
The CS 5 Black Post

Claremont (AP)—A wild group of

penguins took over a Zoom-based lab

session yesterday, sharing screenshots of

icebergs and dead fish. Taking

advantage of Zoom’s “remote control”

feature, they managed to interfere with

students who were diligently attempting

to complete their CS 5 homework. “I

had just gotten my program to work,”

sobbed one student, they activated my

‘delete’ key and wiped it all out! Now I

have to start all over. It took me hours

to get my program to say ‘Hello, world’

and now I’ll never have time to finish

Penguins Invade Zoom Call
Read Section 2.8

(easy peasy!)

return vs print...

def dbl(x):

return 2 * x
def trbl(x):

print(2 * x)

def happy(yay):

y = dbl(yay)

return y + 42

def sad(boo):

y = trbl(boo)

return y + 42

def friendly(pal):

y = dbl(pal)

print(y, "is very nice!")

return y + 42

Strings are in single

or double quotes

Booleans

>>> 3 == 1+2

True

>>> 42 == "ham"

False

>>> "spam" > "ham"

True

>>> 42 > "spam"

Barf!

George Boole

1815-1864

Strings!

The �Truth� about Python�s Booleans

>>> True + 41

42

>>> 2**False == True

True

Demonstrating the True

�power� of Falsity!

Lists!

>>> L = [1, 42, 3, 4]

>>> L

[1, 42, 3, 4]

>>> L + 10

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: can only concatenate list (not "int") to list

>>> L + [50]

[1, 42, 3, 4, 50]

>>> L

[1, 42, 3, 4]

>>> L*2

[1, 42, 3, 4, 1, 42, 3, 4]

>>> M = [42, "hello", 3+2j, 3.141, [1, 2, 3, 4, 5, 6]]

Lists are �polymorphic�

L doesn�t change!

List Indexing and Slicing!

>>> M = [42, 3, 98, 37]

>>> M[0]

>>> M[2]

>>> M[0:2]

>>> M[0:3:2]

>>> M[1:]

>>> M[:-1]

>>> M[1:-2]

>>>

Python slices

just like

slapchop!
0 1 2 3

�What kind of thing
does this return?

Try to reverse the list!

Strings Revisited

>>> S = "I love Spam!"

>>> S[0]

>>> S[11]

>>> S[2:6]

>>> S[11:6:-1]

>>> S*2

0 1 2 3 4 5 6 7 8 9 1

0

Hey penguins,

get off my

slides!

1

1

Notice how lines with the

same level of indentation are

in the same code block!

if, else…

def special(x):

"""This function demonstrates the use

of if and else"""

if x == 42:

return "Very special number!"

else:

return "Stupid, boring number."

def special(x):

if x == 42:

return "Very special number!"

return "Stupid, boring number."

Alternatively??

Notice how lines with the

same level of indentation are

in the same code block!

if, elif, else…

def superSpecial(x):

"""This function demonstrates the use

of if, elif, and else"""

if x < 41:

ans = "Small number"

elif x == 42 or x % 42 == 0:

ans = "Nice!"

elif 41 <= x <= 43:

ans = "So close!"

else:

We might do more stuff here...

ans = "Yuck!"

return ans

Would swapping

the order of these

elif�s give the
same behavior?

I’m getting quite confused

here…

Avoiding elif

def unwise(x):

"""This function avoids using elif"""

if x == 42 or x % 42 == 0:

ans = "Nice!"

if 41 <= x <= 43 or x != 42:

ans = "So close!"

if x != 42 or x % 42 != 0:

ans = "Yuck!"

return ans

Is Recursion Magic?

factorial(3):

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

1

2

6

recursive factorial

def factorial(n):

'''This computes n!'''

if n == 0:

return 1

else:

return n*factorial(n-1)

“To understand recursion,
you must first understand
recursion”—anonymous
Mudd alum

A Tower of Fun!

Math Python (Functional)

recursive function

recursive tower

def tower(n):

tower(3) = 2
2
2

tower(4) = 2
2
2
2

tower(5) =

The tower function is

taking recursion to new

heights!

Computing the Length of a List

>>> len([1, 42, �spam�])

3

>>> len([1, [2, [3, 4]]])

def len(List):

'''Returns the length of List'''

Python has

this built in!

Reversing a List

>>> reverse([1, 2, 3, 4])

[4, 3, 2, 1]

def reverse(L):

'''Returns a new list that is the

reverse of the input list'''

Reversing a List

>>> reverse([1, [2, [4, 5], 6], 7])

Deep-Reversing a List

>>> reverse([1, [2, [4, 5], 6], 7])

[7, [2, [4, 5], 6], 1]

>>> deepReverse([1, [2, [4, 5], 6], 7])

[7, [6, [5, 4], 2], 1])

This definitely

requires

recursion!
Fun problem on this

week�s HW!

Recursion = :^)

Recursion, conditional statements, and lists suffice to give

us a Turing-complete programming language!

Variables, assignment (=), for, while, etc.

are all unnecessary!

