SELF-DESCRIPTION

o
e P
ety

T
g%:

Read Sections &

41t0422 —

Computing as
composition

clay == functions

Looking Back

CS 101 Today

There are orly 10 types
of people 1n the world:
Those who understand binary
and those who don't.

ON A SCALECF {Tb 10,
HOW LIKELY 1S IT THAT
THIS QUESTION 1S
USING BWAR«'.J

wm’an?)

Some legs to stand on!

@B !tlooks like 'm ahead of this...

My top-10 list of
binary jokes...

Looking Forward

Computing as
representation

clay == data & bits

decipher
encipher sScore
™~
I letScore
crmtmg more and rOt (c n) prOgram
more capable /’ \ organization
COm])OSltIOI]S
ord
TP . .
how are even these blts) CII'CU]tS COmputeI‘
fundamentals Organization
physically realized ?!

Binary | Dec | Hex | Glyph
00100000 | 32 | 20 |(blank) (s+)
00100001 | 33 | 21 !
00100010 | 34 | 22
00100011 | 35 | 23 #
00100100 | 36 | 24 $
00100101 | 37 | 25 o value:
00100110 | 38 | 26 Tkt
o010 0111 | 33 | 27
00101000 | 40 | 28
00101001 | 41 | 29) type: str
00101010 | 42 | 2A . name:
0010 1011

Binary Storage & Representation

The SAME bits can
represent different
pieces of data,
depending on type

8 bits = 1 byte = 1 box

value
Y Q
A 42 o>
O (g
0‘\/ ,»0
o e
type: int o

name: But why
these bits?

The same bits are in each container.

each column
represents the
base's next power

S
. §$
S IS
Sy §8&ss &
SESESS £
£ eEFTS &S
&Q‘»"&QQ’:’:“
$EESSS
FEFF &L S 42
4 tens + 2 ones
sy & § 123
¢5~\¢°Q es
Fod s sS S
S8 e 88585 S
\abé‘éé‘yfg?@@g sé';@%g
$ § & $ <&
Fs&sFF&&s NG

Write 123 in binary...

1 hundred + 2 tens + 3 ones

base 1 .uumun FevePeeCTEPELER 111111111111 digits: 1 Beyond
Binary
32 16 8 4 2 1
base 2 —— 101010 digits:0,1
27 9 3 1
base 3 —— 1120 digits:0,1,2

Which of these isn't 42...7
222 60 54 46 39

and what are the bases of the rest?

o

o

0

[
RV ® e U s

0 42 digits:0,1,2,3,4,5,6,7,8,9

base 11

base 16

base
base
base
base

base
base

base

base

base

base

base

base

2
3
4
5
6
7

8
9
10
11
16

ww

128 64 32 16 8 4 2 1
8127 9 3 1

— 1120

64 16 4 1

—— 222

125 25 5 1

32

216 36 6 1

—— 110

49 7 1

60

64 8 1
81 9 1

46

100 10 1

121 11 1

39

256 16 1

2A

digits: 1 AII
digits: 0, 1

42s!
digits: 0,1, 2
digits: 0, 1, 2, 3

digits: 0, 1, 2, 3, 4

digits: 0,1, 2,3,4,5

digits: 0,1, 2,3,4,5,6

digits: 0,1, 2,3,4,5,6,7

digits: 0,1, 2,3,4,5,6,7,8

digits: 0,1,2,3,4,5,6,7,8,9

digits: 0,1, 2,3,4,5,6,7,8,9,A
Hexadecimal

Two symbols is easiest!

A computer has to differentiate
physically among all its possibilities.

0 1

two symbols ~ two different voltages

. . What digits are these? Eas)?‘-

Extra! Can you figure out the last binary digit (bit) of 53
without determining any other bits? The last two? 3? an

32s 16s 8s 4s

16s 8s 4s 2s
8s 4s 2s 1s

2s 1s top-level reality!
1s
in the end,
5 3 we need
"53"-worth
of value

Lab 4: Computing in binary

base 10 base 2
141 = '10001101"

numToBinary (N) :

N == . empty string means 0

Python did always look a
little shifty to me... t

~

Reasoning, bit by bit << >>
left-shift right-shift
left-shift by 1
11 3 <k<1

110 6 What does left-shifting do
to the value of a #?

left-shift by 2
11 3 << 2

If N is even, what
return '' is the final bit? LAY 12
?
right-shiftby 2 What does right-shifting
return numToBinary () + 2
101010 42 >> 2 do to the value of a #7
1010 10
return numToBinary () +
/ If N is odd, what
How much VALUE is left to convert!? is the final bit?
Reasoning, bit by bit << >> & Being bit-wise Try these for a bit...
left-shift right-shift and or

and or
(both) & | (either)

bitwise and bitwise and

5: 101 5 & 6 113 1011 11 & 5
& 100 4 &

bitwise or bitwise or

5: 100 5 | 6 1011 11 | 5

6: 110 5: 0101
| 111 7

| You don'tnead v o

| On't need to conver | o
) tto | : | e

L”P’l?f‘f}i&r i tocome , | 14: 1110 | Youdp peeq touse |

7 << 1 9: 1001 frr—ff‘,‘?iy,,f,‘%r,éf'f?fﬂvoz'f
left-shift

5 << 4 14 l 9

170 >> 2 14 89

In processors shifts, ands, ors, adds, and subtractions are very fast,
whereas multiplying, dividing, and mod are relatively slow.

N//4

Given this, what is a way to N* 7
compute these expressions
using only fast operations,

maybe in combination? N*17

N%$16

\
exera sneaky”

Intel x86 processor instructions Table C-16. General Purpose Instruction:

and their speeds (2014) Instruction Latency' Throughput
CPUID OF_3H OF_3H

ADC/SBB reg, reg 8 3
In processors shift, ADC/SBBregimm |8 2

ADD/SUB 1 05

and, or; add, and ANDIOR/XOR 1 o5
BSF/BSR 16 2

subtract are much e : =
fa ster than BTC/BTR/BTS 89 1

ad]

multiply, divide,

CMP/TEST 1 05
. DEC/INC 1 05

and mod, which \ MULr32 0 0
IDIV MOD is the same | 66-80 30

are relatively

slow.
N/4 [> N >> 2
Given this, what is a way to *
compute these statements N*7 |:>
using combinations from only
the fast operations above? N*17 |:>

N%16 [>

In binary, 'm an 11-eyed alien! Q

Name(s): QUiZ Y.

32 16 8 4

Convert these two binary 1 1 0 0 1 1 1 0 0 0 1 0 0 0

numbers to decimal:

32 16 8 4 2 1

Convert these two decimal
numbers to binary:

28, 101,

Add these two binary numbers: Multiply
these binary 1 0 1 1 O 1

101101 numbers: * 1110
+ 1110 - WITHOUT |

converting
i todecimal !
) 529
529 Hint: Remember * 42
+ 742 these'algorithms? 1058
1271 They're thesame | 2116
in binary! Extra! Can you figure out the last binary digit (bit) of 53

22218 without determining any other bits? The last two? 3?

