The CS 5 Times

CS 5 and Physics
Penguins Stranded
in Spaceship Crash

Wellington (AP): Two HMC penguins
were missing after their spaceship lost
power and crashed into the southern ocean. “The CS
penguin had kindly offered a ride to her friend,”
blubbered a distraught professor, “and apparently he
was fiddling with the flight computer just before
takeoff. | don’t know what I'll do for classroom
examples now.”

With weather worsening, there is little hope for
rescue. A memorial service will be held Sunday in the
Hoch-Shanahan freezer.

This Week

Homework 3:
* Reading

* Black lab (Problem 1) is same as Gold this week

You’ re ready

% for this today!

You’ re ready

* Problem 2: Spel Chekking for this today!
* Problem 3: Word Break Thursday!

Beyond LCS: Edit Distance

>>> ED ("ATTATCG", "ACATTC")

4
ATTAT-CG The lower the edit
A-CATTC- - distance the better!
PN
=

Beyond LCS: Edit Distance

>>> ED ("ATTATCG", "ACATTC")
4

ATTAT-CG
A-CATTC-

>>> ED ("spam", "scramble")
5

Sp_am
scramble

spam —>

scam —>

scram —>

scramb —-> scrambl —-> scramble

Beyond LCS: Edit Distance

>>> ED ("span",

5

spam —>
scam —>
scram —>

"scramble")

scramb —-> scrambl —-> scramble

def ED(S1, S2):

if s1 == "'

return
elif S2 ==
return
elif S1[0]
return

222
":
2?7
== $2[0]:

27?72

else: # substitute, insert, or delete!

Worksheet!

Problem 2 This Week...

New! Millisoft Office, featuring

Millisoft Sentence (word processor)
Energy Dot (presentation software)
Succeed (spreadsheet software)

Spelling A La Millisoft (SPAM)

Aside: Another Way to map

def doubleList1(L):
return list(map(lambda x: 2*x, L))

def doubleList2(L):
return [2*x for x in L]

def doubleListFiltered(L):
return list(map(lambda x: 2*x, filter(lambda x: x |= 42, L)))

def doubleListFiltered2(L): These are called list
return [2*x for x in L if x |= 42] comprehensions!
]

:

=

A

Conditionalizing 1ambda

>>> list (map (lambda x: "nice" if x == 42 else “blech!%
[42, 7, 6, 42, 31))

[“nice”, “blech!”, “blech!”, “nice”, “blech!”]

>>> list (map (lambda x: "HM" if x == 42
else "PO" if x == 47
else x,

(42, 7, 6, 47, 31))
['HM', 7, 6, 'PO', 3]

>>> ["HM" if x == 42 else "PO" if x == 47 else x
for x in [42, 7, 6, 47, 31]
[*HM', 7, 6, 'PO', 3]

“Easy” Problems

Sorting a list of n numbers: [42, 3,17, 26, ..., 100]

nlog,n

Multiplying two n x n matrices:

“Easy” Problems

The Shortest Path Problem (i.e. “Google Maps”

)

W/‘ :

shortest paths

The “class” P

(c)
3527 1554 ARLH '
16809 5128 6 _ 1 Ogs
n 24610 7615 = n e
93212 9235 8 = _
n n n Edsgar Dijkstra
11 ” (11 ”
Easy” Problems Hard” Problems
“ Polynomial Time” = “Efficient” Snowplows of Northern Minnesota
Burrsbur
n, n%, n3 n% n>,... &
H bout thing lik sorting
ow al c;u something like fatrix Tundratown m _ Frostbite City
¢ |nlogyn’ X
..... multiplication —_—
=

_ E— Shiversville
Freezeapolis

Brute-force? Greed?

The Traveling Salesperson Problem

New York

San Francisco Moscow

Claremont
Brute Force? Greed?

The Hamiltonian Path Problem

Athens, GA ¢
William F/(owan
Hamilton
Homer, GA
Rome, GA
Damascus, GA
Bethlehem, GA
!
NSV
=

n2 Versus 2"

The Geoff-O-Matic performs 10° operations/sec

n=10 n=30 n =50 n=70
2 100 900 2500 4900
n <1sec <1sec <1sec <1sec
pli 1024 10° 101 102
<1sec 1sec 11.6 days 31,688
years

n! <1sec 10% years 107 years 10% years

Here’ s an Idea!

Let’ s just buy a computer
that” s twice as fast!

Size of largest problem
solvable with “old”
computer in one hour=§

=

n n? n3 n® 2n nl!

Size of largest
problem
solvable with “new” 25 1.41S 1.26S 1.15S S+1 S
twice-as-fast
computer in one hour

Snowplows and Traveling
Salesperson Revisited!

So are there polynomial time
algorithms for the Snowplow and
Travelling Salesperson, and

*%e, 7| Hamiltonian Path-Problems?l

Tens of thousands of other known problems go in this
cloud!!

Snowplow Problem «— Travelling

/ Salesperson
OF

'Pyblem
Hamiltonian Pat
W

: /

Problem

NP-complete
problems

Snowplows and Traveling
Salesperson Revisited!

If a problem is NP-complete, it doesn’ t necessarily
mean that it can "t be solved in polynomial time. It
does mean...

Tens of thousands of other known problems go in this
cloud!!

Travelling
(=]

" salesperson
Q O / Problem
Hamiltonian Pat /

Problem N

Snowplow Problem

NP-complete

\
problems

“] can’ t find an efficient algorithm. | guess
I” m too dumb.”

Cartoon courtesy of “Computers and Intractability: A Guide to the Theory of NP-Completeness” by M. Garey and D. Johnson

“I can’ t find an efficient algorithm because no such
algorithm is possible!”

Cartoon courtesy of “Computers and Intractability: A Guide to the Theory of NP-Completeness” by M. Garey and D. Johnson

“I can’ t find an efficient algorithm, but neither
can all these famous people.”

Cartoon courtesy of “Computers and Intractability: A Guide to the Theory of NP-Completeness” by M. Garey and D. Johnson

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS | NEWS&EVENTS = AWARDS = SCHOLARS = PUBLICATIONS

» Birch and Swinnerton-Dyer
Conjecture

In order to celebrate mathematics in the new millennium, The Clay » Hodge Conjecture

Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven v

Prize Problems. The Scientific Advisory Board of CMI selected these problems,

Millennium Problems

focusing on important classic questions that have resisted solution over the a
years. The Board of Directors g--€MI desigpated a $7 million pr\z‘e fund for the » Riemann Hypothesis
solution to these problems, wi Plocated to each. During the » Yang-Mills Theory

Millennium Meeting held on May 24266073t the Collége de France, Timothy

S1 million

Vinay Deolalikar

Are There Problems That Are Even
Harder Than NP-Complete?

Kryptonite problems?

Is LCS NP-Complete?

def LCS(S1, S2):
if S1 == "" or §2 == "":

return 0
elif S1[0] == sS2[0]:

return 1 + LCS(S1[1:], S2[1:])
else:

return max(LCS(S1, S2[1:]), LCS(S1[1:], S2))

Demo LCS
Two strings of length 100 nucleotides each...

>>> steps = 2**100

>>> speed = 3 * 10**9

>>> seconds = steps / speed 603@0Mspammme
>>> years = seconds / (60%60%24%365.25) gghm;gf;eeg;hyow

>>> years 365.25 days per year
13389807845846.213 13 trillion years!

>>>

LCS("spam", “pims”

/\

LCS (“spam”, “ims”) LCS (“pam”, “pims”)
v
LCS(spam , “ms " LCS(pam ’ “ims” LCS(“am", “ims”)
z////l k/////A\\\\\\\ jf\\
LCS (“pam”, “ms”) Lcs (“am” R “ims”)

AN

Dictionaries Revisited

>>> D = {“spam” : “yummy!”, (42, 42): “an important point”}

>>> D = {}

>>> D[“spam”] = “yummy!”

>>> D[(42, 42)] = “an important point”
>>> D[[1, 2]] = “but this is bad”
BARF'!

>>> "spam" in D
True

>>> 42 in D

False

>>> (42, 42) in D
True

>>> D[(42, 42)]

“an important point”

How Dictionaries Work: Hashing

def LCS(S1, S2):
if S1 == "" or S2 == "":
return 0
elif S1[0] == S2[0]:
return 1 + LCS(S1[1:], S2[1:])
else:
return max (LCS(S1, S2[1:]), LCS(S1[1:], S2))

Old slow version

>>> D
{"Ran": "spam", ..}
>> x = (1, 2)
>>> D[x] = "my tuple"
>>> D
{"Ran": "spam", (1, 2): "my tuple"}
Memory
locations
D ["Ran"] - 5999 1
D[x] = 2
D[(1, 2)]
3
3 5999

Imagine that we now changed x[0]=42 6000

memo = {} # global empty dictionary
def fastLCS(S1l, S2):
if (Ss1, S2) in memo:
return memo[(S1, S2)]

elif 81 == "" or 82 == "":
answer = 0
elif S1[0] == S2[0]:
answer = 1 + LCS(S1[1:], S2[1:])
else:
answer = max(LCS(S1l, S2[1:]), LCS(S1[1:], S2))
memo[(S1, S2)] = answer

return answer

@

New fast

““ . ”
memoized

version

Changing change

def change (value, coins):
if value <= 0:
return 0
elif coins == []:
return float ("inf")

loseIt = change(value, coins[1l:])

if value < coins[0]:
return loselt

else:
useIt = 1 + change(value - coins[0], coins)
return min (uselt, loselt)

Changing change

memo = {} # Empty dictionary coins must be a tuple rather
/ than a list!

def fastChange (value, coins):
if (value, coins) in memo:
return memo|[(value, coins)
elif value <= 0:
return 0
elif coins == []:
return float ("inf")

Finish writing this!

Geoff’s solution coming up...

Worksheet!

