More bits of CS

Reading:
Sections 4.2.3 thru 4.2.6
Too many bits? Compress!

Below binary: physical circuits

Circuit design, part1 | - -

R A . Tdellthisa Hw #4 due Monday
lEl Ezl s KNOT gate...
: i = . pro (reading) Abugand a crash!
SRR prl (lab) binary ~ decimal
pr2 conversion + compression
extra image processing...
~ T This O one \) o
Lots of tutoring hrs - join in... !
?[¥ vs T[F

Bits' big idea
" Concept

left-shifting by 1
doubles a value

right-shifting by 1
halves a value

Do | halve to

t remember this?

1 hope | don't have to
remember Lvs Rl

42 << 1

Aha! This can be implemented
Just with wiring!

Purgy,
ly
"'sfhanica,

Bitwise reason

'101010' =

in binary, columns double in value leftward

'1010100" =

'101010' =

in binary, columns halve in value rightward

'10101' =

No - it falls out!

Lab Debriefing & in
hwdpr2.py ntb (42) 42

ntb(21) + '0°
ntb(10) + '1°
ntb(5) + '0'
ntb(2) + '1'
ntb(1l) + '0'

ntb(0) + '1' '101010'"
f_H
e out

numToBin (N) :
"""Converts a decimal int to a binary string
mwnn
N == : v
N%2 == 0: numToBin (N//2) + '0°'
N$2 == 1: numToBin (N//2) + '1'

\ these are awfully similar... /

How high can we count...?

with 1 bit
2 bits

3 bits

4 bits

7 bits

8 bits

N bits

31 bits

I can see some patterns here —
even with one eye closed! el

~

1 1

11 3
111 7
1111 15

1111111 127

11111111 255

Insight Ancient Egyptian Multiplication Insight AEM algorithm

B dbler (ans. should be 126) AEM/RPM algorithm
21 X 6
Write the factors in two columns. Decimal BinaI‘y
halver dbler
21 6 Example Repeatedly halve the LEFT and
double the RIGHT. (toss remainders...) 1 1 0
Pull out the RIGHT values where 21 6 x 10101
the LEFT values are odd. _—
Sum those values for the answer! 21 6 110 6
10 12 0000
5 24 [i> 11000 24
2 48 000000
1 96 + 1100000 + 96
IIpHBeT - —
AMEpHKaHCKIN 1111110 126
-) CIyaeHTaM
(|
Coer) Although in ancient Egypt the concept of base 2 did not exist, the algorithm is essentially the
=] same algorithm as long multiplication after the multiplier and multiplicand are converted to
a.k.a. Russian Peasants’ : ; s . ; e
7 Gloes i vai? Multiplication Buddy, can you e binary. The method as interpreted by conversion to binary is therefore still in wide use today as
spareaneye? (ol Gmplemented by binary multiplier circuits in modern computer processors)
Hw4: images are just bits, too! Hw4: lossless binary image compression

10101010 R 00000000 same-data
<tj 00000000 streaks
11111111
00000000
00000000
10101010 00000000
01010101 [] 00001111
Binary Image Encoding as raw bits Binary Image Encoding as raw bits
one big string of 64 characters \ one big string of 64 characters

If our images tend to have long streaks of unchanging data, how
might we represent it more efficiently, but still in binary?

~

"1010101001010101101010100101010110101010010101011010101001010101" "0000000000000000111111111111111100000000000000000000000000001111 "

oy

o)

FER
Article Talk
% wo
j
Neass

= Run-length encodin
WIKIPEDIA _ g g
rom Wikipedia, the free encyclopedia

The Free Encyelopedia

If you use 7 bits to hold the # of consecutive repeats, what
is the largest number of bits that one block can represent?

00010000 o

Ll 7 bits: # of repeats

he .
intitial B bits?

pixel

8-bit total data block

What if you need a larger # of repeats?

hw4 pr2

"0000000000000000111111111111111100000000000000000000000000001111 "

a binary image

16 zeros 16 ones 28 zeros 4 ones
compress (I) : Wwhat helper
"""Returns the RLE of the function m\ght?

given binary|image I""" be useful here*
the "compressed" image:

"00010000100100000001110010000100"

16 16 / 28 4

uncompress (CI) :

"""Returns the binary image I
from the run-length-encode¢d,
"compressed" argument CI"'"

back to the original binary image

"0000000000000000111111111111111100000000000000000000000000001111"

16 zeros 16 ones 28 zeros 4 ones

T ' t , frontNum(S) should return the number of times the first element
ry l . of the argument S appears consecutively at the start of S:

Try writing the recursive function, £rontNum(S) Xamples

>>> frontNum('1111010')

4
>>> frontNum('00110010'")
2
frontNum(S) :
1 base case:
len(S) <= 1:
return
S[0] == :
return
shortest longest
\ /
: What are the BEST / WORST
compression results you can get
return for an 8x8 input image (64 bits)?

EXTRA! Can you change our algorithm
so that compressed images are always
smaller than the originals?

It's all bits!

images, text, sounds, data, ...

even the string 'forty*two' is represented
as a sequence of bits...

'forty*two'

\ O\
7

~/

011001100110111101110010011101000111100100101010011101000111011101101111

9 ASCII characters
8 bits each /

9*8 == 72 bits total

All computation boils down to manipulating bits!

In a computer, each bitis computation is simply the
represented as a voltage deliberate combination of
. . !

(1is +3v and 0is Ov) those voltages!

101010 (1)setinputvoltages

42
Q | | (2) perform computation

Lo
But what's this ADDER — b
Jo green thing? . o 8 |:> 5 1
~ circuit -
(3) read output
ﬁ voltages

9

001001 Richard Feynman: "Computation is just a
physics experiment that always works!"

All computa tion is simply functions of bits
binary inputs A and B output, A+B
00 00 000
00 01 s week 001
00 10 nis weel 010
00 AL e 01
01 01 010
01 10 L. 011
01 11 bitwise 100
10 00 addition 010
ig (1)3 function g%é
10 11 101
11 00 011
11 6 addB 17
11 11 110

A B

Carrying on... hw4: addB

S T
1231 B s '23'

adle%S, Tl)/: * ' 1 9 '
"""Adds the *strings* S and T —

as decimal numbers

wun

len(S) == 0: T
len(T) == O0: S
eS = S[-1] eS ~ the "end of S" eT ~ the "end of T"
eT = T[-1]
es == '0' eT == '1': add10(s[:-1], T[:-1]) + '1'
es == '1' eT == '1': add10(s[:-1], T[:-1]) + '2'
es == '2' eT == '1': add10(s[:-1], T[:-1]1) + '3’
elif eS == '3" eT == '1° add10(s[:-1], T[:-11) + '4'

what if we have to carry to the next column?
el es == '3 eT == '9':

Notice that this code doesn't
"understand” addition at all!

Our building blocks: logic gates

AND outputs 1 only
if ALL inputs are 1

AND

AND

OR outputs 1 if
ANY inputis 1

OR

NOT reverses
its input

NOT

These circuits are physical functions of bits...

... and all mathematical functions can be built from them!

Name(s)

21 X 6
21 6
10 12
5 24
2 48
1 96
11 X 15

(ans. should be 126)

126

(ans. ~ 165)

Quiz

Example

Try it!

Ancient Egyptian Multiplication!

AEM algorithm

Write the factors in two columns.

Repeatedly halve the LEFT and

double the RIGHT. (toss remainders...)

Pull out the RIGHT values where
the LEFT values are odd.

Sum those values for the answer!

halver dbler

12 X 20

Extra: Why does this always work?

(ans. ~ 240)

Hint: it's binary!

