
Welcome Back to CS 5 Black!

Read sections 2.1–2.9

PENGUIN GETS $1B IN FUNDING

San Jose (AFP):  A penguin who was chased out of a 
Harvey Mudd College computer science lab by an angry 
mob has turned the experience into a startup with a billion 
dollars in venture funding.  The new company will market 
an app that helps penguins track and dodge predators.  “The 
market is huge,” said one investor.  “Antarctica is full of 
penguins and they don’t have any way to know where the 
sharks are.  We expect massive returns.”
The founding penguin will celebrate in a local sushi 

restaurant.

Python makes it easy to experiment!

Python and the Command Line

Defining Your Own Functions!

def dbl(x):

return 2 * x

dblx 2 * x

def dbl(myArgument):

myResult = 2 * myArgument 

return myResult

Notice the 

indentation.  This is 

done using �tab�
and it’s absolutely 

necessary!

Be sure to set 

your editor to 

indent using 

spaces!

def dbl(x):

"""This function takes a number x

and returns 2 * x"""

return 2 * x

Docstrings!

This is sort of like teaching 

your programs to talk to 

you!



# Doubling program

# Author:  Ran Libeskind-Hadas

# Date:  August 27, 2011

def dbl(x):

"""This function takes a number x

and returns 2 * x"""

return 2 * x

Docstrings…and Comments Composition of Functions

def quad(x):

return 4 * x

quadx 4 * x

def quad(x):

return dbl(dbl(x))
Doubly cool!

# myFunc

# Author:  Ran Libeskind-Hadas

# Date:  August 27, 2011

def myFunc(x, y):

"""Returns x + 42 * y"""

return x + 42 * y

Multiple Arguments...

myFuncx, y x + 42 * y

That�s a kind 
of a funky 

function!

def dbl(x):

"""Returns 2 * x"""

return 2 * x

>>> list(map(dbl, [0, 1, 2, 3, 4]))

[0, 2, 4, 6, 8]

def evens(n):

myList = range(n)

doubled = list(map(dbl, myList))

return doubled

Mapping with Python...

def evens(n):

return list(map(dbl, range(n)))

Alternatively….



reduce-ing with Python...

from functools import reduce 

def add(x, y):

"""Returns x + y"""

return x + y

>>> reduce(add, [1, 2, 3, 4])

10

add

add

add

Google�s �Secret�This is what 

put Google on 

the map!

Try This…

Write a function called span that returns the difference 

between the maximum and minimum numbers in a list…

>>> span([3, 1, 42, 7])

41

>>> span([42, 42, 42, 42])

0

min(x, y)

max(x, y) These are built into Python!

Try This...

1. Write a python function called gauss that accepts a 

positive integer argument N and returns the sum 

1 + 2 + … + N

2.  Write a python function called sumOfSquares that 

accepts a positive integer N and returns the sum 

12 + 22 + 32 + … + N2

You can write extra 

�helper� functions too!



return vs print...

def dbl(x):

return 2 * x
def trbl(x):

print(2 * x)

def happy(yay):

y = dbl(yay)

return y + 42

def sad(boo):

y = trbl(boo)

return y + 42

def friendly(pal):

y = dbl(pal)

print(y, "is very nice!")

return y + 42

Strings are in single 

or double quotes

17

The Alien's Life Advice

Reach out to a 
stranger in class

…but don’t 
Zoom-bomb 

them!

What Happens Inside a Function?

def f(x): 

x = x-1

return g(x)+1

def g(x):

return x*2

def h(x):

if x%2 == 1:      # x odd

return f(x) + x//2

else:             # x even

return f(f(x))

h(3):

return f(3) + 3//2

f(3):

return g(2) + 1

g(2):

return 4

4

6

5

Two key points…

• Functions return to where they were called from

• Each function keeps its own values of its variables

Recursion…

n! = n×(n-1)×(n-2)×…×1

n! = n×[(n-1)!] �inductive definition�

0! = 1 �base case�

Why is 

0! = 1?



Math Induction = CS Recursion

0! = 1

n! = n×[(n-1)!]

Math

inductive 

definition

Python (Functional)

recursive function

# recursive factorial

def factorial(n):

Math Induction = CS Recursion

0! = 1

n! = n×[(n-1)!]

Math

inductive 

definition

Python (Functional)

recursive function

# recursive factorial

def factorial(n):

if n == 0:

return 1

else:

return n*factorial(n - 1)

Is Recursion Magic?

factorial(3):

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

1

2

6

# recursive factorial

def factorial(n):

'''This computes n!'''

if n == 0:

return 1

else:

return n*factorial(n-1)

“To understand recursion, 
you must first understand 
recursion”—anonymous 
Mudd alum 

Is Recursion Magic?

factorial(3):

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

1

2

6 “To understand recursion, 
you must first understand 
recursion”—anonymous 
Mudd alum 



Computing the Length of a List

>>> len([1, 42, �spam�])

3

>>> len([1, [2, [3, 4]]])

def len(List):

'''Returns the length of List'''

Python has 

this built in!

A Tower of Fun!

Math Python (Functional)

recursive function

# recursive tower

def tower(n):

tower(3) = 2   
2
2

tower(4) =  2   
2
2
2

tower(5) =  

The tower function is 

taking recursion to new 

heights!

Reversing a List

>>> reverse([1, 2, 3, 4])

[4, 3, 2, 1]

def reverse(L):

'''Returns a new list that is the 

reverse of the input list'''

Reversing a List

>>> reverse([1, [2, [4, 5], 6], 7])



Deep-Reversing a List

>>> reverse([1, [2, [4, 5], 6], 7])

[7, [2, [4, 5], 6], 1]

>>> deepReverse([1, [2, [4, 5], 6], 7])

[7, [6, [5, 4], 2], 1])

This definitely 

requires 

recursion!
Fun problem on this 

week�s HW!

Recursion = :^)

Recursion, conditional statements, and lists suffice to give

us a Turing-complete programming language!

Variables, assignment (=), if, while, etc.

are all unnecessary!


