
Homework #1
Due Mon., 9/16

Composite sketch of one of
the attackers drawn from

three-eyewitness accounts

Today’s whether:
if, elif, or else!

Aliens Attack! Picobot programmer Z. Dodds
was subject of a bizarre encounter yesterday
with three-eyed aliens. The trinocular
tourists, it seems, were conducting
experiments that would help them
understand “how humans think.”

It seems the aliens used a shrinking ray,
which let them enter the programmer’s head
in order to see what was happening. A
witness reports deeply disappointed voices
emanating from within.

To escape the attack, Dodds had to turn the
ray on himself – as he shrank, the aliens
quickly flew off, departing so fast that he was
unable to use the reverse ray before they
left. “No worries,” Dodds mused – in fact, this
might help me tomorrow… ”

3) The fun in functions!

1) Lab: data

see three-eyed alien attack, p. 42

2) Lab: functions

0) Reading + response

(ExCr) Pig Latin, et alia

Three-eyed troubles:
GradeScope, Python, & VSCode...

The PYTimesSame
message …

… in any
language?

CS5 Favorites!

In-person help: Tutoring hours…

Yes, we have
hours at Scripps!

Katherine T.

In-person help: Tutoring hours…

Yes, we have
hours at Scripps!

Katherine T.

In-person help: Tutoring hours…

Yes, we have
hours at Scripps!

Katherine T.

Join us Fri. aft.!

Homework 0... The adventure begins!

Lab! Poptarts!

The challenge of programming…

syntax semantics intent
How it looks What it does What it should do

human-
typed
input

machine-
produced

output

human-
desired
output

?

learning a language ~ syntax

… but learning CS ~ semantics

unavoidable, but not the point

learning how machines think!

Inside the machine…

name: x
type: int
LOC: 312

41

variables ~ boxes

memory location 312

Computation Data Storage

name: y
type: int
LOC: 324

42

memory location 324

id, del

What's behind the scenes (processing + memory):

Memory!

byte = 8 bits

bit = smallest amt. of info.: 0 or 1

name: x
type: int
LOC: 312

on or off

41

Random Access Memory

name: z
type: int
LOC: 336

83
name: y
type: int
LOC: 324

42

a big list of boxes, each with a name, type, location, and value

512 MB of memory

name:
type: int
LOC: 348

83

word = 64 bits

TrueFalse

Hey! Someone
can't spelle !

All languages use datatypes

bool

int

float

Type Example What is it?

numeric values with a
fractional part, even if
the fractional part is .0

integers – Python has
infinite precision ints!

George Boole

the T/F results from a
test or comparison:

==, !=, <, >, <=, >=

10**10042 or

3.14 3.0or

True Falseor

"Boolean values"
"Boolean operators"

type(x)

()

**

-

* / % //

+ -

> == <

=

Operate! higher precedence

()

**

-

+ -

> == <

=

O-per-ate! higher precedence

* / % //

Python operators
()

**

-

+ -

> == <

=

parens

power

negate

times, mod, divide

add, subtract

compare

assign
It's not worth remembering all these %+/* things!

I’d recommend parentheses over precedence.

higher precedence

* / % //

7 % 3

% the mod operator

8 % 3

9 % 3

30 % 7

x%4 == 0

x%2 == 0

For what values of x
are these True?

What happens on these
years, football-wise!?

x%y is the remainder when x is divided by y

x%2 == 1

x%4 == 3

If x is a year, what happens
on these years!?

7 // 3

// integer division

8 // 3

9 // 3

30 // 7

x//y is x/y,
rounded-down
to an integer

7 // 3

// integer division

8 // 3

9 // 3

30 // 7

x//y is x/y,
rounded-down
to an integer

x == (x//y)*y + (x%y)

Why?

of full y's in x remainder after "taking" all of the full y's in x

30 == (4)*7 + (2)
Decomposition of 30 into 7's:

Decomposition of x into y's:

the "equals" operators

This is true – but what is it saying!?

I want === !

SET equals isn't equal to TEST equals

the "equals" operators

I want === !

SET equals isn't equal to TEST equals

the "equals" operators

how = works

x = 41

y = x + 1

z = x + y

x = x + y

name(s)

"Quiz"

What are x, y, and
z at this time?

a = 11//2

b = a%3

c = b** a+b *a

Extra!

x y z

x y z

Run
these
lines

Then run
this line

What are the values of a, b, and c
after the 3 lines, at left, run?

What are x, y, and
z at this time?

a b c

Inside the machine…

name: x
type: int
LOC: 312

41

What's happening in python:

id, del

Computation Memory (Data Storage)

name: y
type: int
LOC: 324

42

x = 41
y = x + 1
z = x + y
x = x + y

What's happening behind the scenes (in memory):

name: z
type: int
LOC: 312

83
name: x
type: int
LOC: 324

83

how = works

x = 41

y = x + 1

z = x + y

x = x + y

"Quiz"

What are x, y, and
z at this time?

a = 11//2

b = a%3

c = b** a+b *a

Extra!

x y z

x y z

Run
these
lines

Then run
this line

What are the values of a, b, and c
after the 3 lines, at left, run?

What are x, y, and
z at this time?

a b c

41 42 83

83 42 83

5 2 ??

how = works

x = 41

y = x + 1

z = x + y

x = x + y

"Quiz"

What are x, y, and
z at this time?

a = 11//2

b = a%3

c = b** a+b *a

Extra!

x y z

x y z

Run
these
lines

Then run
this line

What are the values of a, b, and c
after the 3 lines, at left, run?

What are x, y, and
z at this time?

a b c

41 42 83

83 42 83

5 2 42

among many 42 references...
mostly in cs5...!

among many 42 references...
mostly in cs5...!

Are numbers enough for everything?

Yes and no…

You need lists of numbers, as well!

and strings - lists of characters - too.

Both of these are Python sequences…

strings: textual data

add!

s = 'scripps'
c = 'college'

type...

multiply!!

len

type(s)

len(s)

s + c

2*s + 3*c

strings

What did you say!?!

s1 = 'ha'

s2 = 't'
Given

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What are

strings: textual data

What did you say!?!

s1 = 'ha'

s2 = 't'
Given

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What are

strings: textual data

hat

hahathathat

LoL!

hahahahah

LoL!

Data, data everywhere…

Data, data everywhere…

2015

1 Zettabyte

1 Exabyte

1 Petabyte

(brain) 14 PB: http://www.quora.com/Neuroscience-1/How-much-data-can-the-human-brain-store

(2002) 5 EB: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
(2019) www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html

1 Petabyte, PB == 1000 Terabytes, TB

2002

2009

(2020) 44ZB: http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
(2015) 8 ZB: http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
(2011) 1.8 ZB: http://www.emc.com/leadership/programs/digital-universe.htm
(2009) 800 EB: http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
(2006) 161 EB: http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf

2006

2011

(life in video) 60 PB: in 4320p resolution, extrapolated from 16MB for 1:21 of 640x480 video
(w/sound) – almost certainly a gross overestimate, as sleep can be compressed significantly!

5 EB

161 EB

800 EB

1.8 ZB 8.0 ZB

14 PB

60 PB

Data produced each year

100-years of HD video + audio
Human brain's capacity

Data, data everywhere…

References

lo
ga

rit
hm

ic

sc
al

e

1 Terabyte, TB == 1000 Gigabytes, GB

2020

44 ZB

1 Yottabyte

175 ZB

2025

Big Data?

data

information

knowledge

wisdom

Google

Google's users

G.G.M, et al.

Data's elevation?

G. Garcia Marquez

Lists ~ collections of any data

M = [4, 7, 100, 42, 5, 47]

Lists ~ collections of any data

M = [4, 7, 100, 42, 5, 47]

Square brackets tell
python you want a list.

Commas separate
elements.

len(M) M[0] M[0:3]

slicing indexing top-level length

0 index

elements

1 2 3 4 5

Lists ~ collections of any data

L = [3.14, [2,40], 'third', 42]

len(L) L[0] L[0:1]

always returns the same type, and
always returns a substructure!

could return a different type

slicing indexing top-level length

only counts top-level elements

string

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Indexing uses [] Strings

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Indexing uses [] Strings

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Read as
"s-of-zero"
or "s-zero"

Indexing uses []

s[0] is

index

s[17] is

s[] is 'e'

s[6] is

'h'

for strings, too

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Negative indices count backwards from the end!

In a negative mood ?
Python's there for you !Negative indices…

s[-1] is

s[-7] is

s[-0] is

'e'

s[-18] is

s[:] slices the string, returning a substring

What's going
on here?

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

s[12:18]

s[0:6]

s[17:]

s[:]

'harvey'

'colleg'

'ge'

'harvey mudd college'

is

is

is

is

Slicing

s = 'harvey mudd college'

first index is the
first character

second index is ONE AFTER
the last character

a missing index means
that end of the string

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

s[:] slices the string, returning a substring

s[12:18]

s[0:6]

s[17:]

s[:]

'harvey'

'colleg'

'ge'

'harvey mudd college'

is

is

is

is

start end+1

Slicing

s[15:-1]

s[:2]

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

What are
these

slices?

and
these?

'mud'

'e' Don't wor'e'-
Be hap'e' !

is

is

is

is

start end+1

Slicing

-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19

s[2:11:2]

s[: :]

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

the third index is
the stride length

default is +1

'doe'

I love this one. s[1::6]

s[17:12]

- G. Garcia Marquez

Skip-
Slicing

're ud'is

is

is

is

s[::-1]
is

Raji!

s[17:12:-1] is

What is len(pi)

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is len(L)

What is len(L[1])

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'?

These two are different!

Extra! Mind Muddler

Part 2Part 1

These three
are all
different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

Try it!

What slice of M is 'shoe'?

6

pi[0:3]

'pi'

What is len(pi)

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is len(L)

What is len(L[1])

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'?

These two are different!

Extra! Mind Muddler

Part 2Part 1

These three
are all
different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'?

6

pi[0:3]

'pi'

We ()

What is len(pi)

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is len(L)

What is len(L[1])

What is pi[2:4]

What is L[0]

What slice of M is 'try'?

Extra! Mind Muddlers

Part 2Part 1

These three
are all
different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

Try it!
We ()

What slice of M is 'shoe'?

6
3

[4,1]
pi[:3]

pi[::2]

'pi'

['pi']

15 [1,4,1,4,1,4]

M[31:34]

'parent'

M[-5:-2]or

'i'

These two are different!

What is L[0][1]

What is L[0:1]

Python slices - it dices...

… but wait, there's more!

(data, at least)

Python slices - it dices...

… but wait, there's more!

(data, at least)

my own function!

def dbl(x):

""" returns double its input, x """

return 2x

This doesn't look quite right…

Functioning in Python

Still broken… !

Functioning in Python

Functioning in Python

Some of Python's baggage…

my own function!

def dbl(x):

""" returns double its input, x """

return 2*x

comment for
other coders

documentation string
for all users

Python's
keywords

Function Fun !

>>> undo('caf')

>>> undo(undo('caf'))

def undo(s):

""" this "undoes" its input, s """

return 'de' + s

strings, lists, numbers …
all data are fair game

'decaf'

This week's lab ~
first two hw problems

morning + evening, too

Just unundo it!

