## C.R.J.!

## numerousstatements

Google Translate Cover Of 'Call Me Maybe' - YouTube
YouTube - Capital North East

## $655 \ldots$ Today?

s CS gic Last four examples $==$ question h PRINTING VERSIONS w/ BRANCHE

HMC's legal counsel requires us to include these footnotes...
$\mathcal{F}^{\text {On Wher }}$ Warner Brothers' insistence, we affirm that this ' C ' does not stand for 'Chamber' and ' S ' does not stand for 'Secrets.'

* Caution: do not take this statement too literally or it is possible find yourself in twice as many CS 5 lectures as you need!


## Recursion example: numis(s)



## Recursion example: numis(s)

## total \# of i's in 'alien'

## is

\# of i's in

$+$
\# of i's in
'lien'

## Recursion example: numis(s)

## total \# of i's in <br> 'aliiien'

## is

\# of i's in
'a'
\# of i's in
liiien

## Recursion example: numis(s)

total \# of i's in 'aliiien'
Analysis...
is
\# of i's in
'a'
\# of i's in
'Iiiien'
... via self-similarity!

## 65 5 ... Today?



## As close as CS gets to magic

Tutoring hours: LOTS!

Hw \#1 due this Monday, 9/17, at 11:59 pm

This is the last CS 5 lecture you'll ever "need"!*
HMC's legal counsel requires us to include these footnotes...
${ }^{*}$ On Warner Brothers' insistence, we affirm that this 'C' does not stand for 'Chamber' and 'S' does not stand for 'Secrets.'

* Caution: do not take this statement too literally or it is possible find yourself in twice as many CS 5 lectures as you need!

if you attended lab and submit pr1+pr2: you get full credit for hw1pr1 and hw1pr2
else:
you should complete the two lab problems, pr1 + pr2

Is this Python??
either way: submit pr1 + pr2
complete and submit hw1pr3


Extra Credit: Pig Latin / CodingBat

DNA transcription

## This week's reading on data...



## Computation's Dual Identity

Computation


But what does the stuff on this side look like?

variables ~ boxes

## Computation's Dual Identity

accessed through functions...


## C.R.J.!

## numerousstatements

Google Translate Cover Of 'Call Me Maybe' - YouTube
YouTube - Capital North East

## Functioning across disciplines

## procedure <br> def $\mathbf{g ( x ) : ~}$ <br> return $\mathbf{x * * 1 0 0 ~}$

CS's googolizer
defined by what it does

+ what follows behaviorally


## structure

$$
g(x)=x^{100}
$$

# Math's googolizer 

defined by what it is<br>+ what follows logically

## Giving names to data helps f'ns

def flipside(s):

```
""" flipside(s): swaps s's sides!
    input s: a string
```

\| \| \|
$x=1 e n(s) / / 2$
return $s[x:]+s[: x]$

This idea is the key to your happiness!

## Giving names to data helps f'ns

follow the data...


## Use variables!

def flipside(s):
$\mathbf{x}=$ len(s)//2
return $s[x:]+s[: x]$
these two functions do the same thing...

OK: we humans work better with named variables.

But -- why would even computers "prefer" the top version, too?
def flipside(s): return $s[\operatorname{len}(s) / / 2:]+s[: \operatorname{len}(s) / / 2]$

Aargh!

## Test!

```
def flipside(s):
    """ flipside(s): swaps s's sides!
    input s: a string
    | | |
    x = len(s)/2
    return s[x:] + s[:x]
#
# Tests!
#
assert flipside('homework') == 'workhome'
assert flipside('poptart') == 'tartpop'
print(" petscar ~", flipside('carpets'))
```

(2) function tests

```
print(" cs5! ~", flipside('5!cs'))
We provide tests (for now...)
```

(1) function definition

## Redefining variables...

def convertFromSeconds(s): \# total seconds
""" convertFromSeconds(s): Converts an
integer \# of seconds into a list of
[days, hours, minutes, seconds] input s: an int
"" "
$\begin{cases}\text { days }=s / /(24 * 60 * 60) & \# \text { total days } \\ s=s \%(24 * 60 * 60) & \text { \# remainder } s \\ \text { hours }=s / /(60 * 60) & \text { \# total hours } \\ s=s \%(60 * 60) & \# \text { remainder } s \\ \text { minutes }=s / / 60 & \text { \# total minutes } \\ s=s \% 60 & \# \text { remainder } s\end{cases}$
return [days, hours, minutes, s]

## Naming things!

def convertFromSeconds(s):

## signature line

""" convertFromSeconds(s): Converts an
intes docstring nto a list of
Idays docstring seconds] input s: an int
\| \| \|
 return statement

## return vs. print

def $\mathrm{dbl}(\mathrm{x}):$<br>""" dbls x? """<br>return 2*x<br>ans $=\mathrm{dbl}(20)$

def $d b l P R(x):$ """ dbls x?
print ( 2 * x )
ans $=d b l P R(20)$

## What's the difference ?!

## return $>$ print

def $\mathrm{dbl}(\mathrm{x}):$
""" dbls x? """
return 2*x
ans $=\underset{\text { this s s a value for further use! }}{\mathrm{dbl}(20)}+2$
def $d b l P R(x):$ """ dbls x?
print ( 2 * x )
ans $=d b l P R(20)+2$
this turns lightbulbs on!
print changes pixels on the screen...
return yields the function call's value

## return > print

how software passes information from function to function...
changes the pixels (little lightbulbs) on your screen

## return > print

how software passes information from function to function...
changes the pixels (little lightbulbs)

def $g(x)$ :
result $=4 * x+2$
return result

## What is $f(2)$ here?

```
\downarrow
def f(x):
    if x == 0:
    return 12
    else:
        return f(x-1) + 10*x
```

def $g(x)$ :
result $=4 * x+2$
return result

## How functions work...






## How functions work...

## "the stack"

call: demo (15) stack frame
local variables:

$$
x=15
$$

$$
y=5
$$

$$
z=22
$$

they stack.


def $g(x)$ :
result $=4 * x+2$
return result

## How functions work...

afterwards, the stack is "the stack" empty..., but ready if another function is called def $g(x)$ :
result $=4 * x+2$
return result
they stack.
what's $\mathbf{f}(2) ?$

```
```

def f(x):

```
def f(x):
    if x == 0:
    if x == 0:
        return 12
        return 12
    else:
    else:
    return f(x-1) + 10*x
```

    return f(x-1) + 10*x
    ```

\section*{How functions work...}
def f(x):
    if x == 0:
        return 12
    else:
    return f(x-1) + 10*x
```


## How functions work...

## "the stack"

```
call: f(2) stack frame
local variables:
x = 2
need f(1)
```

```
def f(x):
```

def f(x):
if x == 0:
if x == 0:
return 12
return 12
else:
else:
return f(x-1) + 10*x

```
    return f(x-1) + 10*x
```


## How functions work...

"the stack"

```
call: f(2) stack frame
local variables:
x = 2
need f(1)
```

call: $f(1)$ stack frame
local variables:

$$
x=1
$$

$$
\text { need } f(0)
$$

```
\
def f(x):
    if x == 0:
        return 12
    else:
        return f(x-1) + 10*x
```


## How functions work...

"the stack"
call: f(2) stack frame
call: f(2) stack frame
local variables:
local variables:
x = 2
x = 2
need f(1)
need f(1)
call: $f(1) \quad$ stack frame
local variables:
$\mathbf{x}=1$
need f(0)
call: $f(0) \quad$ stack frame
local variables:
$\mathbf{x}=0$
returns 12

```
\
```

def f(x):

```
def f(x):
    if x == 0:
    if x == 0:
        return 12
        return 12
    else:
    else:
        return f(x-1) + 10*x
```

```
        return f(x-1) + 10*x
```

```

\section*{How functions work...}

```

def f(x):

```
def f(x):
    if x == 0:
    if x == 0:
        return 12
        return 12
    else:
    else:
        return f(x-1) + 10*x
```

        return f(x-1) + 10*x
    ```

\section*{How functions work...}
"the stack"
```

call: f(2) stack frame
local variables:
x = 2
need f(1)

```
    call: \(\mathrm{f}(1)\)
        stack frame
    local variables:
        \(\mathbf{x}=1\)
        \(f(0)=12\)
        result =

How do we compute the result?
```

def f(x):

```
def f(x):
    if x == 0:
    if x == 0:
        return 12
        return 12
    else:
    else:
        return f(x-1) + 10*x
```

        return f(x-1) + 10*x
    ```

\section*{How functions work...}
"the stack"
```

call: f(2) stack frame
local variables:
x = 2
need f(1)

```
    call: \(\mathrm{f}(1)\)
        stack frame
    local variables:
        \(\mathbf{x}=1\)
        \(f(0)=12\)
        result \(=22\)

Where does that result go?
```

def f(x):

```
def f(x):
    if x == 0:
    if x == 0:
        return 12
        return 12
    else:
    else:
        return f(x-1) + 10*x
```

        return f(x-1) + 10*x
    ```

\section*{How functions work...}
"the stack"
\begin{tabular}{ll}
\hline call: \(f(2)\) & stack frame \\
local variables: & \begin{tabular}{l}
\(x=2\) \\
need \(f(1)\)
\end{tabular} \\
call: \(f(1)\) \\
local variables: & \begin{tabular}{l}
\(x=1\) \\
\(f(0)=1\) \\
result \(=22\)
\end{tabular} \\
\hline
\end{tabular}
```

def f(x):
if x == 0:
return 12
else:
return f(x-1) + 10*x

```

\section*{How functions work...}
"the stack"
```

call: f(2) stack frame
local variables:
x = 2
f(1) = 22
result =

```

What's this return value?
```

def f(x):
if x == 0:
return 12
else:
return f(x-1) + 10*x

```

\section*{How functions work...}
"the stack"
\[
\begin{array}{ll}
\text { call: } f(2) & \quad \text { stack frame } \\
\text { local variables: } & x=2 \\
& f(1)=22 \\
& \text { result }=42
\end{array}
\]
which then gets returned...


\section*{How functions work...}



\section*{functions stack.}


functions stack.

\section*{sequential \\ iteration}

\section*{self-similar \\ recursion}
problem-solving paradigms

\section*{Thinking sequentially}

\section*{factorial}
\({ }_{\text {math }} 5!=120\)
cs \(\mathrm{fac}(5)=5 * 4 * 3 * 2 * 1\)
\(\operatorname{fac}(N)=N *(N-1) * \ldots * 3 * 2 * 1\)

\section*{Thinking sequentially}
factorial
math \(5!=120\)
cs \(\mathrm{fac}(5)=5 * 4 * 3 * 2 * 1\)
\(\operatorname{fac}(N)=N *(N-1) * \ldots * 3 * 2 * 1\)

\section*{Thinking recursively}

\section*{factorial}
\({ }_{\text {math }} 5!=120\)
fac(5) \(=5 * 4 * 3 * 2 * 1\)
cs \(\mathrm{fac}(5)=\)
can we express fac \(w /\) a smaller version of itself?
\[
\operatorname{fac}(N)=N *(N-1) * \ldots * 3 * 2 * 1
\]
fac (N) \(=\)

\section*{Thinkin}

Recursion
ly
self-similarity
\(\operatorname{Iac}(5)=5 * 4 * 3 * 2 * 1\)
fac (5) \(=5 *\) fac (4)
can we express
fac \(w /\) a smaller
version of itself?
fac (N) \(=N^{*}(N-1) * \ldots * 3 * 2 * 1\)
\(\operatorname{fac}(N)=N * \operatorname{fac}(N-1)\)
We're done!?

\section*{Warning: this is legal!}

\section*{def fac(N):} return \(N\) * fac (N-1)

I wonder how this code will STACK up!?
def facBad (N):
return \(N\) * facBad (N-1)

\section*{stack overflow}

\section*{stack overflow}
\begin{tabular}{|c|c|c|}
\hline \(\geqq\) stack overflow & NEW & Search... \\
\hline Home & \multicolumn{2}{|l|}{unionAll resulting in StackOverflow} \\
\hline PUBLIC & & \\
\hline 6. Stack Overflow & & I've made some prog stream that is downlo \\
\hline Tags & 1 & \\
\hline Users & & \begin{tabular}{l}
import requests \\
import numpy as np \\
import pandas as pd
\end{tabular} \\
\hline Jobs & & import sys \\
\hline
\end{tabular}


\section*{Recursion}
the dizzying dangers of having no base case!

This "works" ~ but doesn't work!
def fac(N): return fac (N)


YOU GOTTA KNOW WHEN TO QUIT



\section*{legal != recommended}

\section*{def facBad(N):} return \(N\) * facBad ( \(\mathbf{N}-1\) )
calls to facBad will "never" stop: there's no BASE CASE

\section*{Make sure you have a base case a.k.a. "escape hatch"}

\section*{Thinking recursively...}

\section*{def fac(N):}

\section*{if \(\mathrm{N}=\mathbf{0}\) : \\ return 1 \\ }
else:


\section*{Thinking recursively...}

\section*{def fac(N):}

\section*{if \(\mathrm{N}=\mathbf{0}\) : \\ return 1 \\ }
else:


Recursive case
(too short?)

How can this multiply N by something
that hasn't happened yet!?!!

\section*{Acting recursively}
def fac(N):
if \(\mathrm{N}<=1\) : return 1
else:
return \(N * \operatorname{fac}(N-1)\left\{\begin{array}{l}\text { rest }=\text { fac }(N-1) \\ \text { return } N * \text { rest }\end{array}\right.\)

Conceptual
def fac(N):
if \(\mathrm{N}<=1\) :
return 1

Behind the curtain:
how recursion works...
\(\overbrace{5 * \operatorname{fac}(4)}^{\mathrm{fac}(5)}\)

\(\overbrace{2 * \operatorname{fac}(1)}\)
1.0


\section*{def fac(N):}
if \(N<=1:\) return 1.0
else:
return \(N\) * fac (N-1)

Behind the curtain: how recursion works...


3 * fac(2)

2 * fac(1)
1.0
```

def fac(N):
if N <= 1:
return 1.0
else:
return N * fac(N-1)

```
    stack frame with \(\mathrm{N}=5\)
    stack frame with \(\mathrm{N}=4\)
    stack frame with \(\mathrm{N}=3\)
    stack frame with \(\mathrm{N}=2\)
    stack frame with \(\mathrm{N}=1\)

Behind the curtain: how recursion works...


4 * fac(3)

3 * fac(2)

2 * 1.0
```

def fac(N):
if N <= 1:
return 1.0
else:
return N * fac(N-1)

```
    stack frame with \(\mathrm{N}=5\)
    stack frame with \(\mathrm{N}=4\)
    stack frame with \(\mathrm{N}=3\)
    stack frame with \(\mathrm{N}=2\)

> Behind the curtain: how recursion works...
\(\overbrace{5 * \operatorname{fac}(4)}^{\mathrm{fac}(5)}\)

4 * fac (3)

3 * 2.0
```

def fac(N):
if N<= 1:
return 1.0
else:
return N * fac(N-1)

```
    stack frame with \(\mathrm{N}=5\)
    stack frame with \(\mathrm{N}=4\)
    stack frame with \(\mathrm{N}=3\)

> Behind the curtain: how recursion works...


4 * 6.0
```

def fac(N):
if N <= 1:
return 1.0
else:
return N * fac(N-1)

```
    stack frame with \(\mathrm{N}=5\)
    stack frame with \(\mathrm{N}=4\)

Behind the curtain:
how recursion works...

```

def fac(N):
if N <= 1:
return 1.0
else:
return N * fac(N-1)

```
    stack frame with \(\mathrm{N}=5\)

Behind the curtain:
how recursion works...
fac (5)
120.0 complete!
```

def fac(N):
if N <= 1:
return 1.0
else:
return N * fac(N-1)

```
But is recursion for real?!

\section*{Recursion's conceptual challenge?}

You need to see BOTH the self-similar pieces AND the whole thing simultaneously!

\section*{Recursion}

\section*{Base Case}

Self-similar design
problem-solving paradigm

\section*{Recursion}

\section*{Base Case}

Self-similar design

Next: recursive-function \(\underline{\text { DESIGN }} \Rightarrow\)

\title{
fac (x)
}

\section*{fac(5)}

\section*{value of 5 *}

\section*{> \begin{tabular}{c|c}  value of \\ \(5 * 4 * 3 * 2 * 1\) & is \end{tabular} \\ \\ value of \\ \\ value of \\ \\ 5* 4 * 3 * 2 * 1 \\ \\ 5* 4 * 3 * 2 * 1 \\ \\ is} \\ \\ is}

Base case:
fac(0) should return 1

\section*{def fac(x):}
""" factorial! Recursively!
\| \| \|
if \(\mathrm{x}=\mathbf{0}\) : return 1
else:
return \(\mathbf{x * f a c ( x - 1 ) ~}\)

\title{
plusone(n)
}
plusone(5)

> \begin{tabular}{c|c}  value of \\ \(1+1+1+1+1\) \end{tabular}\(\quad\) is

\section*{value of 1 +}

Base case:
plusone(0) should return

\title{
plusone(n)
}
adds 1 a total of \(n\) times
plusone(5)

> \begin{tabular}{c|c}  value of \\ \(1+1+1+1+1\) \end{tabular}\(\quad\) is

\section*{value of \(1 \quad+\)}

\title{
value of \\ \(1+1+1+1\) \\ plusone(4)
}

Base case:
plusone(0) should return
value of
\(1+1+1+1+1\) is

\section*{def plusone(n):}
""
returns n by adding 1's!
\| \| \|
if \(\mathrm{n}=0\) : return
else:
return
plusone(5)
value of
\(1+1+1+1+1\) is

\section*{def plusone(n):}
\| \| \|
returns \(n\) by adding 1's!
\| \| \|
if \(\mathrm{n}=0\) : return 0
else:
return \(1+\) plusone \((n-1)\)

\title{
pow(b, p)
}
pow \((2,5)\)
\[
\begin{gathered}
\text { value of } \\
2 * 2 * 2 * 2 * 2
\end{gathered}
\]
is

\section*{value of 2 *}

\section*{Base case: \\ pow \((2,0)\) should return \\ \(\qquad\) ?}

\title{
pow(b,p)
}
pow \((2,5)\)

\section*{value of \\ 2*2*2*2*2}
is

\section*{value of \(2 *\)}

\section*{value of 2*2*2*2}

Base case: pow \((2,0)\) should return __?

\section*{def pow(b,p):}
\| \| \|
\begin{tabular}{|c|c|}
\hline & \(\operatorname{pow}(\mathrm{b}, \mathrm{p})\) \\
\hline pow( 2,5 ) & \multirow[b]{2}{*}{is} \\
\hline value of
\[
2 * 2 * 2 * 2 * 2
\] & \\
\hline value of 2 * & value of
\[
2 * 2 * 2 * 2
\] \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { b**p, defined recursively! } \\
& \text { """ } \\
& \text { if } \mathrm{p}=\mathrm{O}: \\
& \text { return }
\end{aligned}
\]

\section*{else:}

\author{
return
}

\section*{def pow(b,p):}
\| \| \|
\begin{tabular}{|cc|}
\(\substack{\text { pow }(2,5) \\
\text { value of } \\
2 * 2 * 2 * 2 * 2}\) & is \\
value of \(2 *\) & \begin{tabular}{c}
\(\operatorname{pow}(b, p)\) \\
\(2 * 2 * 2 * 2\)
\end{tabular} \\
\hline
\end{tabular}

\section*{b**p, defined recursively! \\ \| \| \| \\ if \(p==0\) : return 1.0 \\ elif p < 0:}
else:
return b*pow (b,p-1)

\section*{def pow \((\mathrm{b}, \mathrm{p})\) :}
""
\begin{tabular}{|cc|}
\begin{tabular}{c} 
pow \((2,5)\) \\
value of \\
\(2 * 2 * 2 * 2 * 2\)
\end{tabular} & \begin{tabular}{c} 
pow \((b, p)\) \\
is \\
value of \(2 *\)
\end{tabular} \\
\hline & \begin{tabular}{c} 
value of \\
\(2 * 2 * 2 * 2\)
\end{tabular} \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { b**p, defined recursively! } \\
& \text { """ } \\
& \text { if } p==0 \text { : }
\end{aligned}
\]
\[
\text { return } 1.0
\]
\[
\text { elif } \quad \mathrm{p}<0 \quad \text { : }
\]
\[
\text { return } 1.0 / \text { pow }(\mathrm{b},-\mathrm{p})
\]
else:
return b*pow (b,p-1)

\section*{Recursion's advantage:}

It handles arbitrary structural depth - all at once + on its own!


YOUR PARTY ENTERS THE TAVERN.
I GATHER EVERYONE AROUND A TABLE. I HAVE THE ELVES START WHITTLING DICE AND GET OUT SOME PARCHMENT FOR CHARACTER SHEETS.

HEY, NO RECURSING.



\section*{Pomona Sends Survey To Students To Find Out Why They Don't Take Surveys \\ offer students a chance to express \\ The survey also addresses ques-} at Pomona College prompted the new survey this week, which will assess students' previous survey experiences and their survey preferences in hopes of explainingand reversing-the decline.
"We know Pomona students have strong opinions about their
education and their campus," education and their campus, Students Miriam Feldblum. "But what we find is that when we
those opinions via a general survey,
we don't get as many responses as we don't get as many responses as
we expect. We want to know why, and that's why we're sending out this survey.
Students will be asked to selfidentify at the start of the survey as a 'frequent responder,' 'occasional responder' or 'forgot the password
to my Pomona webmail account to my Pomona webmail account
three months ago.' According to three months ago. According to
Feldblum, these categories will help the administration create new strategies to engage more of the student population in responding to surveys.
tions of methodology, incentive and
access. It asks students to rank their access. It asks students to rank their
preferences of survey provider, such as SurveyMonkey, Qualtrics and Google Forms, and to name their ideal survey prizes. It also asks students whether they would be more inclined to take school surveys via email, an iPhone app or voting mawith 'I Surveyed!' stickers.
Erika Bennett PO' 17 said she found some of the questions confusing.
sessment scale," she said. "I had to rank 'Scale of one to five,' 'Strongly 'Sad Face to Happy Face' from least to most intuitive. But I'm not sure I did it correctly."

Bennett added that she did appreciate the chance to critique previous surveys.
"Just last month I took a survey with no progress bar at the bottom of each page," she said. "I felt lost and confused. I'mg glad there's a real See SURVEY page 2

\section*{Recursion's advantage:}

It handles arbitrary structural depth - all at once + on its own!


\section*{Design patterns...} BUT, these pieces are common:

in terms of s, what are these pieces? (index! slice!)

\section*{Design patterns...}

\section*{s = 'aliiien' \\ }
s[0] s[1:]
recurse the rest

Design patterns...
\[
\begin{gathered}
\mathrm{L}=\left[\begin{array}{c}
3 \\
\mathrm{~L}, \underbrace{1,4,5]}_{[1,4,1,5,9]} \\
\mathrm{L}[1:]
\end{array}\right.
\end{gathered}
\]
handle the first
recurse the rest

\section*{Design patterns...} BUT, these pieces are common:
- Do one piece of work: L[0] or s[0]
- Recurse with the rest: L [1:] or s [1:]
- Combine! Make sure all types match...
- Handle base cases, with if ...
numis(s)
\[
\begin{gathered}
\text { numis('xlii') } \\
\text { \# of i's in } \\
\text { 'xlii' }
\end{gathered}
\]
is

\section*{\# of i's in \\ 'x' \\ }

\section*{\# of i's in 'lii'}

Base case:
numis(") should return \(\qquad\) ?

\section*{def numis(s):}
""" \# of i's in s
if \(s={ }^{\prime}\) ' \(:\)
return
elif
return

\section*{else:}
return

\section*{def numis(s):}
""" \# of i's in s

\section*{if \(s==1 ':\) \\ return 0}


\section*{elif s[0] == 'i': return 1+numis(s[1:])}

\section*{else:}

\section*{return numis(s[1:])}

What's really being added here?
len('yaycs')

\section*{len(s)}
length of s
is

\section*{\# of chars in 'y' \\ \(+\)}

Base case:
len(') should return \(\qquad\) ?

\section*{def len(s): \\ \| \| \|}
\begin{tabular}{c}
\begin{tabular}{c} 
len('yaycs') \\
\begin{tabular}{c} 
\# of chars in \\
\#yaycs'
\end{tabular} \\
IS of chars in \\
' \(y^{\prime}\)
\end{tabular}\(+\quad\)\begin{tabular}{c} 
\# of chars in \\
'aycs'
\end{tabular} \\
\hline
\end{tabular}
returns the length of \(s\)
\| \| \|
if s == '':
return

\section*{else:}

\section*{return}

\section*{def len(s):}
\| IV IV

returns the length of \(s\)
\| \| \|

\section*{if s == '' or s == []: return 0}

\section*{else:}
return \(1+\operatorname{len}(s[1:])\)
one, plus...
... the length of the rest of \(s\)

A brief word from our sponsor, Mother Nature...
Like broccoli, recursion

romanesco broccoli




\section*{There still has to be a base case...}

or else!


\section*{Leap before you look!}

\section*{Try these four...}

\section*{Python is... in}
>>> 'i' in 'team'
False
>>> 'cs' in 'physics'
True
>>> 'i' in 'alien'
True
>>> 3*'i' in 'alien'
False
>>> 42 in \([41,42,43]\)
True

\section*{vwl('eerie') \# of vowels in 'eerie'}
\# of vowels in 'e'

\section*{vwl(s)}
\# of vowels in s
is
\# of vowels in 'erie'

Base case:
vwl(') should return \(\qquad\) ?

\section*{def vwl(s):}
""" \# of vowels in s
\| \| \|
\(1 \pm\) return

\section*{elif \\ return}
else:
return

\section*{keepvwl(s)}
keepvwl('pluto')
is
keep vowels in 'p'
keep vowels in 'luto'

Base case:
keepvwl(') should return \(\qquad\) ?

\section*{def keepvwl(s):}
""" returns ONLY the vowels in \(s\) ! \| \| \|
if \(\boldsymbol{s}==1\) ': return
elif
return
else:
return

\section*{\(\max (\mathrm{L})\)}
\(\max ([7,5,9,2])\)

\section*{\[
\begin{gathered}
\max \text { of } \\
{[7,5,9,2]}
\end{gathered}
\] \\ max of \\ \([7,5,9,2]\)}

\section*{either 7}

L's biggest element
is

\section*{or the max of \\ [5,9,2]}

Base case:
if \(\operatorname{len}(\mathrm{L})==1\), what should \(\max (\mathrm{L})\) return ?

\section*{def max (L):}
""" returns the max of L !
"" "f \(\operatorname{len}(\mathrm{L})==1:\)
return \(\mathbf{M}=\quad \quad \leftarrow \begin{gathered}\text { The max of } \\ \text { the REST of } L\end{gathered}\)
if :
return
else:
return

\title{
zeroest(L)
}

\section*{zeroest([-7,5, 9, 2]) \\ \[
\begin{gathered}
\text { zeroest of } \\
{[-7,5,9,2]}
\end{gathered}
\]}
either -7
is

Base case:
if len \((\mathrm{L})=1\), what should zeroest \((\mathrm{L})\) return ?

\section*{def zeroest(L):}
""" returns L's element nearest 0
"" "
if len(L) == 1:
return
\(\mathrm{Z}=\)
The zeroest of
the REST of L
if :
return
else:
return

\section*{def vwl(s):}
""" \# of vowels in s
"" "
if \(s==1 ':\)
return 0
elif \(s[0]\) in 'aeiou':
return \(1+v w l(s[1:])\)
else:
return vwl(s[1:])

What's really being added here?

\section*{def keepvwl(s):}
""" returns ONLY the vowels in s!
"""
if \(s==1 ':\) return ''
elif \(s[0]\) in 'aeiou':
return \(s[0]+\) keepvwl (s[1:])
else:
return keepvwl (s [1:])

What's really being added here?

\section*{def max (L):}
""" returns the max of L!
\| \| \|
if len(L) == 1: return L[0]
\(M=\max (L[1:])\)
The max of the REST of L
if \(L[0]>M:\)
return L[0]
else:
return M

\section*{def zeroest(L):}
""" returns L's element nearest 0 """
if len (L) == 1: return \(\mathrm{L}[0]\)

Z \(=\) zeroest(L[1:]) \(\begin{aligned} & \text { The zeroest of } \\ & \text { the REST of } L\end{aligned}\)
if abs(L[O]) < abs(Z): return L[0]
else:

\author{
return Z
}

\section*{The key to understanding recursion is, first, to understand recursion.}

\section*{Good luck with Homework \#1}
tutors @ LAC + 4C's Th/F/Sa/Su/Mon.```

