
The CS 5 Times
“Zach and Geoff

to be Replaced by

Two Penguins,”

says HMC Dean

Claremont(AP): Beginning next

week, CS 5 will be taught by a

pair of penguins, announced an

HMC dean. “Penguins are very

smart,” said the dean, “and they

are also quite adorable, which is

more than we can say about the

CS 5 faculty. Plus, we won’t need
to heat their offices in the winter.”

Photos of the two new
CS 5 penguin
professors

Arts: New band “The Recursions” performs songs from

first album on first album.

Sports: HMC Web surfing

team advances to Nationals This Week

Homework 2:

• Reading on computer interfaces

• Lab: Fractal art

• Problem 2: Higher-order functions

• Problem 3: 42andme

• Problem 4: RNA folding

You����re ready
for this today!

You����re ready
for this today!

Thursday!

Speaking of Illness…

Please e-mail the prof as

soon as you feel bad!

Comparing DNA via Longest

Common Subsequence (LCS)

AGGACAT

ATTACGAT

>>> LCS(�AGGACAT�, �ATTACGAT�)

5

>>> LCS(�can�, �man!�)

2

Recursive Approach…

def LCS(s1, s2):

if BASE CASE:

???

else:

LCS(����spam����, ����sam!����)

Turtle Graphics

forward(100)

right(90)

Etch-a-Sketch craziness…

No way this is real…

except that it is !

Turtle Graphics

Turtle graphics are built into Python!

>>> import turtle

>>> turtle.forward(50)

>>> turtle.right(90)

>>> turte.backward(50)

Problem 2 has a link to the turtle

documentation

Fractals �I Wonder About Trees� – Robert Frost

�We wonder about Robert Frost� - Trees
>>> svTree(128, 6)

100 long!

svTree(50, 2)

svTree(25, 1)

>>> svTree(100, 3)

recursion leveltrunk length

>>> svTree(100, 3)

recursion leveltrunk length

100 long!

svTree(50, 2)

svTree(25, 1)

Tuples (�Immutable Lists�)

>>> foo = (42, 'hello', (5, 'spam'), 'penguin')

>>> foo

(42, 'hello', (5, 'spam'), 'penguin')

>>> foo[0]

42

>>> foo[-1]

'penguin'

>>> foo[0:2]

(42, 'hello')

>>> foo[0:1]

(42,)

Tuples (�Immutable Lists�)

>>> foo = (42, 'hello', (5, 'spam'), 'penguin')

>>> foo

(42, 'hello', (5, 'spam'), 'penguin')

>>> foo[0]

42

>>> foo[-1]

'penguin'

>>> foo[0:2]

(42, 'hello')

>>> foo[0:1]

(42,)

>>> foo[0] = 100

BARF!!!

Dictionaries

>>> D = {}

>>> D["Geoff"]= "spam"

>>> D["Zach"]= "donuts"

>>> D["Alien"]= 42

>>> D["Geoff"]

'spam'

>>> D["Alien"]

42

>>> D["Suicide Squad"]

BARF!

�Geoff�, �Zach�, and �Alien� are called the
�keys� in the dictionary. Any immutable

object can be a key.

Dictionaries

>>> D = {}

>>> D["Geoff"]= "spam"

>>> D["Zach"]= "donuts"

>>> D["Alien"]= 42

>>> D["Geoff"]

'spam'

>>> D["Alien"]

42

>>> D["Suicide Squad"]

BARF!

>>> D

{'Geoff': 'spam', 'Zach': 'donuts', 'Alien': 42}

Giigle maps

>>> FiveDists[("B", "C")]

42

Sometimes We Need to Make

More Than 2 Recursive Calls!

Finding Shortest Paths

������ �����	
� ���
���� �������� �����

� �� � �

� � ��

�

All roads point east!

��

Shortest path?

Is greed good?

How does the use-it-or-lose-it idea get used here?

Giigle maps

>>> shortestPath (FiveCities, FiveDists)

10

>>> shortestPath (["C", "D", "E"], FiveDists)

7

>>> shortestPath (["E"], FiveDists)

0

def shortestPath (cities, dists):
'''Returns the length of the shortest path

from the leftmost to the rightmost city in

in the cities list.'''

if BLAH:

return BLAH BLAH

else:

return BLAH BLAH BLAH

Just four lines

of code!!!

It�s fitting that
map gets used

here!

We Admit It’s Tricky

def shortestPath (cities, dists):

'''Returns the length of the shortest path

from the leftmost to the rightmost city in

in the cities list.'‘’

if len(Cities) <= 1:

return 0

else:

return min(map(

lambda hop: dists[(cities[0], cities[hop])]

+ shortestPath(cities[hop:], dists),

range(1, len(cities))))

SnowFlake Fractals

The Koch Snowflake Fractal:

level 0 level 1 level 2 level 3 level 4 level 5

Snowflake Fractals

The Koch Snowflake Fractal:

level 0 level 1 level 2 level 3 level 4 level 5

level 0

level 1

1/3 1/3 1/3

1/3 1/3

