C.RJ.!

+ nNumeroussiatements

Google Translate Cover Of 'Call Me Maybe' - YouTube

YouTube - Capital North East

65 5 ... Togry ! A

ﬂﬁﬂ“]‘ fl- ﬁeed to 40} -

N
PR\NT‘_, «ust CS 5 lecture you’ll ever "need"!*

HMC's legal counsel requires us to include these footnotes...

On Warner Brothers' insistence, we affirm that this 'C' does not stand for 'Chamber' and 'S’ does not stand for 'Secrets.'

* Caution: do not take this statement too literally or it is possible find yourself in twice as many CS 5 lectures as you need!

Recursion example: numis(s)
/

total # of i's in
(' i<3five:

of i's | of i's in
"1 '<3five'

1) <))

Recursion example: numis(s)

total # of i's in

'alien'
1S
of i's in + of i's in
'a' 'lien'

NE)

Recursion example: numis(s)

total # of i's in

'aliiien'
1S
of i's in + of i's in
'a' 'liiien'

Recursion example: numis(s)

total

of i's in

@Q 'aliiien'
3 ..
AN 1S

of i's in
lal

-+

€5 5 ... Today !

Jack Ma's Picobot "magic”

Z’{e—g ul‘ 5 iﬂ[l As close as CS

gets to magic

a.k.a., CS's version of mathematical induction

Tutor'“\g

wours: LOTS' Hw #1 due this Monday, 9/17, at 11:59 pm

This is the last CS 5 lecture you'll ever "need"!*

HMC's legal counsel requires us to include these footnotes...

On Warner Brothers' insistence, we affirm that this 'C' does not stand for 'Chamber' and 'S’ does not stand for 'Secrets.'

* Caution: do not take this statement too literally or it is possible find yourself in twice as many CS 5 lectures as you need!

W P WY W
Career Falr + CS5!

IRLE

you attended lab and submit prl+pr2: th
you get full credit for hwlprl and hwlpr2

you should complete the two lab problems, pr1 + pr2

t Is this Python?? i
L : submit prl + pr2

complete and submit hw1pr3

Flougetion Non-template

- strand of DNA

RNA nucleotides
RNA

N Google

Igpay Atinlay

Ebway |magesway Oupsgray Irectoryday

| ;Ad\tancedwa Earchsa
— Y T— ! Eferencespray
[Google Earchsay][I'mway Eelingfay Uckylay] Anguagelay Oolsta

“ A - :. ool-I5) Extra Credit: Pig Latin / CodingBat
» i l.?‘imctlon of tra:nscriptlon \ . .
§ N\ ldowmetmem) 7 Tomplate DNA transcription

strand of DNA

This week's reading on data...

Petabytes? This
article is old-
school!

[

(

The End of Theory: The Data Deluge Makes the
Scientific Method Obsolete

By Chris Andersen [06.23.08

lllustration: Marian Bantjes

THE PETABYTE AGE:
Sensors everywhere, Infinite storage.

Clouds of processors. Our ability to capture,

warehouse, and understand massive
amounts of data is changing science,
medicine, business, and fechnology. Asour
collection of facts and figures grows, so will
the opportunity to find answers to
fundamental questions. Because in the era
of big data, more isn't just more. More is
different.

"All models are wrong, but some are useful.”

So proclaimed statistician George Box 30 vears ago, and
he was right. But what choice did we have? Only models,
from cosmological equations to theories of human
behavior, seemed to be able to consistently, if
imperfectly, explain the world around us. Until now.
Today companies like Google, which have grown up in an
era of massively abundant data, don't have to settle for
wrong models. Indeed, they don't have to settle for
models at all.

Computation's Dual Identity

Computation 2 Data Storage
41 42
<$::j> name: Xx name: y
type: int type: int
LOC: 300 LOC: 304
¢ memory location 300 memory location 304

= variables ~ boxes
T e
s‘“‘“
But what does the \JEEE/A:Z:::::

stuff on this side g
look like ?

—

Computation's Dual Identity

accessed through functions...

/

Computation Data Storage

LI A T R R W R e R

42

name: y
type: int
LOC: 304

memory location 304

1ables ~ boxes

It's no coincidence

this starts with fun! g ' .
[Y .
A { N

C.RJ.!

+ nNumeroussiatements

Google Translate Cover Of 'Call Me Maybe' - YouTube

YouTube - Capital North East

Functioning across disciplines

procedure structure
: 100
g(x): —
x**100 g(X) *
CS's googolizer Math's googolizer
defined by what it does defined by what it is

+ what follows behaviorally + what follows logically

Giving names to data helps f'ns

flipside(s):
""" flipside(s): swaps s's sides!
input s: a string

This idea is the key to
x = len(s)//2< your happiness!
return s[x:] + s[:x]

Giving names to data helps f'ns

follow the data...

'homework'

flipside (s):
""" flipside(s): swaps s's sides!
input s: a string

This idea is the key to

% = len(s) //2< your happiness!
4 return s[x:] + s|[:x]

'work' "home''

Use variables!

flipside(s) :
x = len(s)//2
return s[x:] + s[:x]

OK: we humans work better with

these two functions named variables.

do th thing...
0 the same thing But -- why would even computers

"prefer” the top version, too?

flipside(s) :
return s[len(s)//2:] + s[:len(s)//2]

\/

Aargh!

Test!

flipside(s) :
""" flipside(s): swaps s's sides!

input s: a string (1) function
o definition
x = len(s)/2

s[x:] + s[:x]

#
Tests!
#
flipside ('homework') == 'workhome'
flipside('poptart') == 'tartpop' :
P (2) function
(" petscar ~", flipside('carpets')) tests
(" cs5! ~", flipside('5'cs"'))

S

We provide tests (for now...)

This program uses

Redefining variables... worsbles SR

constantly!
A—

convertFromSeconds(s): # total seconds

S

S

. S

hours
<

" days =

= S

o° || oe

= S

minutes

-—— o
= 8 %

s // (24*60*60) # total days
(24*60*60) # remainder s
s // (60*60) # total hours
(60*60) # remainder s
=s // 60 # total minutes
60 # remainder s

[days, hours, minutes, s]

This program uses

Naming things! oIl o
name

convertFromSeconds (s) :

signature line

docstring
 days = s // (24*60*60) # total days
s = s % (24*60*60) # remaind o
hours : (1)) # total h in-line
< T codae . . comments -
s = s # remaind h
minute block # total m e.se ar.e
_ (. optional in
\. S = S % ou # remaind S ©

fHaxre hninire minyutes , S]
return statement

return Vs. print

dbl (x) : dblPR (x) :
1A dbls x? mwiiw mwiiw dbls x? mwiiw
return 2*x (2*x)
ans = dbl (20) ans = dblPR(20)

What's the difference ?!

return > print

dbl (x) : dblPR (x) :
mwiwmn dbls x? mwiwin mwiwmn dbls x? mwiwmn
return 2*x (2*x)
ans = dbl(20) + 2 ans = dblPR(20) +2
this is a value for further use! t YES! v this turns lightbulbs on! t Ouch!

changes pixels on the screen...

return yields the function call's value ...~ -

prints!

return > print

how software passes changes the pixels
information from (little lightbulbs)
function to function... on your screen

return > print

how software passes changes the pixels
information from (htt /9! I
function to function...

= Name(s): QUIZ

l How f'ns work...

Whatis demo (15) here?

def demo (x) :
y = x/3

z = g(y)
return z + y + X

def g(x):
result = 4*x + 2 |
[might have a
return result guess at both Gl

of these... 0
A ———

Whatis £(2) here?

y

def f(x):
1if x ==
return 12
else:
return f(x-1) + 10*x

= How functions work...

!

def demo (x) :
y = x/3

z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

they stack.

e How functions work...

!

def demo (x) :

y = /3 stack frame

z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

they stack.

15

!

def demo (x) :
y = x/3

z = g(y)
return z + y + x

def g(x):
result = 4*x + 2
return result

How functions work...

"the stack"
call: demo (15) stack frame
local variables: x = 15

y =5

Z = ?7?7?7?9
call: g(5) stack frame
local variables:

x =5

result = 22

returns 22

they stack.

15

!

def demo (x) :
y = x/3

z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

call: demo (15)

local variables:

call: g(5)
local variables:

How functions work...

"the stack"

stack frame

N & ¥
I
4

I
v
V)
)
)
v

stal rame

x =5
resultihlm 22
returns 22

they stack.

e How functions work...

!

def demo (x) :

y = /3 stack frame

z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

they stack.

e How functions work...

l "the stack"
def demo (x) :
y = x/3 call: demo (15) stack frame
z = g(y) local variables: _
return z + y + x = B a2
y =5
\ z = 22
def g(x): return 42

result = 4*x + 2
return result

they stack.

e How functions work...

def demo (x) : -
y = x/3 output

z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

they stack.

2 How functions work...
l what's £ (2) ?

def f£(x):
if x == 0:
return 12
else:
return £(x-1) + 10*x

2 How functions work...

!

def f£(x):
return 12
else:
return £(x-1) + 10*x

1] How functions work...

!

def f£(x):
return 12
else:
return £(x-1) + 10*x

0
def f£(x):
1f x ==

return 12
else:
return f£(x-1) + 10*x

call: £(2)

local variables:

call: £(1)

local variables:

call: £(0)

local variables:

How functions work...

"the stack"

stack frame

Xx = 2
need f(1)

stack frame

x =1
need f(0)

stack frame

x =0
returns 12

0
def f£(x):
1f x ==

return 12
else:
return f£(x-1) + 10*x

call: £(2)

local variables:

call: £(1)

local variables:

call: £(0)

local variables:

How functions work...

"the stack"

stack frame

Xx = 2
need f(1)

stack frame

x =1
need f(0)

rame
x =0

returns 12

1
def f£(x):
1f x ==

return 12
else:

return f£(x-1) + 10*x

How functions work...

call: £(2)
local variables:

call: £(1)
local variables:

"the stack"

stack frame

Xx = 2
need f(1)

stack frame

x =1
f(0)= 12
result =

How do we
compute the
result?

1
def f£(x):
1f x ==

return 12
else:

return f£(x-1) + 10*x

How functions work...

call: £(2)
local variables:

call: £(1)
local variables:

"the stack"

stack frame

Xx = 2
need f(1)

stack frame

x =1
f(0)= 12
result = 22

Where does
that result go?

1] How functions work...

!

def f£(x):
return 12
else:
return £(x-1) + 10*x

mm

2 How functions work...

!

def f£(x):
return 12
else:
return £(x-1) + 10*x

What's this
return value?

2 How functions work...

!

def f£(x):
return 12
else:
return £(x-1) + 10*x

which then
gets returned...

2 How functions work...

!

def f£(x):
if x ==
return 12
else:
return £(x-1) + 10*x

the result then
gets returned...

2

!

def £ (x): -

if x == output

return 12
else:
return £(x-1) + 10*x

How functions work...

functions stack.

i How functions work...

def f(x): zliz
if x ==

return 12

"the stack"

output

else:
return £(x-1) + 10*x

functions stack.

How functions work...

lf-contained
| unit!

functions stack.

sequential self-similar

problem-solving paradigms

Thinking sequentially

factorial
ma’t\\ 5 ! - 120
¢s fac(b) = B5*4*3*2%]

fac(N) = N*(N-1)* .. *3*%2%]

Thinking sequentially

factorial
ma’t‘(\ 5 ! - 120
¢s fac(b) = B5*4*3*2%]

fac(N) = N*(N-1)* .. *3*%2%]

Thinking recursively

factorial
ma’t\\ 5 ! - 120
¢ fac(5) =

can we express
fac w/asmaller

version of itself?

fac (N)

fac(5) = 5 * fac(4)

can we express
fac w/asmaller

version of itself?

‘ . We're done!?

fac(N) = N * fac(N-1)

Warning: this is legal!

def fac(N) :
return N * fac (N-1)

[wonder how this code
will STACK up!? ik

e

\
=’ stack overflow

=" stackoverflow

N
= stackoverflow EEQ searcn.

Home unionAll resulting in StackOverflow

PUBLIC

© Stack Overflow I've made some progress with my own question (how to load a dataframe from a python requests

stream that is downloading a csv file?) on StackOverflow, but I'm receiving a StackOverflow error:

Tags 1
import requests
Users import numpy as np
import pandas as pd
Jobs

import sys

Recursion

the dizzying dangers of
having no base case!

This "works" ~ but doesn't work!
fac (N) :
fac (N)

INFIN KECLURSION

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECURSION

YOu GO K

INFINITE RECURSION

You GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION

YOU GOTTA KNOW WHEN TO QUIT

R

the diz
havin

OH MY GOD & &2

n't work!

e ()

) recursion - Google Search - Mozilla Firefox Q@[zl

File Edit View History Bookmarks Tools Help

@ v c A Y '-.' http: /fwww.google.com/search?g=recursion&ie=utf-8&oe=utf-8&ag=t&ls=org.mozilla:en-US:official &clier ’1? - }-.," recursion O
B rviccs |) makesd BH acv BH css B cse

} -" recursion - Google Search -’ alien docks - Google Images £ + | i
Web |mages Videos Maps News Shopping Gmail more v Search settings | Sign in ®

GOL)gle IrecurSion ’ [Search l Advsnosd Sesrch

Web [# Show opticns Results 1 - 10 of about 3,040,000 for recursion [definition]. {0.14 seconds)

Did you mean: recursion

Recursion - Wikipedia. the free encyclopedia

A visual form of recursion known as the Droste effect. The woman in this image is holding an =
object which contains a smaller image of her holding the same ...

en.wikipedia.org/wiki/Recursion - Cached - Similar

Recursion (computer science) - Wikipedia. the free encyclopedia
Recursion in computer science is a way of thinking about and solving problems. In fact.
recursion is one of the central ideas of computer science ...

en.wikipedia. org/wiki/Recursion_(computer_science) - Cached - Similar

[#) Show more results from en wikipedia org

Recursion -- from Wolfram Math\World

A recursive process is one in which objects are defined in terms of other objects of the same
type. Using some sort of recurrence relation. the entire class ...

mathworld wolfram_com/Recursion_html - Cached - Similar

recursion
Definition of recursion. possibly with links to more informatien and implementations.
www.itl_nist_gov/div897/sqg/dads/HTML/recursion.html - Cached - Similar

Mastering recursive programming v

Done

legal '= recommended

def facBad(N) :

return N * facBad (N-1)

calls to £acBad will "never" stop: there's no BASE CASE

Make sure you have a
base case

a.k.a. "escape hatch”

Thinking recursively...

def fac(N) :

1f N ==
return 1

else:

t

return N * fac(N-1)

\

> Base case

Recursive
case

(too short?)

Thinking recursively...

def fac(N) :

1f N ==
return 1

else:

b

How can this multiply N by something
that hasn't happened yet!?!!

return N * fac(N-1)

\

> Base case

Recursive
case

(too short?)

Acting recursively

def fac(N): def fac(N):
1f N <= 1: 1f N <= 1:
return 1 return 1
else: else:

rest = fac(N-1)
return N*fac (N-1) return N*rest

N\ N\

this recursion happens first! hooray for variables!

Conceptual Actual

Behind the curtain:
how recursion works...

def fac(N):
if N <= 1:
fac(5) return 1.0

/\ h else:

5 * fac(4) return N * fac(N-1)

A

4 * fac(3)

A—

3 * fac(2)

A

2 * fac(l)

=

1.0

Behind the curtain: def fac(N):

how recursion works... if N <= 1:
return 1.0
else:
fac (5) return N * fac(N-1)
/\ N
5 * fac(4) stack frame with N=5
/\ N
4 * fac(3) stack frame with N =4
/\ N
3 * fac(2) stack frame with N =3
- \
2 * fac(1l) stack frame with N = 2

—

1.0 stack frame with N =1

Behind the curtain: def fac(N):

how recursion works... if N <= 1:
return 1.0
else:
fac (5) return N * fac(N-1)
/\ N
5 * fac(4) stack frame with N =5
/\ N
4 * fac(3) stack frame with N = 4
/\ N
3 * fac(2) stack frame with N =3

A

2 * 1.0 stack frame with N =2

Behind the curtain: def fac(N):

how recursion works... if N <= 1:
return 1.0
else:

fac (5) return N * fac(N-1)
/\ N
5 * fac(4) stack frame with N=5

/\ N

4 * fac(3) stack frame with N = 4

A—

3 * 2.0 stack frame with N = 3

Behind the curtain: def fac(N):

how recursion works... if N <= 1:
return 1.0
else:
fac (5) return N * fac(N-1)
S
5 * fac(4) stack frame with N =5

S

4 * 6.0 stack frame with N = 4

Behind the curtain: def fac(N):

how recursion works... if N <= 1:
return 1.0
else:

* -
fac (5) return N fac (N-1)

A

5 % 24.0 stack frame with N =5

Behind the curtain: def fac(N):

how recursion works... if N <= 1:
return 1.0
else:

* -
fac (5) return N fac (N-1)

A

\

But is recursion for real?! =

Recursion's conceptual challenge?

You need to see BOTH the
self-similar pieces AND the
whole thing simultaneously!

Q Nature loves recursion!

... because it's completely self-sufficient!

Recursion

+

ien
gimilar desis

problem-solving paradigm

Recursion

+

ien
gimilar desis

Next: recursive-function DESIGN »

fac(x)

- fac(5)
value of :
B*%4*x3%2%] 1S

value of
4*%2%3%x]

fac(4)

valueof 5 %

Base case:
fac(0) should return 1

def fac(x):

""" factorial! Recursively!

i1f x == 0:
return 1

else:
return x*fac (x-1)

plusone(n)
- plusone(5)

value of :
1+14+141+1 IS

valueof1 4

Base case:
plusone(0) should return

plusone(n)
- plusone(5)

value of :
1+14+141+1 IS

value of
1+14+1+1

plusone(4)

valueof1 4

Base case:
plusone(0) should return

plusone(n)
plusone(5)

value of .
1+41+1+1+1 | IS
valueof 1+ 1_/,,a:|ll:_e1c.:.f1
plusone(4)
def plusone (n):

wiuwmn

returns n by adding 1's!

if n == 0:
return

else:
return

plusone(n)

~ plusone(5)
value of .
| 141414141 15

et + e
def plusone(n): bt

AN AN]|

returns n by adding 1's!

if n == 0:
return 0

else:
return 1 + plusone(n-1)

pow(b,p)

- pow(2,5)
value of :
2%2%x2%2%x2 | IS

valueof2 *

Base case:
pow(2,0) should return __ ?

pow(b,p)

- pow(2,5)
value of :
2%2%x2%2%x2 | IS

value of

value of 2 Dk Dk DHD

Base case:
pow(2,0) should return __ ?

pow(b,p)

def pow(b,p): 'ﬂw

AN AN]|

b**p, defined recursively!

if p == 0:
return

else:
return

Extra! Can we also handle negative powers... ?

pow(b,p)

def pow(b,p): 'ﬂw

AN AN]|

b**p, defined recursively!

if p == 0:
return 1.0

else:
return b*pow(b,p-1)

Extra! Can we also handle negative powers... ?

pow(b,p)

def pow(b,p): L e

AN AN]|

b**p, defined recursively!

if p == 0:
return 1.0

elif p <O .
return 1.0/pow (b, -p)

else:
return b*pow(b,p-1)

Extra! Can we also handle negative powers... ?

Recursion's advantage, It handles arbitrary structural
" depth —all at once + on its own!

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

e As a hat, I'm recursive, too!

. »
https://www.youtube.com/watch?v=ybX9nVLiNi4 @ 0:08
https://www.youtube. com/watch7v 8Ph|SSnaUKk @ 1:11

Pomona Sends Survey To Students To
Find Out Why They Don’t Take Surveys

|
Ima Firstyear offer students a chance to express survey also addresses ques-
| those opinions via a general survey, horsofmed'\odologymcennveand sessment scale,” she said. “1 had to
Dedlining survey responserates we don’t get as many responses as access. It asks students to rank their rank “Scale of one to five,” “Strongly
! at Pomona College prompted the we expect. We want to know why, preferences of survey provider, such Disagree to Strongly Agree” and
administration to send students a and that's why we're sending out as SurveyMonkey, Qualtrics and

“Sad Face to Happy Face” from least
new survey this week, which will this survey.” Google Forms, and to name their to most intuitive. But I'm not sure I
assess students’ tEe‘wous survey Students will be asked to self- ideal prizes. It also asks stu- did it correctly.”
experiences and rsurvey pref- identify at the start of the survey as dents w they would be more Bennett added that she did appre-
erences in hopes of explaining— a ‘frequent responder,” “occasional inclined to take school surveys via date the chance to critique previous
and reversing—the decline. responder” or ‘forgot the password erna:l,aanhoneapporvohngrm- surv

| “We know Pomona students to my Pomona webmall account chines in the dnung halls complete

eys.
“Just last mionth I took a survey
have strong opinions about their three months ago.” According to with ‘I Surveyed! stickers.

wxd\noprogresbaratthebottorn

education and their campus,” Feldblum, these categories will help Erika Bennett PO “17 said she of each page, she said. “I felt lost
| said Vice President and Dean of the administration create new strate- found some of the questions con- and confused. I there’s a real
‘ Students Miriam Feldblum. “But gies to engage more of the student fusing. See SURV page 2

what we find is that when we populationinresponding tosurveys. “I had to pick my favorite as-

— — - a - - e ewu FPa bk B 2F o

It handles arbitrary structural
depth — all at once + on its own!

Recursion’s advantage:

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

Justin Timberlake | Jimmy Fallon |
Ultimate Inception | Mug

$15.35 - Etsy
No tax its To

Irveys

je,” she said. “I had to

o] Jimmy Fallon & Justin Timberlake ancly e oo

Happy Face” from least

Funny Coffee Mug. Ultimate Inception o oo rm ot

lded that she did appre-

S Coffee Mug. Great ... e to critaue provious
| $11.99 - Etsy P
| ::l‘:l '.l'm d there’s a real

Stud| No tax URVEY page 2

P S 2 o |

Recursion’s a design - not a formula,

DeSIgn pa tterns- " BUT, these pieces are common:

s = 'aliiien'
/ N ~ J

'a' 'liiien'

in terms of s, what are these pieces? (index! slice!)

Recursion’s a design - not a formula,

DeSIgn pa tterns- " BUT, these pieces are common:

s = 'aliiien'
/ N ~ J

'a' 'liiien'

s[0] s[1:]

handle the first recurse the rest

ol
Nachhne”

Recursion’s a design - not a formula,

DeSIgn pa tternS " BUT, these pieces are common:

L =13,1,4,1,5,9]
/ N

3 [1,4,1,5,9]

L[O] L[1:]

handle the first recurse the rest

ol
Nachhne”

Recursion’s a design - not a formula,

D@Slgn pa tterns " BUT, these pieces are common:

* Do one piece of work: L[0] ors[0]
* Recursewith therest: L[1l:]ors[1l:]

* Combine! Make sure all types match...

 Handle base cases, with 1 £ ...

numis(s)

numis("x1lii')

of i's in :
'1ii" 1S
of i's in of i's in
| x | + T lii V
Base case:

numis('') should return ?

def numis(s) :
ABARA # Of i'S 1n S

1f s == ""':
return

#ofi'si
ixlid

n :
i IS

#ofi'sin
lxl

elif
return

#ofi'sin
L [1 T

else:
return

- - of i'sin p

def numis(s): MY
oy # Of l ' S ln S #ofi'sin + #of_i':sin
'x' g & ¥

i1f s == "':
return 0

elif s[0] == 'i':
return l+numis(s[l:])

else:

return numis(s[1l:])
f

What's really being added here?

~ len('yaycs')
of chars in
'yaycs'

of chars in

vyv 'l'

Base case:
len("') should return ?

1S

len(s)

of chars in
'aycs'

len(s)

len('yaycs')
of chars in

P IS
of chars in # of chars in
def len (S) . ¥ + 'aycs'

AN AN]|

returns the length of s

1f s == "":
return

else:
return

Extra! Can we also handle LISTS... ?

len(s)

_len('yaycs')
of chars in

'vaycs' , is
[]
def 1en (S) o # of chars in # of chars in
AN AN]| Y Azen

returns the length of s

1f s == "'"" or s = []:
return 0

else:
return 1 + len(s[1l:])

one, plus... ... the length of the rest of s

A brief word from our sponsor, Mother Nature...

Like broccoli, recursion

nT™

is "Good for You

Dragon's-blood Tree

S
%
K

But, do only plants get
to be recursive? #

\

-’
:
>

7 N4

i .ji'&:l

PR

There still has to be a base case...

or else!

Leap before you look!

Try these four...

I guess Python's

Python is... 1n R o

A

>>> '"1' 1n '"team'

False

>>> 'cs' 1in 'physics'

True

>>> '1' 1n 'alien'
>>> 3*'i' in 'alien'

False

True

>>> 42 in [41,42,43] >>> 42 in [[42], '42']

True False

vwl(s)

~ vwl('eerie’)

of vowels in :
'eerile' 1S
of vowels + of vowels in
In 'e' 'erie'
Base case:

vwl(") should return 7

def wvwl(s):

mwimn

of vowels in s

1f s == '"':
return

elif
return

else:
return

keepvwl(s)

~ keepvwl('pluto")

keep vowels in :
keep vowels + keep vowels in
in 'p' "luto'
Base case:

keepvwl("') should return ___ ?

def keepvwl (s):

""" returns ONLY the vowels in s!

if s == '':
return

elif .
return

else:
return

max (L)

- max([7,5,9,2])
max of :
[7,5,9,2] I3

or the max of

either 7 5 9 2]

Base case:
if len(L) == 1, what should max(L) return ?

def max (L) :

mwimn

returns the max of L!

mwimn

if len(L) == 1:
return
-— <«— The max of
M = the REST of L
1if :
return
else:

return

zeroest(L)
zeroest([-7,5,9,2])

zeroest of .
[-7,5,9,2]1 | IS

or the zeroest

either -7 of [5,9, 2]

Base case:
if len(L) == 1, what should zeroest(L) return ?

def zeroest (L) :

""" returns L's element nearest O

if len(L) == 1:
return

Z — The zeroest of
the REST of L

1if .
return

else:
return

def wvwl (s):

nnr 8 of vowels in s

1f s == "':
return 0

elif s[0] in 'aeiou':
return l+vwl(s[1:])

else:

return vwl(s[1l:])
1

What's really being added here?

eeeeeeeeeeeeeeeee

def keepvwl (s):

""" returns ONLY the vowels in s!

1f s == "':
return ''

elif s[0] in 'aeiou':
return s[0]+keepvwl(s[1:])

else:

return keepvwl (s[1:])
l

What's really being added here?

def max (L) :

mwimn

returns the max of L!

i1f len (L) ==
return L[O]

M — maX(L[].:]) The max of

the REST of L
if L[O0] > M:

return L[O0]
else:

return M

def zeroest (L) :

""" returns L's element nearest O

if len (L) ==
return L[O0]

Z = zeroest(L[1:]) . Cisrn)

if abs(L[0]) < abs(Z):
return L[O0]

else:
return 2

The key to understanding recursion
Is, first, to understand recursion.

- former CS 5 student

It's the eeriest!

with e

tutors @ LAC + 4C's Th/F/Sa/Su/Mon.

