The CS5 Times

Eager Penguins Invade CS Course

Claremont (AP): The first-day offering of Harvey Mudd's popular CS5 course was disrupted when a large flock of penguins "Zoom-bombed" it. "They're cute," complained one distraught student, "but their squawking makes it impossible to hear the professor."
Another student disagreed. "It was easier to understand the penguins than the class material. If I can figure out where they live, I'm going to mail them some fish as thanks."
The professor eventually managed to halt the interruption by installing an aquarium screen-saver.

Office hours: see Web site
Zoom links will not be posted or included in slides. See your e-mail!

Rules for Online Class

Let's admit it: this is weird

1. Use your full name (nickname preferred) on Zoom
2. Don't share or post Zoom links
3. Always have a blank sheet of paper for a worksheet
4. Keep your camera on unless your bandwidth is bad
5. Attendance (for the full session) is expected

- E-mail me if your timezone is horrible

Can we do this inside Fortnite?
I

Overview

Weeks 1-3: Thinking functionally
Weeks 4-6: Computer organization
Weeks 7-10: Oops! (Object oriented programs)
Weeks 11-14: Theoretical foundations
Capstone Project!
The textbook...

Programming Languages...	Python
	- Relatively "nice" syntax - Emerging as language of choice in many fields - Packages for graphics, audio, scientific computing, ...
Hello World...	

Environment in the NEWS!

Picobot can only sense things directly to the $\mathrm{N}, \mathrm{E}, \mathrm{W}$, and S

For example, here its surroundings are

$\mathbf{N} \times W \mathrm{X}$

Picobot's memory is a single number, called its state.

State is the internal context of computation.

Picobot always starts in state 0 .

State and surroundings represent everything the robot knows about the world

Surroundings

How many distinct surroundings are there?
$2^{4}=16$ possible \ldots

Aha!

I should move N .
I should enter state 0.

Picobot moves according to a set of rules:

If I'm in state 0
seeing xxWS ,
Then I move North, and change to state 0.

Wildcards

Aha! This matches x***

Asterisks * are wild cards.
They match walls or empty space:
state
surroundings
direction
new state
0

N must be empt

This Week!
Write rules that will always cover these two rooms. (separate sets of rules are encouraged...)

Lab Problem

Problem 2
 starting location and for any wall-connected maze!

What Will This Set of Rules Do to Picobot?

Add some code here to make Picobot go up and down in the same column forever!

Picobot checks its rules from the top each time.
When it finds a matching rule, that rule runs.
Only one rule is allowed per state and surroundings.

What's the Point?

- Simple syntax can support "powerful" computation: The picobot language syntax is very simple, yet it can control a robot in a complex environment.
- Computer scientists examine limitations of languages:
- Are there environments that the picobot language cannot navigate?
- If so, what features could be added to give the language more "power"?

How About＂General＂Rooms？

Defining Your Own Functions！

```
def dbl(x):
    return 2 * x
```


def dbl（myArgument）： myResult $=2$＊myArgument return myResult

VScode often indents for you！

Notice the indentation．This is done using＂tab＂ and it＇s absolutely necessary！

Python and the Command Line

bow：2：1169＞python3
Python 3．4．5（def
Python 3．4．5（default，Jul 03 2016，13：32：18）［GCC］on linux
Type＂help＂，＂copyright＂，＂credits＂or＂license＂for more information
＇Hello，world＇
＇Hello，wor

42
＞＞＞import math
》＞math．pi
3．141592653589793
＞＞）equator $=40000$
＞＞）equator（
Traceback（most recent call last）：
Traceback（most recent call last）：
File＂《stdin》＂，line 1，in＜module〉
NameError：name＇pi＇is not defined
＞＞equator／math．pi／$/ 2$
3956．equator 176032789394
＞＞＞from math import pi
＞＞）equator pi pi
＞＞＞quit（）
bow： $2: 1170$ ）
Python makes it easy to experiment！

Docstrings！

```
def dbl(x):
    """This function takes a number x
            and returns 2 * x"""
    return 2 * x
```


Docstrings...and Comments

\# Doubling program

\# Author: Ran Libeskind-Hadas
\# Date: August 27, 2011
\# Time Spent: 14 hours
def $\mathrm{dbl}(\mathrm{x})$:
"""This function takes a number x
and returns 2 * x"""
return 2 * x

Composition of Functions

```
def quad(x):
    return 4 * x
```

def quad(x):
return $\mathrm{dbl}(\mathrm{dbl}(\mathrm{x})$)

Mapping with Python...

```
def dbl(x):
    """returns 2 * x"""
    return 2 * x
>>> list(map(dbl, [0, 1, 2, 3, 4]))
[0, 2, 4, 6, 8]
def evens(n):
    myList = range(n)
    doubled = list(map(dbl, myList))
    return doubled
        Alternatively...
def evens(n):
    return list(map(dbl, range(n)))
```


reduce-ing with Python...

from functools import reduce
def add (x, y) :
"""returns x + y"""
return $\mathbf{x}+\mathbf{y}$
>>> reduce (add, [1, 2, 3, 4])

Try This...

Write a function called span that returns the difference between the maximum and minimum numbers in a list...

```
>>> span([3, 1, 42, 7])
41
>>> span([42, 42, 42, 42])
0
\(\min (x, y)\)
\(\max (x, y)\)
These are built in to Python!
```


$\mathrm{CaO}_{0} \mathrm{Ol} \mathrm{e}^{\text {R" }}$ Research Publications

MapReduce: Simplified Data Processing on Large Clusters

 Jeffrey Dean and Sanjay Ghemawat
Abstract

MapReduce is a programming model and an associated implementation for processins intermediate key/value pairs, and a reduce function that merges all intermediate values paper.

Programs written in this functional style are automatically parallelized and executed on scheduling the program's execution across a set of machines, handling machine failure

Try This...

1. Write a python function called gauss that accepts a positive integer N and returns the sum $1+2+\ldots+N$
2. Write a python function called sumOfSquares that accepts a positive integer N and returns the sum $1^{2}+2^{2}+3^{2}+\ldots+N^{2}$

