
Looking Back Looking Forward

CS 101 Today...

Computing as
composition

clay == functions

Computing as
representation

clay == data & bits

Our top-10 list of binary jokes:

Jotto Corner

camel: 4
?????: ?

diner: 2
savvy: ?

ZD guess5C guess

human: 1
?????: ?

diner: 2
savvy: ?

ZD guessHS guess

Olivia Deanna

Speaking of
language!?

back to Python, boolin'…

Some legs to stand on… ?

decipher

enciphermax sScore

rot(c,n)

ord chr

creating more and
more capable
compositions

program
organization

letScore

This is heady stuff!

decipher

enciphermax

rot(c,n)

ord chr

creating more and
more capable
compositions

It looks like I'm ahead of this…

how are even these
fundamentals

physically realized ?!

bits! circuits computer
organization

program
organization

Some legs to stand on!

sScore
letScore

Binary Storage & Representation

8 bits = 1 byte = 1 box

The SAME bits can
represent different

pieces of data,
depending on type

type: str type: int
name: name:

value: value:
'*' 42

The same bits are in each container.

But why
these bits?

What is 42 ?
42

It's not this!

forty two

What is 42 ?
42

Syntax.

Value!

42

tens ones

forty two
value syntax

42

tens ones

forty two
value syntax

42

tens ones

forty two
value syntax

Value
(semantics)

Syntax

stuff we care about
(what things mean)

stuff we use to
communicate

forty two
value

forty two
value

thirty-twos sixteens eights fours twos ones

but, different syntax...

101010forty two
value syntax

thirty-twos sixteens eights fours twos ones

101010forty two
value syntax

thirty-twos sixteens eights fours twos ones

Base 2 Base 10

42101010 102

forty two
value

"binary" "decimal"

Value
stuff we care about
(what things mean)

the symbols used
(what things look like)

Syntax

Base 2 Base 10

42101010 102

forty two
value

"binary" "decimal"

Value
stuff we care about
(what things mean)

the symbols used
(what things look like)

Syntax

Base 2 Base 10

42
4 tens + 2 ones

101010

123

1 hundred + 2 tens + 3 ones

each column
represents the

base's next power

writing 123 in binary…

10

2

10

"binary" "decimal"

tables of
one-digit

facts

+

*

Addition

Multiplication

Binary math Decimal math

www.youtube.com/watch?v=Nh7xapVB-Wk

Quiz In binary, I'm an 11-eyed alien!

Convert these two decimal
numbers to binary:

Add these two binary numbers:

529
742
1271

1 Hint: Remember
these algorithms?
They're the same

in binary!

+

Convert these two binary
numbers to decimal:

110011 10001000
121632 48

10128

101101
1110+

Multiply
these binary
numbers:

101101
1110*

529
42

1058
*

Extra! Can you figure out the last binary digit (bit) of 53
without determining any other bits? The last two? 3?

+

Name(s): ______________________________

121632 48

10 10

2116
22218

+

WITHOUT
converting
to decimal !

Convert these two binary
numbers to decimal:

110011 10001000
121632 48 121632 4864128

Convert these two decimal
numbers to binary:

10128
121632 48 121632 4864128

32 + 16 + 2 + 1

51
values in blue

128 + 8

136

syntax in orange 011100

10

01100101

Extra! Can you figure out the last binary digit (bit) of 53
without determining any other bits? The last two? 3? We'll return to this in a bit…

Add these two binary numbers
WITHOUT converting to decimal ! Hint: 529

742
1271

1

Do you remember this
algorithm? It's the same!+

101101
1110+

45

14

121632 48

59

121632 48

Add these two binary numbers
WITHOUT converting to decimal ! Hint: 529

742
1271

1

Do you remember this
algorithm? It's the same!+

101101
1110+

45

14

121632 48

Add these two binary numbers
WITHOUT converting to decimal ! Hint: 529

742
1271

1

Do you remember this
algorithm? It's the same!+

101101
1110+

45

14

121632 48

101101

11

59

529
42

1058
*

2116
22218

Hint:

Do you remember this
algorithm? It's the same!

Multiply these two binary numbers
WITHOUT converting to decimal !

101101
1110*

45

14

121632 48

+

GoalGoal

630

Hint:

Do you remember this
algorithm? It's the same!

Multiply these two binary numbers
WITHOUT converting to decimal !

101101
1110*

45

14

121632 48

000000
1011010

10110100
101101000+

1001110110 630
121632 4864128

256512

529
42

1058
*

2116
22218

+

"partial products"

Goal

base 3
13927

base 2
121632 48

101010

Beyond
Binary

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2 42 ?

There are 10 kinds of "people" in the universe:
those who know ternary,
those who don't, and
those who think this is a binary joke!

1120

Which of these isn't 42...?
222 60 54 46 39

base 4

base 5

base 6

base 7

base 8

base 9
and what are the bases of the rest?

base 11

base 12

base 10 42

base 3
13927

base 2
121632 48

101010

Beyond
Binary

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

base 16

. . .

1416

1120

Which of these isn't 42...?
222 60 54 46 39

base 4

base 5

base 6

base 7

base 8

base 9
and what are the bases of the rest?

base 11

base 12

base 10 42

base 3
13927

base 2
121632 48

101010

Beyond
Binary

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

base 16

. . .

1416

base 2

base 8

121632 4864128

52
864 1

101010

base 16 2A
16256 1

base 3

base 4

base 5

base 6

base 7

1381 927

1120
141664

222
1525125

132
1636216

110
1749

60

Hexadecimal

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2

digits: 0, 1, 2, 3, 4, 5, 6, 7

digits: 0, 1, 2, 3

digits: 0, 1, 2, 3, 4

digits: 0, 1, 2, 3, 4, 5

digits: 0, 1, 2, 3, 4, 5, 6

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

base 9 46
981 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8

base 10 42
10100 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

base 11 39
11121 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A

All
42s!

base 2

base 8

121632 4864128

52
864 1

101010

base 16 2A
16256 1

base 3

base 4

base 5

base 6

base 7

1381 927

1120
141664

222
1525125

132
1636216

110
1749

60

Hexadecimal

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2

digits: 0, 1, 2, 3, 4, 5, 6, 7

digits: 0, 1, 2, 3

digits: 0, 1, 2, 3, 4

digits: 0, 1, 2, 3, 4, 5

digits: 0, 1, 2, 3, 4, 5, 6

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

base 9 46
981 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8

base 10 42
10100 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

base 11 39
11121 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A

All
42s!

base 2

base 8

121632 4864128

52
864 1

101010

base 16 2A
16256 1

base 3

base 4

base 5

base 6

base 7

1381 927

1120
141664

222
1525125

132
1636216

110
1749

60

Hexadecimal

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2

digits: 0, 1, 2, 3, 4, 5, 6, 7

digits: 0, 1, 2, 3

digits: 0, 1, 2, 3, 4

digits: 0, 1, 2, 3, 4, 5

digits: 0, 1, 2, 3, 4, 5, 6

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

base 9 46
981 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8

base 10 42
10100 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

base 11 39
11121 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A

All
42s!

base 2

base 8

121632 4864128

52
864 1

101010

base 16 2A
16256 1

base 3

base 4

base 5

base 6

base 7

1381 927

1120
141664

222
1525125

132
1636216

110
1749

60

Hexadecimal

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2

digits: 0, 1, 2, 3, 4, 5, 6, 7

digits: 0, 1, 2, 3

digits: 0, 1, 2, 3, 4

digits: 0, 1, 2, 3, 4, 5

digits: 0, 1, 2, 3, 4, 5, 6

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

base 9 46
981 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8

base 10 42
10100 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

base 11 39
11121 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A

All
42s!

base 2

base 8

121632 4864128

52
864 1

101010

base 16 2A
16256 1

base 3

base 4

base 5

base 6

base 7

1381 927

1120
141664

222
1525125

132
1636216

110
1749

60

Hexadecimal

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2

digits: 0, 1, 2, 3, 4, 5, 6, 7

digits: 0, 1, 2, 3

digits: 0, 1, 2, 3, 4

digits: 0, 1, 2, 3, 4, 5

digits: 0, 1, 2, 3, 4, 5, 6

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

base 9 46
981 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8

base 10 42
10100 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

base 11 39
11121 1

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A

All
42s!

Off base?

"Duodecimal Society"
"Dozenal Society"

Olmec base-20 numbers
E. Mexico, ~ 300 AD

Base 20:
Americas Base 60 – Ancient Sumeria

Some of these bases are still echoing around…

Base 12 –

Base 27:
New Guinea

6

16

But why binary?

8 4 7 3

But why binary ?

But why binary ?

1 0 1 0

Ternary computers?
Everything should

be base-3!

50 of these Setun ternary machines were made at Moscow U. ~ 1958

This project was discontinued in 1970… though not because of the ternary design!

Eye-catching
submissions...

and turtle art

ASCII wanderings...

a turtle-drawn portrait from turtle graphics …

Whoa!
'12

Reasoning ~ Value vs. Syntax

<< >>
left-shift right-shift

What does left-shifting do to
the value of a decimal #?

What does right-shifting do to
the value of a decimal #?

bitwise
Python

operators

53
530 53

537

left-shift by 1

Reasoning, bit by bit

left-shift by 2

right-shift by 1

<< >>
left-shift right-shift

3 << 1
6

3 << 2

42 >> 1

11

11

101010

12

21

110

1100

10101

What does left-shifting do to
the value of a binary #?

What does right-shifting do to
the value of a binary #?

42 >> 2 ?1010

Reasoning, bit by bit << >>
left-shift right-shift

| or
(either)&and

(both)

bitwise and

bitwise or

5 & 6
4

5 | 6

5: 101
6: 110
& 100

5: 101
6: 110
| 111 7

|
or

&
and

bitwise and

bitwise or

9 & 5
1

9 | 5

9: 1001
5: 0101

& 0001

7

9: 1001
5: 0101

| 1111

What do and
and or do!?

Old Microsoft systems-interview question, #42:

Intel x86 processor instructions
and their speeds (2016)

In processors shift,
and, or, add, and

subtract are much
faster than

multiply, divide,
and mod, which

are relatively
slow.

MOD is the same

first time in a row rest of times (in a row)

and SHIFT

Being bit-wise

5 << 4

170 >> 2

7 << 1

In today's processors shifts, and, or, add, and subtract are all very fast,
whereas multiplying, dividing, and mod are relatively slow.

N//4

N*17

N*7
With this in mind, how

could we compute these
expressions using only fast

operations, maybe in
combination?

You don't need to
convert to binary
for these three…

14 | 9

14: 1110
9: 1001

14 & 9

You do need to use
binary for these two!

left-shift

right-shift

or

and

Try these for a bit…

N%16

Being bit-wise

5 << 4

170 >> 2

7 << 1

In today's processors shifts, and, or, add, and subtract are all very fast,
whereas multiplying, dividing, and mod are relatively slow.

N//4

N*17

N*7
With this in mind, how

could we compute these
expressions using only fast

operations, maybe in
combination?

You don't need to
convert to binary
for these three…

14 | 9

14: 1110
9: 1001

14 & 9

You do need to use
binary for these two!

left-shift

right-shift

or

and

Try these for a bit…

N%16

14

80

42

1111

1000
8

15

N >> 2

(N<<3) - N

(N<<4) + N

N-((N>>4)<<4)

not the original name...

b.d. ~ binary digit ~ bit
"bit" first appeared in print in 1948 (Claude Shannon)

early document allocating different bits to
control or data portions of a processor's work

Extra! Can you figure out the last binary digit (bit) of 53
without determining any earlier bits? The last two? three?

124…

141
10100 1

=

Lab 4: Computing in binary

base 10 base 2

This first step of left-to-right conversion
into binary is tricky to program... Why?

You mean aside from
having to think in

binary?

124…

141
10100 1

=

Lab 4: Computing in binary

base 10 base 2

This first step of left-to-right conversion
into binary is tricky to program... Why?

base 10

141
10100 1

=

10001101
121632 4864128

141 =
answer

What does the fact that
141 is ODD tell us?!

base 2
121632 4864

Lab 4: Computing in binary

Let's run right-to-left!

base 10

141
10100 1

=

10001101
121632 4864128

141 =
answer

What does the fact that
141 is ODD tell us?!

base 2
121632 4864

Lab 4: Computing in binary

Let's run right-to-left!

base 10

141
10100 1

=

10001101
121632 4864128

141 =
answer

What does the fact that
141 is ODD tell us?!

base 2
121632 4864

Lab 4: Computing in binary

Let's run right-to-left!

53

1s2s4s8s…

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

Converting to binary ~ starting from the right!

bits!

value remaining

"next"-level reality...

53

53

1s2s4s8s…

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

bits!

value remaining

"next"-level reality...

53

Converting to binary ~ starting from the right!

53

1s2s4s8s…

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

Extra! Can you figure out the last binary digit (bit) of 53
without determining any earlier bits? The last two? three?

bits!

value remaining

"next"-level reality...

53

base 10

141
10100 1

=

10001101
121632 4864128

141 =
answer

What does the fact that
141 is ODD tell us?!

base 2
121632 4864

Lab 4: Computing in binary

Let's run right-to-left!

You'll write these right! (-to-left)

numToBinary(N) binaryToNum(S)

b2n('10001101')n2b(141)

base 10

141
10100 1

Right-to-left works!

=

base 2
121632 4864128

'10001101'

we need to represent binary
numbers with strings

Lab 4: Computing in binary

decimal syntax, N

Lab 4: Computing in binary

def numToBinary(N):

if N == 0:

return ''

elif N%2 == 0:

return numToBinary() +

else:

return numToBinary() +

empty string means 0

If N is even, what
is the final bit?

If N is odd, what
is the final bit?

base 10

141
10100 1

=

base 2
121632 4864128

'10001101'

How much VALUE is left to convert!?

?

Lab 4: Fleek binary conversion !

empty string means 0

If N is even, what
is the final bit?

If N is odd, what
is the final bit?How much VALUE is left to convert!?

def numToBinary(N):

if N == 0:

return ''

elif N%2 == 0:

return numToBinary(N//2)+ '0'

else:

return numToBinary(N//2)+ '1'

def numToBinary(N):

if N == 0: return ''

else: return numToBinary(N//2) +

See you at lab
– in just a bit!

This room
is a 10!

Insight: Ancient Egyptian Multiplication

Next time?

21 6

21 6 == 126 Write the factors in two columns.

Repeatedly halve the LEFT and
double the RIGHT. (toss remainders…)

Pull out the RIGHT values where
the LEFT values are odd.

Sum those values for the answer!

Buddy, can
you spare
an eye?

11 15 == 165

11 15

Why does this work?

AEM/RPM algorithm

Try it here

Insight: Ancient Egyptian Multiplication

or RPM...

Base 2 Base 10

42
4 tens + 2 ones

101010

123

1 hundred + 2 tens + 3 ones

each column
represents the

base's next power

Write 123 in binary…

123

10

2

10

tables of
basic facts

+

*

Addition

Multiplication

Binary math Decimal math

www.youtube.com/watch?v=Nh7xapVB-Wk

tables of
basic facts

+

*

Addition

Multiplication

Binary math Decimal math

www.youtube.com/watch?v=Nh7xapVB-Wk

tables of
basic facts

+

*

Addition

Multiplication

Binary math Decimal math

www.youtube.com/watch?v=Nh7xapVB-Wk

1120

Which of these isn't 42...?
222 60 54 46 39

base 4

base 5

base 6

base 7

base 8

base 9
and what are the bases of the rest?

base 11

base 12

base 10 42

base 3
13927

base 2
121632 48

101010

Beyond
Binary

base 1 11 digits: 1

digits: 0, 1

digits: 0, 1, 2

digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

base 16

. . .

1416

Reasoning, bit by bit << >>
left-shift right-shift

| or
(either)&and

(both)

bitwise and

bitwise or

5 & 6
4

5 | 6

5: 101
6: 110
& 100

5: 101
6: 110
| 111 7

|
or

&
and

bitwise and

bitwise or

11 & 5
1

11 | 5

11: 1011
5: 0101

& 0001

7

11: 1011
5: 0101

| 1111

left-shift by 1

Reasoning, bit by bit

left-shift by 2

right-shift by 1

<< >>
left-shift right-shift

3 << 1
6

3 << 2

42 >> 1

11

11

101010

12

21

110

1100

10101

|
or

&
and

What does left-shifting do
to the value of a #?

What does right-shifting
do to the value of a #?

42 >> 2 ?1010

Being bit-wise

5 << 4

170 >> 2

7 << 1

In processors shifts, ands, ors, adds, and subtractions are very fast,
whereas multiplying, dividing, and mod, which are relatively slow.

N//4

N*17

N*7Given this, what is a way to
compute these expressions
using only fast operations,

maybe in combination?

14 | 9

14: 1110
9: 1001

14 & 9

left-shift

right-shift

or

and

Try these for a bit…

N%16

Being bit-wise

5 << 4

170 >> 2

7 << 1

In processors shifts, ands, ors, adds, and subtractions are very fast,
whereas multiplying, dividing, and mod, which are relatively slow.

N//4

N*17

N%16

N*7Given this, what is a way to
compute these expressions
using only fast operations,

maybe in combination?

14 | 9

14: 1110
9: 1001

14 & 9

left-shift

right-shift

or

and

Try these for a bit…

14

80

42

1111

1000
8

15

Old Microsoft systems-interview question, #42:

Intel x86 processor instructions
and their speeds (2016)

In processors shift,
and, or, add, and

subtract are much
faster than

multiply, divide,
and mod, which

are relatively
slow.

MOD is the same

first time in a row rest of times (in a row)

Intel x86 processor instructions
and their speeds (2014)

N//4

N*17

N%16

N*7Given this, what is a way to
compute these statements

using combinations from only
the fast operations above?

In processors shift,
and, or, add, and

subtract are much
faster than

multiply, divide,
and mod, which

are relatively
slow.

MOD is the same

N >> _

Intel x86 processor instructions
and their speeds (2014)

N//4

N*17

N%16

N*7Given this, what is a way to
compute these statements

using combinations from only
the fast operations above?

In processors shift,
and, or, add, and

subtract are much
faster than

multiply, divide,
and mod, which

are relatively
slow.

MOD is the same

N >> 2

(N<<3) - N

(N<<4) + N
N-((N>>4)<<4)

Lab 4: Converting to binary…

base 10

141
10100 1

Try right-to-left!

=

10001101
121632 4864128

141 =
answer

What does the fact that
141 is ODD tell us?!

base 2
121632 4864128

Insight: Ancient Egyptian Multiplication

Next time?

21 6

21 6 == 126 Write the factors in two columns.

Repeatedly halve the LEFT and
double the RIGHT. (toss remainders…)

Pull out the RIGHT values where
the LEFT values are odd.

Sum those values for the answer!

Buddy, can
you spare
an eye?

11 15 == 165

11 15

Why does this work?

AEM/RPM algorithm

Try it here

Insight: Ancient Egyptian Multiplication

or RPM...

53

1s2s4s8s…

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

Extra! Can you figure out the last binary digit (bit) of 53
without determining any earlier bits? The last two? three?

bits!

value remaining

"next"-level reality...

53

53

1s2s4s8s…

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

Extra! Can you figure out the last binary digit (bit) of 53
without determining any earlier bits? The last two? three?

bits!

value remaining

"next"-level reality...

53

53

1s2s4s8s…

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

Extra! Can you figure out the last binary digit (bit) of 53
without determining any earlier bits? The last two? three?

bits!

value remaining

"next"-level reality...

53

53

1s2s4s8s…

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

Extra! Can you figure out the last binary digit (bit) of 53
without determining any earlier bits? The last two? three?

bits!

value remaining

"next"-level reality...

53

53

1s2s4s8s…

Extra! Can you figure out the last binary digit (bit) of 53
without determining any other bits? The last two? 3?

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

53

1s2s4s8s…

Extra! Can you figure out the last binary digit (bit) of 53
without determining any other bits? The last two? 3?

in the end,
we need

"53"-worth
of value

1s2s4s8s…
1s2s4s8s…

1s2s4s…

top-level reality!

1s2s

16s32s
16s

53

?s?s?s?s…

Extra! Can you figure out the last binary digit (bit) of 53
without determining any other bits? The last two? three?

in the end,
we need

"53"-worth
of value

53

?s?s?s?s…

Extra! Can you figure out the last binary digit (bit) of 53
without determining any other bits? The last two? three?

in the end,
we need

"53"-worth
of value

