
Below binary: physical circuits

More bits of CS

Too many bits? Compress!

Hw #4 due Mon. 10/7

Lots of tutoring hrs - join in... !

pr1 (lab) binary ~ decimal

pr2 conversion + compression

extra image processing...

pr0 (reading) A bug and a crash!

Jotto Corner

I'd call this a
KNOT gate…

Circuit design, part 1

Deanna

camel: 4
cable: 3
?????: ?

diner: 1
savvy: 0
flock: ?

my guessAM guess

human: 1
slaps: 2
?????: .

diner: 2
savvy: 1
flock: ?

my guessHS guess

? ? ? ?

words remaining

vs

Olivia

Office hours == Fri. aft.

ntb(42)

ntb(21) + '0'

'101010'

ntb(10) + '1'

ntb(5) + '0'

ntb(2) + '1'

ntb(1) + '0'

ntb(0) + '1'

''

42
in

out

def numToBin(N):
""" converts a decimal int to a binary string
"""
if N==0: return ''
else: return numToBin(N//2) + str(N%2)

What if you wanted base-3 output?! base-B output?

Python

btn('101010')

def binToNum(S):
""" converts a binary string to a decimal int
"""
if S=='': return 0
else: return 2*binToNum(S[:-1]) + int(S[-1])

saves the need for another if

'101010'
2*btn('10101') + 0

2*btn('1010') + 1

2*btn('101') + 0

2*btn('10') + 1

2*btn('1') + 0

2*btn('') + 1

0

2*1

2*2*2*1

2*2*2*2*2*1

42

in

out

What if you wanted base-3 input?! base-B input?

Python!

Bits & Binaryrepresentation

0
1
2
5

10

21
42

15
16

127

0
1

10
101

1010

10101
101010

1111
10000

1111111
1248163264

value

shifting bits left << 1

shifting bits right >> 1

maximum value of 4 bits?
maximum value of 7 bits?

maximum value of N bits?!

What's 101000 ?

What's 1000 ?

1248163264

1 bit

How high can we count…?

with

2 bits

3 bits

4 bits

8 bits

N bits

7 bits

1

11

111

1111

I can see some patterns here –
even with one eye closed!

11111111

1111111

3

1

7

15

127

255

31 bits15 bits

Counting sheep, xkcd style...

How many bits?

Ariane 5

TypeErrorIndexError HumanError

This week's reading: bits can be vital

version 5version 4
64 bits16 bits

1 bit

How high can we count… in 2015?

with

2 bits

3 bits

4 bits

8 bits

N bits

31 bits

7 bits

1

11

111

1111

11111111

1111111

3

1

7

15

127

255

1 bitwith

2 bits

3 bits

4 bits

8 bits

N bits

31 bits

7 bits

1

11

111

1111

11111111

1111111

3

1

7

15

127

255

How high can we count… in 2015!

Other overflow errors...
Less worrisome, perhaps...

The "sign bit" has flipped
to one. Thus, the number
has become negative... !

hw4pr3 (extra)

how many bits represent each color channel?

Hw4: images are just bits, too!

old pixel at 42,42 has
red = 1 (out of 255)
green = 36 (out of 255)
blue = 117 (out of 255)

new pixel at 42,42 has

hw4pr3 (extra)

how many bits represent each color channel?

Hw4: images are just bits, too!

old pixel at 42,42 has
red = 1 (out of 255)
green = 36 (out of 255)
blue = 117 (out of 255)

new pixel at 42,42 has
red = 254 (out of 255)
green = 219 (out of 255)
blue = 138 (out of 255)

Binary Image Encoding as raw bits
one big string of 64 characters

10101010
01010101
10101010
01010101
10101010
01010101
10101010
01010101

"1010101001010101101010100101010110101010010101011010101001010101"

Hw4: images are just bits, too!

image compression is everywhere!

Too many pixels... too little time + space!

How is it possible to
throw away 98% of

the image data!?

image compression is everywhere!

Too many pixels... too little time + space!

One solution!

How is it possible to
throw away 98% of

the image data!?

We throw away
98% of the

image area!

Looks like the right
2% to keep!

compressed to 40kb original: 2.3mb

More often... what's done?

compressed to 40kb original: 2.3mb

compressed original

compressed original

Binary Image

00000000
00000000
11111111
11111111
00000000
00000000
00000000
00001111

Encoding as raw bits
one big string of 64 characters

Hw4: lossless binary image compression

same-data
streaks

a very compressible image...

Home!

Binary Image

00000000
00000000
11111111
11111111
00000000
00000000
00000000
00001111

Encoding as raw bits
one big string of 64 characters

"0000000000000000111111111111111100000000000000000000000000001111"

If our images tend to have long streaks of unchanging data, how
might we represent it more efficiently, but still in binary?

Hw4: lossless binary image compression

same-data
streaks

compress
uncompress

One possible algorithm:

bit #repeats

Any problems with this?

0100001100000111001100

0 is the first
digit

There are 16
of them.

1 is the
next digit

Again, there are
16 of them.

00000000
00000000
11111111
11111111
00000000
00000000
00000000
00001111

0 is the
next digit

There
are 28

1 is the
final digit

There
are 4

Hw4: lossless image compression

0100001100000111001100

0100001100000111001100

0100001100000111001100

0 is the
first digit

and there are 1,098,188 of them.

00000000
00000000
00000000
00000000
00000000
00000000
00000000
000000…

Hw4: lossless image compression

1,098,188 zeros!

our algorithm:

bit #repeats

could be misinterpreted!

fixed-width compression

00010000100100000001110010000100

0 is the first
digit

There are 16
of them.

1 is the
next digit

Again, there are
16 of them.

7 bits: # of repeats

and so on…

7 bits: # of repeats

8-bit data block 8-bit data block 8-bit data block 8-bit data block

28 zeros 4 ones

00000000
00000000
11111111
11111111
00000000
00000000
00000000
00001111

We need fixed-width blocks:

bit #repeats

8-bits total

00010000100100000001110010000100

1 bit fill 7 bits for the # of repeats

If you use 7 bits to hold the # of consecutive repeats, what
is the largest number of bits that one block can represent?

B bits?

00010000
7 bits: # of repeats

8-bit total data block

7 bits?

1 bit:
the

initial
pixel

What if you need a larger # of repeats?

"001111111111111111111111111111111"

hw4 pr2def compress(I):
""" returns the RLE of the

input binary image, I """

"0010101010011111"
31, in binary

42 zeros 31 ones

42, in binary

a binary image, I

the "compressed" output returned by compress(I)

Name(s): _________________________________def compress(I):
""" returns the RLE of the

input binary image, I """

"00010000100100000001110010000100"

"0000000000001111111111111111111100000000000000000000011111111111"

12 zeros 20 ones 21 zeros 11 ones

What helper function would be useful for compress?

a 64-bit binary image, IQuiz

compress(I)

What's an image I whose compressed output gets larger, not smaller? (Aargh!)

• What are the BEST-compressible / WORST-compressible 64-bit images?

• How could you improve the algorithm so that it always compresses?!!

the "compressed" output returned by compress(IQuiz)

Then,
discuss

...

hw4 pr2

"00001100100101000001010110001011"
12 20 21 11

the "compressed" image returned from compress(IQuiz)

a binary image, IQuiz

def compress(I):
""" returns the RLE of the

input binary image, I """

"0000000000001111111111111111111100000000000000000000011111111111"

12 zeros 20 ones 21 zeros 11 ones

Use
this!

If the first two
bits DO match....

frontNum('1111010')
4

frontNum('00110010')
2

def frontNum(S):

if
return

elif
return

else:
return

BEST / WORST images?

len(S) <= 1:
len(S)== 0:
len(S)== 1:

or 2 base cases:
1 base case:

:

frontNum(S) returns
the # of times the first
element of the input S
appears consecutively
at the start of S:

If the first two bits
DON'T match....

If S == '' or S == '1'
or S == '0'

What are the BEST and the WORST compression
results you can get for an 8x8 image input (64 bits)?

shortest compressed
representation

longest compressed
representation

How could we improve this compression algorithm so that all images compress to
smaller than the originals? That is, how can we make compression always work ? ?

BEST WORST

What are the BEST and the WORST compression
results you can get for an 8x8 image input (64 bits)?

shortest compressed
representation

longest compressed
representation

How could we improve this compression algorithm so that all images compress to
smaller than the originals? That is, how can we make compression always work ? ?

only 8 bits total! aargh! 512 bits!

BEST WORST

Anyone see why
this is NOT
QUITE the

worst-
compressable

image?

What are the BEST and the WORST compression
results you can get for an 8x8 image input (64 bits)?

shortest compressed
representation

longest compressed
representation

How could we improve this compression algorithm so that all images compress to
smaller than the originals? That is, how can we make compression always work ?

only 8 bits total! aargh! 512 bits!

BEST WORST

What are the BEST and the WORST compression
results you can get for an 8x8 image input (64 bits)?

shortest compressed
representation

longest compressed
representation

!How could we improve this compression algorithm so that all images compress to
smaller than the originals? That is, how can we make compression always work ?

only 8 bits total! aargh! 512 bits!

BEST WORST

It's all bits!

'forty*two'

011001100110111101110010011101000111100100101010011101000111011101101111

9*8 == 72 bits total

All computation boils down to manipulating bits!

even the string 'forty*two' is represented
as a sequence of bits…

9 ASCII characters
8 bits each

images, text, sounds, data, …

All computation is simply functions of bits

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

000
001
010
011
001
010
011
100
010
011

101

100

100

011

101
110

S T
binary inputs S and T output, S+T

bitwise
addition
function

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

000
001
010
011
001
010
011
100
010
011

101

100

100

011

101
110

S T
binary inputs S and T output, S+T

bitwise
addition
function

if S[-1] == '0' and T[-1] == '0':

return + '0'

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

000
001
010
011
001
010
011
100
010
011

101

100

100

011

101
110

S T
binary inputs S and T output, S+T

bitwise
addition
function

if S[-1] == '1' and T[-1] == '1' :

return + '0'

Adding strings?

Multiplying by machine:

Doing anything by machine…

means it can be done
purely via surface syntax,

which means it can be
done without thinking…

syntactic ~ meaning-free

42
101010

In a computer, each bit is
represented as a voltage

(1 is +5v and 0 is 0v)

9
001001

ADDER
circuit

Computation is simply the
deliberate combination of

those voltages!

But what's this
green thing?

(1) set input voltages

42
101010

In a computer, each bit is
represented as a voltage

(1 is +5v and 0 is 0v)

9
001001

ADDER
circuit 1

1
0
0
1
1

Computation is simply the
deliberate combination of

those voltages!

(1) set input voltages

(2) perform computation

But what's this
green thing?

42
101010

In a computer, each bit is
represented as a voltage

(1 is +5v and 0 is 0v)

9
001001

ADDER
circuit 1

1
0
0
1
1

51

Computation is simply the
deliberate combination of

those voltages!

Richard Feynman: "Computation is just a
physics experiment that always works!"

(3) read output
voltages

(1) set input voltages

(2) perform computation

But what's this
green thing?

Our building blocks: logic gates

AND outputs 1 only
if ALL inputs are 1

OR outputs 1 if
ANY input is 1

NOT reverses
its input

AND OR NOT

These circuits are physical functions of bits…

… and all mathematical functions can be built from them!

Our building blocks: logic gates

AND outputs 1 only
if ALL inputs are 1

OR outputs 1 if
ANY input is 1

NOT reverses
its input

AND OR NOT

These circuits are physical functions of bits…

… and all mathematical functions can be built from them!

From gates to circuits...

What inputs make this circuit output 1?

What inputs make this circuit output 0?

001

000
001
010
011
100
101
110
111

From gates to circuits...

What circuit outputs 1 for these four inputs?

010
101
110
111

000
001
010
011
100
101
110
111

000
001
011
100

... and outputs 0 for these four inputs?!

should
output

1

should
output

0

next 2 weeks

from circuit design…

…to a full computer!

