
C.R.J.!

This is the last CS 5 lecture you’ll ever "need"!*

On Warner Brothers' insistence, we affirm that this 'C' does not stand for 'Chamber' and 'S' does not stand for 'Secrets.'
Caution: do not take this statement too literally or it is possible find yourself in twice as many CS 5 lectures as you need!

HMC's legal counsel requires us to include these footnotes…

Hw #1 due this Monday, 9/17, at 11:59 pm

*

a.k.a., CS's version of mathematical induction

As close as CS
gets to magic

Recursion example: numis(s)

total # of i's in
'i<3five'

of i's in
'i'

of i's in
'<3five'+

is

Recursion example: numis(s)

total # of i's in
'alien'

of i's in
'a'

of i's in
'lien'+

is

Recursion example: numis(s)

total # of i's in
'aliiien'

of i's in
'a'

of i's in
'liiien'+

is

Recursion example: numis(s)

total # of i's in
'aliiien'

of i's in
'a'

of i's in
'liiien'+

is

This is the last CS 5 lecture you’ll ever "need"!*

On Warner Brothers' insistence, we affirm that this 'C' does not stand for 'Chamber' and 'S' does not stand for 'Secrets.'
Caution: do not take this statement too literally or it is possible find yourself in twice as many CS 5 lectures as you need!

HMC's legal counsel requires us to include these footnotes…

Hw #1 due this Monday, 9/17, at 11:59 pm

*

a.k.a., CS's version of mathematical induction

As close as CS
gets to magic

Jack Ma's Picobot "magic"

Career Fair + CS5!

AwkwardSelfie(Day) ...

hw1if you attended lab and submit pr1+pr2
you get full credit for hw1pr1 and hw1pr2

else

:

you should complete the two lab problems, pr1 + pr2

either way: submit pr1 + pr2
Is this Python??

:

complete and submit hw1pr3

Extra Credit: Pig Latin / CodingBat

DNA transcription

This week's reading on data…

Petabytes? This
article is old-

school!

Computation's Dual Identity

name: x
type: int
LOC: 300

41

memory location 300

Computation Data Storage

name: y
type: int
LOC: 304

42

memory location 304

variables ~ boxes

But what does the
stuff on this side

look like ?

Computation's Dual Identity

name: x
type: int
LOC: 300

41

memory location 300

Computation Data Storage

name: y
type: int
LOC: 304

42

memory location 304

variables ~ boxes

accessed through functions…

It's no coincidence
this starts with fun!

C.R.J.!

Functioning across disciplines

def g(x):
return x**100

g(x) = x100

CS's googolizer Math's googolizer

defined by what it is

+ what follows behaviorally

procedure structure

+ what follows logically

defined by what it does

Giving names to data helps f'ns

def flipside(s):
""" flipside(s): swaps s's sides!

input s: a string
"""
x = len(s)//2
return s[x:] + s[:x]

This idea is the key to
your happiness!

Giving names to data helps f'ns

def flipside(s):
""" flipside(s): swaps s's sides!

input s: a string
"""
x = len(s)//2
return s[x:] + s[:x]

This idea is the key to
your happiness!

'homework'

'work' 'home'

4

follow the data...

I'm happy
about this, too!

OK: we humans work better with
named variables.

But -- why would even computers
"prefer" the top version, too?

def flipside(s):
x = len(s)//2
return s[x:] + s[:x]

def flipside(s):
return s[len(s)//2:] + s[:len(s)//2]

Use variables!

Aargh!

these two functions
do the same thing...

Test!

def flipside(s):
""" flipside(s): swaps s's sides!

input s: a string
"""
x = len(s)/2
return s[x:] + s[:x]

#
Tests!
#
assert flipside('homework') == 'workhome'
assert flipside('poptart') == 'tartpop'

print(" petscar ~", flipside('carpets'))
print(" cs5! ~", flipside('5!cs'))

(1) function
definition

(2) function
tests

We provide tests (for now…)

assert

print

def convertFromSeconds(s): # total seconds
""" convertFromSeconds(s): Converts an

integer # of seconds into a list of
[days, hours, minutes, seconds]

input s: an int
"""
days = s // (24*60*60) # total days
s = s % (24*60*60) # remainder s
hours = s // (60*60) # total hours
s = s % (60*60) # remainder s
minutes = s // 60 # total minutes
s = s % 60 # remainder s
return [days, hours, minutes, s]

This program uses
variables

constantly!Redefining variables...

def convertFromSeconds(s): # total seconds
""" convertFromSeconds(s): Converts an

integer # of seconds into a list of
[days, hours, minutes, seconds]

input s: an int
"""
days = s // (24*60*60) # total days
s = s % (24*60*60) # remainder s
hours = s // (60*60) # total hours
s = s % (60*60) # remainder s
minutes = s // 60 # total minutes
s = s % 60 # remainder s
return [days, hours, minutes, s]

This program uses
variables

constantly!Naming things!

docstring

in-line
comments –

these are
optional in

CS 5

code
block

return statement

signature line

return vs. print

def dbl(x):
""" dbls x? """
return 2*x

def dblPR(x):
""" dbls x? """
print(2*x)

ans = dbl(20) ans = dblPR(20)

def dbl(x):
""" dbls x? """
return 2*x

def dblPR(x):
""" dbls x? """
print(2*x)

return yields the function call's value …

print changes pixels on the screen...
… which the

shell then
prints!

return > print

ouch!yes!

ans = dbl(20) + 2 ans = dblPR(20)+2
this is a value for further use! this turns lightbulbs on!

return > print

how software passes
information from

function to function...

changes the pixels
(little lightbulbs)

on your screen

return > print

how software passes
information from

function to function...

changes the pixels
(little lightbulbs)

on your screen

How f'ns work…

def g(x):
result = 4*x + 2
return result

What is demo(15) here?
def demo(x):

y = x/3
z = g(y)
return z + y + x

def f(x):
if x == 0:

return 12
else:

return f(x-1) + 10*x

QuizName(s):
15

What is f(2) here?

I might have a
guess at both

of these…

def demo(x):
y = x/3
z = g(y)
return z + y + x

How functions work…15

def g(x):
result = 4*x + 2
return result

they stack.

"the stack"

def demo(x):
y = x/3
z = g(y)
return z + y + x

How functions work…15

stack frame

they stack.

"the stack"

x = 15
y = 5
z = ?????

call: demo(15)

local variables:

def g(x):
result = 4*x + 2
return result

def demo(x):
y = x/3
z = g(y)
return z + y + x

How functions work…15

stack frame

they stack.

"the stack"

x = 15
y = 5
z = ?????

call: demo(15)

local variables:

stack frame

x = 5
result = 22
returns 22

call: g(5)

local variables:

def g(x):
result = 4*x + 2
return result

def demo(x):
y = x/3
z = g(y)
return z + y + x

How functions work…15

stack frame

they stack.

"the stack"

x = 15
y = 5
z = ?????

call: demo(15)

local variables:

stack frame

x = 5
result = 22
returns 22

call: g(5)

local variables:

def g(x):
result = 4*x + 2
return result

def demo(x):
y = x/3
z = g(y)
return z + y + x

How functions work…15

stack frame

they stack.

"the stack"

x = 15
y = 5
z = 22

call: demo(15)

local variables:

def g(x):
result = 4*x + 2
return result

def demo(x):
y = x/3
z = g(y)
return z + y + x

How functions work…15

stack frame

they stack.

"the stack"

x = 15
y = 5
z = 22
return 42

call: demo(15)

local variables:

def g(x):
result = 4*x + 2
return result

def demo(x):
y = x/3
z = g(y)
return z + y + x

How functions work…15

they stack.

"the stack"

def g(x):
result = 4*x + 2
return result

42
output

How functions work…
"the stack"

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

2
what's f(2) ?

How functions work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

2

How functions work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

1

stack frame

x = 1
need f(0)

call: f(1)

local variables:

How functions work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

0

stack frame

x = 1
need f(0)

call: f(1)

local variables:

stack frame

x = 0
returns 12

call: f(0)

local variables:

How functions work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

stack frame

x = 1
need f(0)

call: f(1)

local variables:

stack frame

x = 0
returns 12

call: f(0)

local variables:

0

How functions work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

1

stack frame

x = 1
f(0) = 12
result =

call: f(1)

local variables:

How do we
compute the

result?

How functions work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

1

stack frame

x = 1
f(0) = 12
result = 22

call: f(1)

local variables:

Where does
that result go?

How functions work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

1

stack frame

x = 1
f(0) = 12
result = 22

call: f(1)

local variables:

How functions work…

stack frame

"the stack"

x = 2
f(1) = 22
result =

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

2

What's this
return value?

How functions work…

stack frame

"the stack"

x = 2
f(1) = 22
result = 42

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

2

which then
gets returned…

How functions work…

stack frame

"the stack"

x = 2
f(1) = 22
result = 42

call: f(2)

local variables:

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

2

the result then
gets returned…

How functions work…
"the stack"

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

2

42
output

functions stack.

How functions work…
"the stack"

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

2

42
output

functions stack.

How functions work…
"the stack"

def f(x):
if x == 0:
return 12

else:
return f(x-1) + 10*x

2

42
output

functions stack.

sequential self-similar

problem-solving paradigms

Thinking sequentially

fac(5) = 5*4*3*2*1

fac(N) = N*(N-1)* … *3*2*1

factorial

5 ! = 120

Thinking sequentially

fac(5) = 5*4*3*2*1

fac(N) = N*(N-1)* … *3*2*1

factorial

5 ! = 120

Thinking recursively

fac(5) = 5*4*3*2*1

fac(N) = N*(N-1)* … *3*2*1

factorial

5 ! = 120

fac(5) =

fac(N) =

can we express
fac w/ a smaller
version of itself?

Thinking recursively

fac(5) = 5*4*3*2*1

fac(N) = N*(N-1)* … *3*2*1

factorial

5 ! = 120

fac(5) = 5 * fac(4)

fac(N) = N * fac(N-1)

can we express
fac w/ a smaller
version of itself?

We're done!?

Warning: this is legal!

def fac(N):
return N * fac(N-1)

I wonder how this code
will STACK up!?

def facBad(N):
return N * facBad(N-1)

def fac(N):
return fac(N)

Recursion
the dizzying dangers of
having no base case!

This "works" ~ but doesn't work!

def fac(N):
return fac(N)

Recursion
the dizzying dangers of
having no base case!

This "works" ~ but doesn't work!

def facBad(N):
return N * facBad(N-1)

calls to facBadwill "never" stop: there's no BASE CASE

Make sure you have a
base case

legal != recommended

a.k.a. "escape hatch"
How about an escape

from recursion itself!?!

def fac(N):

if N == 0:
return 1

else:
return N * fac(N-1) Recursive

case
(too short?)

Base case

Thinking recursively...

def fac(N):

if N == 0:
return 1

else:
return N * fac(N-1) Recursive

case
(too short?)

Base case

Thinking recursively...

How can this multiply N by something
that hasn't happened yet!?!!

def fac(N):

if N <= 1:
return 1

else:
rest = fac(N-1)
return N*rest

Conceptual Actual

Acting recursively

def fac(N):

if N <= 1:
return 1

else:

return N*fac(N-1)

this recursion happens first! hooray for variables!

def fac(N):
if N <= 1:
return 1.0

else:
return N * fac(N-1)

Behind the curtain:
how recursion works...

fac(5)

5 * fac(4)

4 * fac(3)

3 * fac(2)

2 * fac(1)

1.0

fac(5)

Behind the curtain:
how recursion works...

5 * fac(4)

4 * fac(3)

3 * fac(2)

2 * fac(1)

def fac(N):
if N <= 1:

return 1.0
else:

return N * fac(N-1)

1.0

stack frame with N = 5

stack frame with N = 4

stack frame with N = 3

stack frame with N = 2

stack frame with N = 1

fac(5)

Behind the curtain:
how recursion works...

5 * fac(4)

4 * fac(3)

3 * fac(2)

2 * 1.0

def fac(N):
if N <= 1:

return 1.0
else:

return N * fac(N-1)

stack frame with N = 5

stack frame with N = 4

stack frame with N = 3

stack frame with N = 2

fac(5)

Behind the curtain:
how recursion works...

5 * fac(4)

4 * fac(3)

3 * 2.0

def fac(N):
if N <= 1:

return 1.0
else:

return N * fac(N-1)

stack frame with N = 5

stack frame with N = 4

stack frame with N = 3

fac(5)

Behind the curtain:
how recursion works...

5 * fac(4)

4 * 6.0

def fac(N):
if N <= 1:

return 1.0
else:

return N * fac(N-1)

stack frame with N = 5

stack frame with N = 4

fac(5)

Behind the curtain:
how recursion works...

5 * 24.0

def fac(N):
if N <= 1:

return 1.0
else:

return N * fac(N-1)

stack frame with N = 5

fac(5)

Behind the curtain:
how recursion works...

120.0

def fac(N):
if N <= 1:

return 1.0
else:

return N * fac(N-1)

Nature loves recursion!

Recursion's conceptual challenge?
You need to see BOTH the
self-similar pieces AND the
whole thing simultaneously!

... because it's completely self-sufficient!

problem-solving paradigm

Next: recursive-function DESIGN

value of
5*4*3*2*1

value of 5 value of
4*2*3*1*

is
fac(5)

Base case:
fac(0) should return 1

fac(x)

fac(4)

factorial of x

def fac(x):
""" factorial! Recursively!
"""
if x == 0:

return 1

else:
return x*fac(x-1)

value of
1+1+1+1+1 is

plusone(5)

Base case:
plusone(0) should return ___

plusone(n)
adds 1 a total of n times

value of 1 value of
1+1+1+1+

value of
1+1+1+1+1

value of 1 value of
1+1+1+1+

is
plusone(5)

Base case:
plusone(0) should return ___

plusone(n)
adds 1 a total of n times

plusone(4)

def plusone(n):
"""
returns n by adding 1's!
"""
if n == 0:

return

else:
return

def plusone(n):
"""
returns n by adding 1's!
"""
if n == 0:

return 0

else:
return 1 + plusone(n-1)

value of
2*2*2*2*2

value of 2 value of
2*2*2*2*

is
pow(2,5)

Base case:
pow(2,0) should return __ ?

pow(b,p)
b to the p'th power

value of
2*2*2*2*2

value of 2 value of
2*2*2*2*

is
pow(2,5)

Base case:
pow(2,0) should return __ ?

pow(b,p)
b to the p'th power

def pow(b,p):
"""
b**p, defined recursively!
"""
if p == 0:

return

else:
return

Extra! Can we also handle negative powers... ?

def pow(b,p):
"""
b**p, defined recursively!
"""
if p == 0:

return 1.0
elif p < 0:

else:
return b*pow(b,p-1)

Extra! Can we also handle negative powers... ?

def pow(b,p):
"""
b**p, defined recursively!
"""
if p == 0:

return 1.0
elif p < 0 :

return 1.0/pow(b,-p)

else:
return b*pow(b,p-1)

Extra! Can we also handle negative powers... ?

Recursion's advantage: It handles arbitrary structural
depth – all at once + on its own!

As a hat, I'm recursive, too!
https://www.youtube.com/watch?v=8PhiSSnaUKk @ 1:11
https://www.youtube.com/watch?v=ybX9nVLtNi4 @ 0:08

Recursion's advantage: It handles arbitrary structural
depth – all at once + on its own!

As a hat, I'm recursive, too!

Design patterns… Recursion's a design - not a formula,
BUT, these pieces are common:

s = 'aliiien'

'a' 'liiien'

in terms of s, what are these pieces? (index! slice!)

Design patterns… Recursion's a design - not a formula,
BUT, these pieces are common:

s = 'aliiien'

'a' 'liiien'

s[0] s[1:]
handle the first recurse the rest

Design patterns… Recursion's a design - not a formula,
BUT, these pieces are common:

handle the first recurse the rest

L = [3,1,4,1,5,9]

L[0] L[1:]

3 [1,4,1,5,9]

Design patterns…

• Handle base cases, with if …

• Do one piece of work: L[0] or s[0]

• Recurse with the rest: L[1:] or s[1:]

• Combine! Make sure all types match...

Recursion's a design - not a formula,
BUT, these pieces are common:

of i's in
'xlii'

of i's in
'x'

of i's in
'lii'+

is
numis('xlii')

Base case:
numis('') should return ___ ?

numis(s)
of i's in s

def numis(s):
""" # of i's in s
"""
if s == '':

return

elif s[0] == 'i':
return

else:
return

def numis(s):
""" # of i's in s
"""
if s == '':

return 0

elif s[0] == 'i':
return 1+numis(s[1:])

else:
return numis(s[1:])

What's really being added here?

of chars in
'yaycs'

of chars in
'y'

of chars in
'aycs'+

is
len('yaycs')

Base case:
len('') should return ___ ?

len(s)
length of s

def len(s):
"""
returns the length of s
"""
if s == '':

return

else:
return

Extra! Can we also handle LISTS... ?

def len(s):
"""
returns the length of s
"""
if s == '' or s == []:

return 0

else:
return 1 + len(s[1:])

... the length of the rest of sone, plus...

romanesco broccoli

A brief word from our sponsor, Mother Nature...
Like broccoli, recursion

is "Good for You"™

Yes... and no.Are these rules for real?

Dragon's-blood Tree

But, do only plants get
to be recursive?

There still has to be a base case…

or else!

Leap before you look!

Try these four...

Python is… in

>>> 'i' in 'team'
False

>>> 'cs' in 'physics'
True

>>> 42 in [41,42,43]
True

>>> 42 in [[42], '42']
False

I guess Python's
the in thing

>>> 'i' in 'alien'
True

>>> 3*'i' in 'alien'
False

of vowels in
'eerie'

of vowels
in 'e'

of vowels in
'erie'+

is
vwl('eerie')

Base case:
vwl('') should return ___ ?

vwl(s)
of vowels in s

def vwl(s):
""" # of vowels in s
"""
if s == '':

return

elif s[0] in 'aeiou':
return

else:
return

keep vowels in
'pluto'

keep vowels
in 'p'

keep vowels in
'luto'+

is
keepvwl('pluto')

Base case:
keepvwl('') should return ___ ?

keepvwl(s)
keeps only the vowels from s

def keepvwl(s):
""" returns ONLY the vowels in s!
"""
if s == '':

return

elif s[0] in 'aeiou':
return

else:
return

max of
[7,5,9,2]

either 7 or the max of
[5,9,2]

is
max([7,5,9,2])

Base case:
if len(L) == 1, what should max(L) return ?

max(L)
L's biggest element

def max(L):
""" returns the max of L!
"""
if len(L) == 1:

return

M = max(L[1:])

if L[0] > M:
return

else:
return

The max of
the REST of L

zeroest of
[-7,5,9,2]

either -7 or the zeroest
of [5,9,2]

is
zeroest([-7,5,9,2])

Base case:
if len(L) == 1, what should zeroest(L) return ?

zeroest(L)
L's closest-to-zero element

def zeroest(L):
""" returns L's element nearest 0
"""
if len(L) == 1:

return

Z = zeroest(L[1:])

if abs(L[0]) < abs(Z):
return

else:
return

The zeroest of
the REST of L

def vwl(s):
""" # of vowels in s
"""
if s == '':

return 0

elif s[0] in 'aeiou':
return 1+vwl(s[1:])

else:
return vwl(s[1:])

What's really being added here?

What seven-letter s
maximizes vwl(s)?

def keepvwl(s):
""" returns ONLY the vowels in s!
"""
if s == '':

return ''

elif s[0] in 'aeiou':
return s[0]+keepvwl(s[1:])

else:
return keepvwl(s[1:])

What's really being added here?

def max(L):
""" returns the max of L!
"""
if len(L) == 1:

return L[0]

M = max(L[1:])

if L[0] > M:
return L[0]

else:
return M

The max of
the REST of L

def zeroest(L):
""" returns L's element nearest 0
"""
if len(L) == 1:

return L[0]

Z = zeroest(L[1:])

if abs(L[0]) < abs(Z):
return L[0]

else:
return Z

The zeroest of
the REST of L

The key to understanding recursion
is, first, to understand recursion.

- former CS 5 student

tutors @ LAC + 4C's Th/F/Sa/Su/Mon.

It's the eeriest!

