Hw3—due Monday
evening—usual time

CS 5: now recurring...

Or re-cursing, depending on
your feelings about recursion! (1.],
-

Read Sections
’ _ 3.6-3.9
We're computationally

complete!

putting Python to work!
& adding building blocks

Functional Programming

>>> '"fun' in 'functional'
True

» Representation via list structures (data)
* Leverage self-similarity (recursion)

« Create small building blocks (functions)

Composed together —to solve /investigate problems

Functional programming

conceptually concise Vs. easiest for the computer...
functional procedural or sequential
Fa
S008 BG4
sum range sum wrange =
S
def sum(L) : Tf_ffé
i ? what's cookin' here?
"""Argument: L, a list of numbers =
Result: L's sum ~—
wun def range(low, high):
1 den(r) == 7 Base Case """Arguments: ints low and high
return 0

else:
return L[0] + sum(L[1l:])
N J

v
Recursive Case

Result: int list from low to high excluding hi

if low >= high:
return []
else:
return ?°?°?

List Comprehensions

Expression to
evaluate for each || Name for each
list element list element ‘ The list - or string to run ‘

N Y v

[2*x for x in [0, 1, 2, 3, 4, 5]]

List Comprehenion
[0, 2, 4, 6, 8, 10] result

What's the syntax
saying here? -

—

List Comprehensions

this "runner" variable can have any name...

‘ x takes on each value
What to do

O X
[2*x for x in [0, 1, 2, 3, 4, 5]]

and 2*x is result for each one ‘

R
[OI 2[4, 6, 8, 10]

output

List Comprehensions
[10*x for x in [0, 1, 2, 3, 4, 5] if x%2 == 0]

result

[y*21 for y in list (range(0, 3))]

result

[s[1l] for s in ["hi", "5Cs!"]]

result

LCs for Monte Carlo Analysis...

this line runs guess(42) 1000 times
LC = [countGuess (42) for x in range (1000)]

Let's look at the first ten of them:
print (LC[0:10])

Let's find the average:
print ("av. #guesses:", sum(LC) / len(LC))

Hah! Now see why they told me o n_sge "nye]
- aka. Run it a "zillion" times!

—

Zillion-times testing!
doubles-counting

this runs the doubles-counter 600 times..
cd_np (600) # np: no printing

Run _that_ 1000 times (600,000 rolls total!)
LC = [cd_np(600) for x in .range(1000)]

Look at the first 10 of these
print (LC[0:10])

the average #doubles
per 600 rolls

Then, find the average:
print ("avg. dbls (/600):", sum(LC) / len(LC))

Designing with LCs

for x in ,range(4)]
[o, 1, 2, 3]

write [

resut [0, 14, 28, 42]

write [

result [True, False, False, False, False, False,

for ¢ in 'igetthis']

True, False]

[1, 0, 0, o, 0, 0, 1, 0 1
And if we wanted the ints (inred)...?
. Short and sweet! 'se oia' .f
USlng LCS > e # of vowels / - I
— def wvwl(s):
‘//”'8'm IC = [for ¢ in s]
def funl (L) : return sum(LC)
ILC = [1 for x in L]
return sum(LC)
42 [3, 42, 5, 7, 42]
#of timeseisinlL /
P —— def count (e, L):
ILC = [for x in L]

'twelve'

/
def fun2(S):
LC = [letScore(c) for ¢ in S]

return sum(LC)

return sum(LC)

Write each of these functions using list comprehensions... GO ,

Argument: L, any list of numbers
Result: the count of odd numbersin L

def nodds (L) . Example: nodds([3,4,5,7,42]) ==
ILC = [for x in L]
return sum (LC)
Y are your #s W are the winning #s
Arguments: Y and W, two lists of "lottery"” numbers (ints)
. Result: the number of matches between Y & W
def lotto_sol (Y, W): Example: lotto([5, 7, 42,47),[3, 5,7, 44, 47]) ==
ILC = [
Argument: N, an int>=2
Result: the number of positive divisors of N
def ndivs (N) . Example: numdivs(12) ==6 (1,2,3,4,6,12)
ILC = [

Argument: P, anint>=2
Result: alist of prime numbers up to & incl. P
Example: primesUpTo(12)==[2,3,5,7,11] Extra!

def primesUpTo (P) :

Areas of 4 rectangles

areas from rectangles

y =2x

Areas of 8 rectangles

Name(s):

Q . / A range of list comprehensions...
ulZ . Write Python's result for each L.C.:

[n**2 for n in _range (0, 5)]

[42 for z in [0, 1, 2]] [z for z in [0, 1, 2]]

[s[1::2] for s in ['aces',6 '451!']]

[—7*b for b in range(-6, 6) if abs(b) > 4]

[a*(a - 1) for a in range(8) if a % 2 == 1]

Gotit. But what .Q
about that name? Q&

