
Cyriak: conceptually disruptive recursion…

Baaa CS 5
alien on
strike!

More
Eyes!

CS 5 green mascot
representing today's

terrestrial theme

hw2 due Mon. 9/23

Lots of tutoring…

Fractals and Turtles

How random!

CS 5 Today

Cyriak: conceptually disruptive recursion…

Baaa CS 5
alien on
strike!

More
Eyes!

CS 5 green mascot
representing today's

terrestrial theme

hw2 due Mon. 9/23

Lots of tutoring…

Fractals and Turtles

How random!

CS 5 Today

dot([3,2,4],[4,7,4])

3*4 + dot([2,4],[7,4])

2*7 + dot([4],[4])

4*4 dot([],[])

Sequential design...

dot([3,2,4],[4,7,4])

dot([3,2,4],[4,7,4])

3*4 + dot([2,4],[7,4])

Recursive design...

dot([3,2,4],[4,7,4])

dot …
def dot(L, K):

if len(L) == 0 or len(K) == 0:
return 0.0

if len(L) != len(K):
return 0.0

else:
return L[0]*K[0] + dot(L[1:],K[1:])

dot([3,2,4],[4,7,4])

3*4 + dot([2,4],[7,4])

2*7 + dot([4],[4])

16.0

30.0

42.0

4*4 + dot([],[])

0.0

L = [3,2,4] and K = [4,7,4]

L = [2,4] and K = [7,4]

L = [4] and K = [4]

L = [] and K = []

slow and steady!

pythontutor.com

Seeing the "stack" ...

There are four different values of L
and four different values of K – all
alive, simultaneously, in the stack

Recursion's idea: You handle the FIRST
Recursion handles the REST

Recursion's idea:

def dot(L, K):

return L[0]*K[0] + dot(L[1:],K[1:])

handle the
REST of L

handle the
REST of K

recurse w/the rest

handle the
FIRST of L

handle the
FIRST of K

handle the first

combine

first rest

You handle the FIRST
Recursion handles the REST

Recursion's idea:

def dot(L, K):
if len(L) == 0 or len(K) == 0:

return 0.0

if len(L) != len(K):
return 0.0

else:
return L[0]*K[0] + dot(L[1:],K[1:])

handle the
REST of L

handle the
REST of K

handle the
FIRST of L

handle the
FIRST of K

combine

first rest

Base Cases

You handle the FIRST
Recursion handles the REST

recurse w/the resthandle the first

Some random asides…
import random allows use of dir(random) and help(random)

from random import * all random functions are now available!

Some random asides…
import random

choice(L)

choice(['cmc','scripps','pitzer','pomona'])

chooses 1 element from the sequence L

allows use of dir(random) and help(random)

from random import * all random functions are now available!

choice('mudd') ... or 1 character from a string

Some random asides…
import random

choice(L)

choice(['cmc','scripps','pitzer','pomona'])

chooses 1 element from the sequence L

allows use of dir(random) and help(random)

How would you get a random
integer from 0 to 99 inclusive?

from random import * all random functions are now available!

choice('mudd')

uniform(low,hi) chooses a random float from low to hi

floats have 16 places of precision Aargh –
so close!

list(range(5)) [0,1,2,3,4]

... or 1 character from a string

list(range(1,5)) [1,2,3,4]

A "random" function…

print the guesses ?

return the number of guesses ?

from random import *

def guess(hidden):
""" tries to guess our "hidden" #
"""
compguess = choice(list(range(100)))

if compguess == hidden:
print('I got it!')

else:
guess(hidden)

slow down…

investigate expected # of guesses?!??

Remember, this is [0,1,…,98,99]

from random import *
import time

def guess(hidden):
""" guessing game """
compguess = choice(list(range(100)))

print('I choose', compguess)
time.sleep(0.05)

if compguess == hidden: # at last!
print('I got it!')
return 1

else:
return 1 + guess(hidden)

Recursive guess-counting

Random "Quiz"

choice(list(range(5))+[4,2,4])

uniform(-20.5, 0.5)

from random import *

What are the chances of this being > 0?

choice('1,2,3,4')

choice(['1,2,3,4'])

choice('[1,2,3,4]')

choice([1,2,3,2])

What's the most likely return value here?

Name(s):

What's the most likely return value here?

What's the most likely return value here?

Careful on these...

how likely is each?

choice(0,1,2,3,4)

choice([list(range(5))])

choice[list(range(5))]

Which two of these 3 are syntax errors?

Also, what does the third one – the one
syntactically correct – actually do?

Syntax corner…

[0,1,2,3,4]

2/4

1/1

3/8

4/7

3/7 3/9

What's the most
likely return value?

What's the most likely
return value here?

choice(list(range(7))) More likely even or odd? 0 is even!

choice(list(range(5))+[4,2,4,2])

uniform(-20.5, 0.5)

from random import *

What are the chances of this being > 0?

choice('1,2,3,4')

choice(['1,2,3,4'])

choice('[1,2,3,4]')

choice([1,2,3,2])

What's the most likely return value here?

What's the most likely return value here?

What's the most likely return value here?

choice(0,1,2,3,4)

choice([list(range(5))])

choice[list(range(5))]

[0,1,2,3,4]
What's the most

likely return value?

What's the most likely
return value here?

choice(list(range(7))) More likely even or odd? 0 is even!

Data is in black. Probabilities are in blue.

3/8

','

'1,2,3,4'

','

1/42

syntax error: needs list [...] or str '...'

correct: always returns [0,1,2,3,4]

syntax error: needs parens: choice(...)
1/1 chance

[0,1,2,3,4,4,2,4]
4

2/42

3/7

1/1

3/9

[0,1,2,3,4,5,6]
even 4/7

probabilities in blue...

Careful on these...

choice(list(range(5))+[4,2,4,2])

uniform(-20.5, 0.5)

from random import *

What are the chances of this being > 0?

choice('1,2,3,4')

choice(['1,2,3,4'])

choice('[1,2,3,4]')

choice([1,2,3,2])

What's the most likely return value here?

What's the most likely return value here?

What's the most likely return value here?

choice(0,1,2,3,4)

choice([list(range(5))])

choice[list(range(5))]

[0,1,2,3,4]
What's the most

likely return value?

What's the most likely
return value here?

choice(list(range(7))) More likely even or odd? 0 is even!

Data is in black. Probabilities are in blue.

3/8

','

'1,2,3,4'

','

1/42

syntax error: needs list [...] or str '...'

correct: always returns [0,1,2,3,4]

syntax error: needs parens: choice(...)
1/1 chance

[0,1,2,3,4,4,2,4]
4

2/42

3/7

1/1

3/9

[0,1,2,3,4,5,6]
even 4/7

probabilities in blue...

Careful on these...

The two Monte Carlos

Monte Carlo casino, Monaco

Insights via
random trials

Monte Carlo
methods, Math/CS

and their denizens…

Insights via
random trials

Monte Carlo casino, Monaco

Monte Carlo
methods, Math/CS

Stanislaw Ulam
(Los Alamos badge)

Bond, James Bond

The two Monte Carlos and their denizens…

Ulam, Stan Ulam

Monte Carlo in action

def countDoubles(N):
""" input: the # of dice rolls to make

output: the # of doubles seen """
if N == 0:

return 0 # zero rolls, zero doubles…
else:

d1 = choice([1,2,3,4,5,6])
d2 = choice(list(range(1,7)))

if d1 != d2:
return 0+countDoubles(N-1) # not doubles

else:
return 1+countDoubles(N-1) # DOUBLES! Add 1

How are these
the two dice?

where and how is the check for doubles being done?

N is the total number of rolls

How many doubles will you
get in N rolls of 2 dice?

Monte Carlo Let's Make a Deal…

Monte Carlo Let's Make a Deal…

'09-now

Monte Carlo Let's Make a Deal…

'63-'86

inspiring the Monty Hall paradox

Monty Hall

Let's make a deal: XKCD's take…

… what if you considered the goat the grand prize!?
inspiring the Monty Hall paradox

Monty

Monte Carlo Monty Hall
Suppose you always switch to the other door...
What are the chances that you will win the prize ?

Let's play (randomly) 300 times and see!

Monte Carlo Monty Hall

def MCMH(init, sors, N):
""" plays the "Let's make a deal" game N times

returns the number of times you win the *Spam!*
"""
if N == 0: return 0 # don't play, can't win
przDoor = choice([1,2,3]) # where the spam (prize) is…

if init == przDoor and sors == 'stay': result = 'Win!'
elif init == przDoor and sors == 'switch': result = 'lose'
elif init != przDoor and sors == 'switch': result = 'Win!'
else: result = 'lose'

print 'Time', N, 'you', result

if result == 'Win!': return 1 + MCMH(init, sors, N-1)
else: return 0 + MCMH(init, sors, N-1)

Your initial choice!

'switch' or 'stay'

number of times to play

A

B

C

D

E

F

G

H

0 1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

0 1 2 3 4 5 6 7 8 9

If you win some SPAM… ? or pmfp... ?

If you win some SPAM… ? or pmfp... ?

If you win some SPAM… ? or pmfp... ?

An example closer to home

......
25 26 27 28 502423220

An overworked 5C student (S) leaves H/S after their
"late-night" breakfast – or lunch. Each moment, they
randomly stumble toward class (W) or the dorm (E)

class Dorm
(E)(W)

start

Write a program to model and analyze! this scenario...

Once the student arrives at the dorm or classroom, the trip is complete.
The program should then print the total number of steps taken.

hw2pr2

rwpos(st,nsteps) rwsteps(st,low,hi)
take nsteps random
steps starting at st

take random steps starting at st
until you reach either low or hi

S

An example closer to home

......
25 26 27 28 502423220

An overworked 5C student (S) leaves H/S after their
"late-night" breakfast – or lunch. Each moment, they
randomly stumble toward class (W) or the dorm (E)

class Dorm
(E)(W)

start

Write a program to model and analyze! this scenario...

Once the student arrives at the dorm or classroom, the trip is complete.
The program should then print the total number of steps taken.

hw2pr2

rwpos(st,nsteps) rwsteps(st,low,hi)
take nsteps random
steps starting at st

take random steps starting at st
until you reach either low or hi

S

Lab 2 ~ Python's Etch-a-Sketch

Lab! Python's Etch-a-Sketch

www.gvetchedintime.com

No way this is real… but it is !

more usual etch-a-sketch work...

No way this is real… but it is !

Single-path recursion

def tri(): # define it!
""" a triangle!
"""
forward(100)
left(120)
forward(100)
left(120)
forward(100)
left(120)

run
tri()

Let's tri this with recursion:

I don't know about tri, but
there sure is NO return … !

def tri(n):
""" draws a triangle """
if n == 0: return
else:
forward(100) # one side
left(120) # turn 360/3
tri(n-1) # draw rest

Turtle's ability? It varies...

Turtle's ability? It varies widely!

Warning: Terminator error!

Solution: Just run it again!

Problem: Terminator Error

I'll be back...

-- just call me again

def chai(dist):
""" mystery fn! """
if dist < 5: return

forward(dist)
left(90)
forward(dist/2.0)
right(90)
recurse here?
right(90)
forward(dist)
left(90)
recurse here?
left(90)
forward(dist/2.0)
right(90)
backward(dist)

What would chai(100) draw?(1)

Be the turtle ! Have rwalk draw a
"stock-market" path
of N steps of 10 pixels
each. Use recursion.

(2)

from random import *

def rwalk(N):
""" make N 10-pixel steps, NE or SE """

if N == 0: return

elif choice(['left','right']) == 'left':

else: # this handles 'right'

Extra! How could you make this a bull (or a bear) market?

one possible result of rwalk(20)

left(45)
forward(10)

?

?

Extra #2! What if the line chai(dist/2) were placed between the two right(90) lines? And/or between the two left(90) lines?

from random import *

def rwalk(N):
""" make N 10-px steps, NE or SE """
if N == 0: return

elif choice(['left','right'])=='left':
left(45)
forward(10)
right(45)
rwalk(N-1)

else: # 'right'
right(45)
forward(10)
left(45)
rwalk(N-1)

What if we didn't turn back
to face east each time?

rwalk(N) is a random
"stock market" walk...

"Single-path" (or counting) recursion

def chai(dist):
""" mystery! """
if dist<5:

return

forward(dist)
left(90)
forward(dist/2.0)
right(90)

right(90)
forward(dist)
left(90)

left(90)
forward(dist/2.0)
right(90)
backward(dist)

How could you add more to each T's tips? Why are there two identical commands in a row ~ twice!?

What does chai(100) do here?

Single-path recursion

def chai(dist):
""" mystery! """
if dist<5:

return

forward(dist)
left(90)
forward(dist/2.0)
right(90)
chai(dist/2)
right(90)
forward(dist)
left(90)
chai(dist/2)
left(90)
forward(dist/2.0)
right(90)
backward(dist)

Now, what does chai(100) do?

Branching recursion

"Multiple-path" (or branching) recursion

Cyriak: conceptually disruptive recursion…

is the branching, not the single-path variety.

handfingers

lab ~ hw2pr1

100

64

spiral(initLength, angle, multiplier)

80

fractal art

spiral(100,90,0.8)

Single-path or Branching recursion here?

spiral(100,90,0.8)

lab ~ hw2pr1

100

64

spiral(initLength, angle, multiplier)

80

fractal art

spiral(80,90,0.8)

svtree(trunkLength, levels)

svtree(100, 5)

levels == 5

levels == 2

levels == 0
(no drawing)levels == 1

levels == 3

levels == 4

Single-path or Branching recursion here?

svtree(trunkLength, levels)

svtree(100, 5)

levels == 5

levels == 2

levels == 0
(no drawing)levels == 1

svtree(75, 4)

What steps does the
turtle need to take
before recursing?

levels == 3

levels == 4

Branching recursion!

svtree(trunkLength, levels)

levels == 5

levels == 4

levels == 3

levels == 2

levels == 0
(no drawing)

Be sure the turtle
always returns to its

starting position!
levels == 1

svtree(100, 5)

step #1: go forward…

step #2: turn a bit…

step #3: draw a
smaller svtree!

step #5: draw another
smaller svtree!

step #6: get back
to the start by

turning and
moving! step #4: turn to

another heading

Branching recursion!

svtree(trunkLength, levels)

svtree(100, 5)

levels == 5

levels == 2

levels == 0
(no drawing)levels == 1

svtree(75, 4)

Be sure the turtle
always returns to its

starting position!

that means it will
finish the recursive

call right here!
levels == 3

levels == 4

so that it can
change heading and
draw another one…

Branching recursion!

The Koch curve

snowflake(100, 0) snowflake(100, 1) snowflake(100, 2)

snowflake(100, 3) snowflake(100, 4) snowflake(100, 5)

Single-path or Branching recursion here?

Recursive art? Create your own…

What? This is too happy to be
art… My recursive compositions
burninate even Cyriak's brain!

seven-cornered
confetti

