More **bits** of CS

Too many bits? **Compress!**

Below binary: **physical circuits**

Lab Debriefing & hw4pr2.py

```python
def numToBin(N):
    # Converts a decimal int to a binary string
    if N == 0:
        return ''
    elif N%2 == 0:
        return numToBin(N//2) + '0'
    else:
        return numToBin(N//2) + '1'
```

Bits' big idea

- **left-shifting by 1 doubles** a value
 - `42 << 1` 84
 - `1010100`

- **right-shifting by 1 halves** a value
 - `42 >> 1` 21
 - `10101`

How high can we count...?

<table>
<thead>
<tr>
<th>N bits</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>1</td>
</tr>
<tr>
<td>2 bits</td>
<td>11</td>
</tr>
<tr>
<td>3 bits</td>
<td>111</td>
</tr>
<tr>
<td>4 bits</td>
<td>1111</td>
</tr>
<tr>
<td>7 bits</td>
<td>111111</td>
</tr>
<tr>
<td>8 bits</td>
<td>1111111</td>
</tr>
<tr>
<td>31 bits</td>
<td>255</td>
</tr>
</tbody>
</table>
Insight Ancient Egyptian Multiplication

AEM/RPM algorithm

Write the factors in two columns.
Repeatedly **half** the LEFT and double the RIGHT. (just remainders...)
Pull out the RIGHT values where the LEFT values are **odd**.
Sum those values for the answer!

Why does this work?

a.k.a. Russian Peasants' Multiplication

Example

Insight AEM algorithm

Decimal

<table>
<thead>
<tr>
<th>21</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td>96</td>
</tr>
</tbody>
</table>

Binary

110, 6

0000, 12

11000, 24

000000, 8

+ 1100000, 96

1111110, 126

Although in ancient Egypt the concept of base 2 did not exist, the algorithm is essentially the same algorithm as **long multiplication** after the multiplier and multiplicand are converted to binary. The method as interpreted by conversion to binary is therefore still in wide use today as **implemented by binary multiplier circuits in modern computer processors**.

Hw4: images are just bits, too!

Hw4: **lossless** binary image compression

Binary Image

10101010
01010101
10101010
01010101
10101010
01010101

Encoding as raw bits

one big string of 64 characters

"10"

Binary Image

Encoding as raw bits

one big string of 64 characters

"001111"

If our images tend to have **long streaks of unchanging data**, how might we represent it more efficiently, **but still in binary!**

same-data streaks

compress

uncompress
If you use 7 bits to hold the # of consecutive repeats, what is the largest number of bits that one block can represent?

```
00010000
```

7 bits?

8-bit total data block

What if you need a larger # of repeats?
Try it!

frontNum(S) should return the number of times the first element of the argument `S` appears consecutively **at the start** of `S`:

Try writing the recursive function, **frontNum(S)**

```python
def frontNum(S):
    # 1 base case:
    if len(S) <= 1:
        return
    # or 2 base cases:
    elif S[0] == ____ :
        return
    else:
        return
```

Examples...

```python
>>> frontNum('111010')
4
>>> frontNum('00110010')
2
```

EXTRA! Can you change our algorithm so that compressed images are always smaller than the originals?
It's all bits!

even the string 'forty*two' is represented as a sequence of bits...

'forty*two'

011001100110111101110010011101000111100100101010
011101000111011101101111

All computation boils down to manipulating bits!

All computation is simply functions of bits

binary inputs A and B

output, A+B

If len(S) == 0: return T
if len(T) == 0: return S

eS = S[-1] # S ~ the "end of S"
eT = T[-1] # T ~ the "end of T"

if eS == '0' and eT == '1': return add10(S[:-1], T[:-1]) + '1'
elif eS == '1' and eT == '0': return add10(S[:-1], T[:-1]) + '2'
elif eS == '2' and eT == '1': return add10(S[:-1], T[:-1]) + '3'
elif eS == '3' and eT == '1': return add10(S[:-1], T[:-1]) + '4'
what if we have to carry to the next column?
elif eS == '3' and eT == '9':
 return

In a computer, each bit is represented as a voltage (1 is +3v and 0 is 0v)

(1) set input voltages
(2) perform computation
(3) read output voltages

Computation is simply the deliberate combination of those voltages!

Richard Feynman: “Computation is just a physics experiment that always works!”

Carrying on...

S = '23'
T = '19'

def add10(S, T):
 """Adds the *strings* S and T as decimal numbers"
 """
 if len(S) == 0: return T
 if len(T) == 0: return S
 eS = S[-1] # eS ~ the "end of S"
eT = T[-1] # eT ~ the "end of T"
 if eS == '0' and eT == '1': return add10(S[:-1], T[:-1]) + '1'
 elif eS == '1' and eT == '0': return add10(S[:-1], T[:-1]) + '2'
 elif eS == '2' and eT == '1': return add10(S[:-1], T[:-1]) + '3'
 elif eS == '3' and eT == '1': return add10(S[:-1], T[:-1]) + '4'
 # what if we have to carry to the next column?
 elif eS == '3' and eT == '9':
 return

hw4: addB
Our building blocks: **logic gates**

AND outputs 1 only if **ALL** inputs are 1

OR outputs 1 if **ANY** input is 1

NOT reverses its input

These circuits are **physical** functions of bits...

... and all mathematical functions can be built from them!
Quiz

Ancient Egyptian Multiplication!

AEM algorithm

Write the factors in two columns. Repeatedly **halve** the LEFT and **double** the RIGHT. (toss remainders...)

Pull out the RIGHT values where the LEFT values are **odd**.

Sum those values for the answer!

<table>
<thead>
<tr>
<th>Halver</th>
<th>DBler</th>
<th>(ans. should be 126)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>96</td>
<td>+ 96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>126</td>
</tr>
</tbody>
</table>

Example

Try it!

<table>
<thead>
<tr>
<th>Halver</th>
<th>DBler</th>
<th>(ans. ~ 165)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halver</th>
<th>DBler</th>
<th>(ans. ~ 240)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Extra: *Why does this always work?* **Hint:** it's binary!