
$$

What are the values of a, b, and c after the 3 lines, at left, run?
a
b
c

Inside the machine...

$$
\begin{array}{ll}
& y=x+1 \\
& z=x+y \\
\text { What's happening in python: } & x=x+y
\end{array}
$$

What's happening behind the scenes (in memory):

Computation

Memory (Data Storage)


```
how = works
```


"Quiz"

- try these on the back page first...
$x=41$
$\begin{array}{ll}\begin{array}{l}\text { Run } \\ \text { these } \\ \text { lines }\end{array} & \mathbf{Y}=\mathbf{x}+\mathbf{1} \\ & \mathbf{z}=\mathbf{x}+\mathbf{Y}\end{array}$
un this line

$$
x=x+y
$$

$$
\begin{aligned}
\text { Extra! } \quad \mathrm{a} & =11 / / 2 \\
\mathrm{~b} & =\mathrm{a} \% 3 \\
\mathrm{c} & =\mathrm{b} * * \mathrm{a}+\mathrm{b} * \mathrm{a}
\end{aligned}
$$

What are the values of a, b, and c after the 3 lines, at left, run?


```
how = works
```


"Quiz"

- try these on the back page first...
$x=41$
$\begin{array}{ll}\begin{array}{l}\text { Run } \\ \text { these } \\ \text { lines }\end{array} & \mathbf{Y}=\mathbf{x}+\mathbf{1} \\ & \mathbf{z}=\mathbf{x}+\mathbf{Y}\end{array}$
un this line

$$
x=x+y
$$

$$
\text { Extra! } \quad \begin{aligned}
\mathrm{a} & =11 / / 2 \\
\mathrm{~b} & =\mathrm{a} \% 3 \\
\mathrm{c} & =\mathrm{b} * * \mathrm{a}+\mathrm{b} * \mathrm{a}
\end{aligned}
$$

What are the values of a, b, and c after the 3 lines, at left, run?

Popular culture [edit]

The Hitchhiker's Guide to the Galaxy [edit]

The number 42 is, in The Hitchhiker's Guide to the Galaxy by Douglas Adams, the "Answer to the Ultimate Question of Life, the Universe, and Everything", calculated by an enormous supercomputer named Deep Thought over a period of 7.5 million years. Unfortunately, no one knows what the question is. Thus, to calculate the Ultimate Question, a special computer the size of a small planet was built from organic components and named "Earth". The Ultimate Question "What do you get when you multiply six by nine" $[17]$ was found by

The Answer to the Ultimate Question of Life, The Universe, and Everything. Arthur Dent and Ford Prefect in the second book of the series,
The Restaurant at the End of the Universe. This appeared first in the radio play and later in the novelization of The Hitchhiker's Guide to the Galaxy. The fact that Adams named the episodes of the radio play "fits", the same archaic title for a chapter or section used by Lewis Carroll in "The Hunting of the Snark", suggests that Adams was influenced by Carroll's fascination with and frequent use of the number. The fourth book in the series, the novel So Long, and Thanks for All the Fish, contains 42 chapters. According to the novel Mostly Harmless, 42 is the street address of Stavromula Beta. In 1994 Adams created the 42 Puzzle, a game based on the number 42.

TALENT POOL

A free, teacher-less university in France is schooling thousands of future-proof programmers

among many 42 references...
mostly in cs5...!

Are numbers enough for everything?

Yes and no...

You need lists of numbers, as well!
and strings - lists of characters - too.

Both of these are Python sequences...

strings: textual data

$$
\begin{array}{ll}
& s=' s c r i p p s ' \\
\text { strings } & \mathbf{c}=\text { 'college' }
\end{array}
$$

type... type (s)

len len(s)

add! $\mathbf{S}+\mathbf{C}$
multiply!!
$2 * s+3 * c$

strings: textual data

$$
\text { Given }\left\{\begin{array}{l}
s 1=\text { 'ha' } \\
s 2=\text { 't' }
\end{array}\right.
$$

What are s1 + s2

$$
2 * s 1+s 2+2 *(s 1+s 2)
$$

strings: textual data

$$
\text { Given }\left\{\begin{array}{l}
s 1=' h a ' \\
s 2=' t '
\end{array}\right.
$$

What are s1 + s2 hat

$$
2 * s 1+s 2+2 *(\underline{\underline{s} 1+s 2})
$$

hahahahah

Data, data everywhere...

Data, data everywhere...

1 Petabyte, PB == 1000 Terabytes, TB
1 Terabyte, TB == 1000 Gigabytes, GB

References

(2002) 5 EB: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm (2019) www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html (life in video) 60 PB: in 4320p resolution, extrapolated from 16 MB for 1:21 of 640×480 video ($\mathrm{w} /$ sound) - almost certainly a gross overestimate, as sleep can be compressed significantly! (brain) 14 PB: http://www.quora.com/Neuroscience-1/How-much-data-can-the-human-brain-store

Big Data?

McKinsey\&Company
 Careers
 Global Locations

Big data: The next frontier for innovation, competition, and productivity

EThe Ňu Jjork ©imes
Surncayieview I The Opinion Pages

| WORLD | U.S. N.Y. / REGION | BUSINESS | TECHNOLOGY | SCIENC |
| :--- | :--- | :--- | :--- | :--- | :--- |

NEWS ANALYSIS
Is Big Data an Economic Big Dud?

wisdom

G.G.M, et al. 乌

knowledge

Google's users \smile

information

Google

Data's elevation?
data

Lists \sim collections of any data

$$
M=[4,7,100,42,5,47]
$$

Lists ~ collections of any data

Square brackets tell

len (M)
M [0]
M[0:3]

Lists \sim collections of any data

string

$$
\mathrm{L}=[3.14,[2,40], \text { 'third', } 42 \text {] }
$$

top-level length
only counts top-level elements

L [0]
indexing
could return a different type

L[0:1]

slicing
always returns the same type, and always returns a substructure!

Indexing uses []

Strings
$\mathbf{s}=$ 'harvey mudd college'

Indexing uses []
 Strings

s = 'harvey mudd college' $\begin{array}{lllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$

Some German words are so long that they have a perspective. For example,

- Freundschaftsbezeigungen.
- Dilettantenaufdringlichkeiten.
- Stadtverordnetenversammlungen.

These things are not words, they are alphabetical processions.

Indexing uses []

s = 'harvey mudd college'
 $$
\begin{array}{lllllllllllllllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \end{array}
$$

$S[0]$ is

$$
\begin{array}{lll}
\boldsymbol{s}[6] & \text { is } & \\
\boldsymbol{s}\left[\begin{array}{ll}
\text {] }
\end{array}\right. & \text { is } & \text { 'e' }
\end{array}
$$

Negative indices count backwards from the end!

$$
\begin{array}{ll}
\mathbf{s}[-1] & \text { is } \\
\mathbf{s}[-18] & \text { is } \\
\mathbf{s}[-7] & \text { is } \\
\mathbf{s}[-0] & \text { is }
\end{array}
$$

Slicing

s = 'harvey mudd college' $\begin{array}{lllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$

$\mathbf{s}\left[\begin{array}{l}\text { : } \quad \text { slices } \text { the string, returning a substring }\end{array}\right.$

What's going on here?
s[0:6] is 'harvey'
s[12:18] is 'colleg'
$s[17:]$ is 'ge'
s[:] is 'harvey mudd college'

Slicing

s = 'harvey mudd college'
 $\begin{array}{lllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$

\%
first index is the first character
second index is ONE AFTER
the last character
a missing index means that end of the string
s[0:6] is 'harvey' s[12:18] is 'colleg'
s[17:] is 'ge'
s[:] is 'harvey mudd college'

Slicing

What are these slices?	$\mathbf{S}[15:-1]$

is 'mud'
is 'e'

SkipSlicing
 $\boldsymbol{S}\left[{ }^{\text {start }}:\right.$ end $+1: \longleftarrow \quad \begin{array}{l}\text { the third index is } \\ \text { the stride length }\end{array}$
 default is +1

$\mathbf{s}=$ 'harvey mudd college'
s[2:11:2] is 're ud'
$s[17: 12]$ is
$s[17: 12:-1]$ is
is 'doe'

$\begin{array}{ll} & S[::-1] \quad \text { is } \\ \substack{\text { Illove this one. } \\ \text { G. Garci anauez }} & S[1:: 6] \quad \text { is }\end{array}$

```
pi = [3,1,4,1,5,9]
L = [ 'pic', "\underline{\underline{isn't", [4,2] ]}}\mathbf{|}|
```



```
pi = [3,1,4,1,5,9]
L = [ 'pic', "\underline{\underline{isn't", [4,2] ]}}\mathbf{|}|
```


Part 1

What is len(pi) 6

What is len(L)

What is len(L[1])

What is pi [2:4]

What slice of pi is $[3,1,4]$
pi[0:3]

What slice of pi is $[3,4,5]$

Part 2

\(\left.\begin{array}{l}What is \mathrm{L}[0] \quad ' \mathrm{Pi}^{\prime}

What is \mathrm{L}[0][1]

What is \mathrm{L}[0: 1]\end{array}\right\}\)| These three |
| :--- |
| are all
 different |

What slice of \mathbf{M} is 'try'?

What slice of M is 'shoe'?

What is $\mathrm{M}[9: 15]$

What is $\mathbf{M}[:: 5]$

$$
\begin{aligned}
& \mathrm{pi}=[3,1,4,1,5,9] \\
& \text { L = ['pi', "isn't", [4,2]] }
\end{aligned}
$$

Part 1

What is len(pi)

What is len(L) 3

What is len(L[1])

What is pi[2:4] $[4,1]$
What slice of pi is $[3,1,4] \quad \mathrm{Pi}[: 3]$
What slice of pi is $[3,4,5] \quad \mathrm{Pi}[:: 2]$

Part 2

What is L[0]

What is $\mathrm{L}[0][1]$

What is $L[0: 1] \quad\left[{ }^{1} p i^{1}\right] \quad$
These three are all different

What slice of M is 'try'? $\mathrm{M}[31: 34]$ or $\mathrm{M}[-5:-2]$

What slice of M is 'shoe'?
What is m[9:15] 'parent'
What is $\mathbf{M}[:: 5]$

Python slices - it dices...

(data, at least)
... but wait, there's more!

Python slices - it dices...

(data, at least)

python
 functions

... but wait, there's more!

Functioning in Python

\# my own function!
def dbl(x):
""" returns double its input, x """
return 2x

This doesn't look quite right...

Functioning in Python

```
# #
2
    # Putting the "fun" into Python functions!
3
4
5 def dbl( x ):
    """ returns double its input, x """
    return 2x
```

Still broken...!

Functioning in Python

def dbl(x):
""" returns double its input, x """ return 2*x

Python's
keywords
Some of Python's baggage...

Function Fun!

def undo (s):
""" this "undoes" its input, s """
return 'de' $+\mathbf{s}$
>>> undo('caf')
'decaf'
>>> undo(undo('caf'))
strings, lists, numbers ...
all data are fair game

Just unundo it!

This week's lab ~
 first two hw problems

