
THE CS 5 BLACK TIMES

Oceanside (UPI)—In an attempt to make up for

the chaos caused by her ill-behaved colleagues

during a Harvey Mudd College, a well-tanned

penguin took a group of first-year students on a

beach outing in which they learned to surf. “It

was awesome,” gushed one surfer. I stood up the

very first time and I would have made it all the

way in except that I slipped on some fish oil.”

Another beginner lauded the experience

even though he returned with gashes on his

chin. “I got to see the ocean from underneath!”

he exclaimed. “I had no idea there were fish

under there!”

Penguin Leads Surfing Trip

Read Sections

2.10-2.12

Getting Help and Office Hours

Come to office hours or set up

times to come talk to Geoff and

Zach! Also, grutoring hours

are great!

Be sure to put "CS5" in

your e-mail subject lines!

Check your e-mail

for Zoom links!

Filter

def even(x):

'''Returns True iff x is even'''

return x % 2 == 0

>>> list(filter(even, range(100)))

[0, 2, 4, 6, …, 98]

Java doesn’t

have a filter!

A function that returns
either True or False

Is called a predicate

Filter

def short(List):

'''Returns True iff List has len <= 2'''

return len(List) <= 2

>>> list(filter(short, [["spam", "yum"], [42], [1, 2, 3]]))

filter can be

written from

scratch using

recursion.

Functions are Data

def divides(n):

def div(k):

return n % k == 0

return div

>>> div10 = divides(10)

>>> div10

<function div10 at 0x661f0>

>>> div10(2)

>>> listOfFunctions = [divides(10), divides(20)]

>>> listOfFunctions[0](2)

Anonymous Functions

filter(def even(x): return x%2 == 0,

range(100))

filter(def (x): return x%2 == 0,

range(100))

filter(lambda x: x%2 == 0, range(100))

>>> lambda_dbl = lambda x: 2 * x

>>> lambda_dbl(21)

42

Alonzo Church

1903-1955

One line
no parentheses on the argument
return is implicit

Can filter

filter out the bugs

from my code?

Lambda

>>> list(filter(lambda x: x%2 == 0,

range(100)))

>>> list(filter(lambda List: len(List) <= 2,

[["spam", "yum"], [42], [1, 2, 3]]))

aka �anonymous functions�

Lambda

even = lambda x: x%2 == 0

def even(x):

'''Returns True iff x is even'''

return x % 2 == 0

short = lambda List: len(List) <= 2

def short(List):

'''Returns True iff List has len <= 2'''

return len(List) <= 2

Lambda Evil

def ugly(item, L):

newL = list(map(lambda x: x == item, L))

return sum(newL) > 0

This is exploiting the fact

that True == 1 and

False == 0.

Lambda

from functools import reduce

def mystery(item, L):

newL = list(map(lambda x: x == item, L))

return reduce(lambda x, y: x or y, newL)

MUCH better!

A Prime Example

Write a function called prime(n) that returns True if n is
prime and False otherwise by testing all possible divisors
from 2 to n-1 (or sqrt of n)

def prime(n):

possibleDivisors = range(2, n)

divisors = filter(lambda X: n % X == 0, possibleDivisors)

return ???

A version of
this was an
extra-credit
problem in

Homework 0!

22

The Alien's Life Advice

Ask lots of

questions!

That’s how
Hermione

learned so much!

Use-It-Or-Lose-It
Power Set!

>>> powerset([1, 2, 3])

[[], [3], [2], [2, 3], [1], [1, 3],

[1, 2], [1, 2, 3]]

>>> powerset([1])

>>> powerset([])

>>> powerset([1, 2])

[[], [2], [1], [1, 2]]

This really

demonstrates the

power of

functional

programming!

The order in which the subsets

are presented is unimportant

but within each subset, the

order should be consistent

with the input set.

Power Set!

def powerset(L):

In your notes…

The Knapsack Problem…

Kingdom of Shmorbodia

Item Weight Value

Spam 2 100

Tofu 3 112

Chocolate 4 125

Knapsack Capacity: 5? 6? 7?

>>> knapsack(7, [[2, 100], [3, 112], [4, 125]])

237

Prof. I. Lai thinks that

a �greedy solution� is

the way to go!

Worksheet and Demo

The Knapsack Revisited…

Kingdom of Shmorbodia

Item Weight Value

Spam 2 100

Tofu 3 112

Chocolate 4 125

Knapsack Capacity: 5? 6? 7?

>>> knapsack(7, [[2, 100], [3, 112], [4, 125]])

[237, [[3, 112], [4, 125]]]

Comparing DNA via Longest

Common Subsequence (LCS)

AGGACAT

ATTACGAT

>>> LCS("AGGACAT", "ATTACGAT")

5

>>> LCS("spam", "sam!")

3

>>> LCS("spam", "xsam")

3

I prefer

spam to an

xsam!

Recursive Approach…

def LCS(S1, S2):

if BASE CASE

else:

LCS("spam", "sam!")

Try this in your notes!
Solution follows

