The CS 5 Times o .\\

Penguin/Pig Gang Fight Brings ®
Violence to Claremont [

Victim of attack
Claremont (Farm News): Gang activity reached a new low
when an angry group of penguins viciously beat a pig, a
goose, and a duck in an apparently unprovoked attack.
Witnesses said that the gang of birds waddled up to the
victims, shouting something about an “invasion” and
threatening that they would “make bacon bits” and “have a
bit of foie gras.”

At first, the farm animals attempted to defend themselves,
but they found themselves outnumbered and were forced to
retreat into a nearby business, the Claremont Village Grill.
The owner of the business, Chef Boy Are We Hungry,
welcomed them with open arms. The pig soon escaped
through a back door, but the duck and goose have not been
seen. Relatives now fear the worst.

pushr Goes TO Memory

= ‘Hmmm CPU : :‘Hmmm RAM ‘%

rl ‘l;‘._i. [L4 (1) read rl
blah
|:| indirect 2 | blah
] st S Taeen si5mg
|:| followe Yy 4 pushzrr_ls rls
inerement 5 | blah

Iy
P!
5| 42

Ve
43 \

= ‘Hmmm CPU |

popr Comes FROM Memory

| |Hmmm RAM | ===

Vd / \
L — .
o] e [
8 \¢

~~—
Blah blah blah

43 |

calln = setn + jumpn!

WHO YOU‘ ‘GONNA (:ALL'?
Hmmm's call

A function call in
python:

puts NEXT line # into r14, Operation:
then jumps to line 4

def main():

/471-1 = input () 0 read rl
result = factorial (rl) 1 calln rl4 4
i rl3
print (resul
’_’—/_t-) 3 halt

def fa ial (rl) : 4
do work 5

do stuff and
answer in rl3

&

R

return result

Factorial: Function Call!

Hmmm CPU Hmmm RAM

r0 ‘ 0‘ 0 | read r1

1] calln r14(2€>

write rl3

Input value: x

rl‘ ‘

halt

Final result - return value - in progress

r13 \

setn r1l3 1

jeqzn rl 9
mul rl3 rl3 ril
addn rl -1

location / ling

ri4

jumpn 5

jumpx(rl4)‘/

O 00 N O O HMw

} input

function call
odfput

the
functign!

op

return

def main () :

Function Calls...
rl = input ()e— rl1=3

Chew on this...
rl3 = emma(rl) «— emma (3)
r

rl3 = rl3 + rl 'ﬂ’

print (rl3)

return
def emma(rl): «—— rl=3
rl = rl + 1 «— rl=4
rl3 = l)e«— sarah (4) r13=47

rl3 = rl3 + rl «—
return rl3

def sarah(rl): «—— rl=4
rl = rl + 42 «—— rl=46
rl3 = rl + 1 «——1rl13=47
return rl3 «—_return(47)

Function Calls...

def main () :

rl = input ()e—— rl=3
rl3 = 1) «e—emma(3) rl13=51
rl3 = rl3 + rl «—
print (rl3)
return
def emma(rl): «—— rl1=3
rl =rl + 1 «—— rl=4
rl3 = sarah(rl)e— sarah(4) rl13f47

rl3 = rl3 4+ rl «— rl3=51
return rl13 «— return(51)

def sarah(rl): «—— rl=4
rl = rl + 42 «—— rl=46
rl3 = rl + 1 «——1rl13=47
return rl3 «—_return (47)

Function Calls...

def main () :
rl = input ()e—— rl=3
rl3 = emma(rl) <«— emma (3) r13=51
rl3 = rl3 + rl «— rl13=54
print (rl3)

return 54
def emma(rl): «—— rl=3
rl = rl + 1 «—— rl=4

rl3 = sarah(rl)e— sarah(4) rl13=47
rl3 = rl3 + rl «— rl3=51
return rl13 «— return(51)

Cool, but how
does this work!?

def sarah(rl): «—— rl=4
rl = rl + 42 «—— rl=46
rl3 = rl + 1 «——1rl13=47
return rl3 «—_return(47)

The Stack!

C.L,

¢ AFLAC ShmAFLAC!
Be careful up there!
- Insert (

“push”)‘

Remove (“pop”)

Function Calls...

Hmmm code up here!

def main() :
rl = int (input()) rl=3

“h rl3 = emma(rl)

return

def emma (rl) :
rl = rl + 1

def sarah(rl):
rl = rl + ¥2
rl3 = rl +\1
return rl3

The stack in RAM!

Function Calls...

def main() :
rl = int (input())

def emma (r
rl = rl +
u~rl3 = sarah\(rl)
rl3 = rl3 +|\rl
return rl3

=8

def sarah(rl):
rl = rl + 42
rl3 =rl + 1
return rl3

rl3

return
address
rl4

The stack in RAM!

Implementing Functions

(1) Use r15 as the stack
pointer.

(2) Before the function call,
Store all “precious belongings”
to the stack—and increment r15

or some
other large-
enough
value

setn rl5 42

store the return address r14
and the inputs: r1, (x2), (£3)

|
pushr rl rl5

(3) Get r1, (x2), (x3), ... ready as function

“arguments.”
(4) Make the function call.
T ult, if any, will be in
rl3.
(5) After the function call

line # of

calln #/tcicuon

popr rl rl5

for each
item
stored

Now Without Pigs and Geese!
——J% It was better with pigs and geese!]%

-
T
‘ \ LL 00 setn rl5 42 # set stack pointer to 42
01 read ril # start of main
. . [02 pushr rl-==l5 # store rl on the stack]
def main(): 03 cally rl4 10] # call emma
rl = input () [04 popr\&l rly # load rl from the stack]
r13 = emma (rl) 05 adc.l rl3 3 rl # rl3 = rl13 + rl
06 write ril3
rl3 = rl3 + rl 07 halt 6‘ l/\ E/\ .
. (<] o
print (rl3) 08 nop) ’ "j
09 nop
return [
10 addn r # start of emma!
11 push r # store rl on the stack
def emma (rl) ° . {12 pushrrldx\;lS # save return addr on staclJ
rl =rl + 1 13 calln x4 20 # call sarah
\
r13 = sarah(rl) reston PopT oad ret addr from sStac
15 popr(rl £15 # load rl from the stack
rl3 = rl3 + rl 16 add r13 r13 rl # rl3 = rl3 + rl
return rl3 17 jumpr rld4 # return!
18 nop
| 19 nop
def sarah(rl):
_ 20 addn rl 42 # start of sarah!
rl = rl + 42 21 setn r2 1 # put 1 in a register
rl3 =rl + 1 22 add r13 rl r2
23 jumpr rl4 # return

return rl3

def fac(N):

Recursion?

if N <= 1:

return 1 I

else:
return N * fac(N-1)

fac (5)
"The Stack" /—/%
5 * fac(4)
/_/%
4 * fac(3)
f_/%
3 * fac(2)
Remembers P N
all of the 2 * fac(l)
individual A
calls to fac 1

Factorial via Recursion...

Python r1 (W)
r13 (Res) g
answer {jy = fac(n)
print (n, answer) W gde;Lr:;r;s

def fac(n): First let’ s try N=0 and then N=3

"""Recursive

n = int (input ())

factorial!"""
if n ==

return 1

Jjumpr rl4

else:
res ¢— fac(n-1)

jumpr rl4

return n*res

-
This is same as return n*fac(n-1)
but done in 2 steps...

Python Hmmm

match each piece of Python code with
Pyt h O n lhe Hmmm assembly code that H m m m
it.

b— rl 00 setn rl5 42

[n = int(input())]_______————————————-* 01 read rl

02 calln rl4 5

answer = fac(n) 03 write rl3
print (answer) 04 halt
def fac(n): 05 jnezn rl 8

06 setn rl3 1

"""Recursive factorial!"""
07 jumpr rl4

if n==
return 1 08 pushr rl rl5
09 pushr rl4 ril5
10 addn rl -1
else:
11 calln rl4 5
res = fac(n-1) 12 popr rl4 rl5

return n¥*res 13 popr rl rl5
14 mul rl3 rl3 rl
15 jumpr rl4

Try to align the
Python code to P

the Hmmm .
code \‘/—\l/l as shown in the next slide...

r13isthe r13isthe
Python Hmmm Python Hmmm
answer answer
r14is the ((00 setn r15 42] r14is the 00 setn rl5 42
n = int (input()) “return address” 01 read r1 n = int (input()) “return address’ 01 read rl
[-] } (02 calln r14(5)) - £) 02 calln rl4 5
answer = fac (n) r15is the 303 write rl3 answer = *ac (n) rl5is the 03 write r13
print (answer) “stack pointer” 04 halt [Pr int (answer)] “stack pointer” 04 halt
. —_— .
def fac(n): 05 jnezn rl 8 def fac(n): 05 jnezn rl 8
"""Recursive factorial!""" 06 %etn w13 1 """Recursive factorial!""" 06 %etn w13 1
07 jumpr rl4 07 jumpr rl4
if n==0: if n==0:
return 1 08 pushr rl ri15 return 1 08 pushr rl ri15

09 pushr rl4 rl5 09 pushr rl4 rl5

10 addn rl -1 10 addn rl -1

else: else:

11 calln rl4 5 11 calln rl4 5
res = fac(n-1) 12 popr rl4 ril5 res = fac(n-1) 12 popr rl4 rl5
return n*res 13 popr rl rl5 return n*res 13 popr rl rl5

14 mul rl1l3 rl3 rl 14 mul rl3 rl3 rl

15 jumpr rl4 15 jumpr rl4

r13isthe r13isthe
Python Hmmm Python Hmmm
answer answer
rlaisthe 00 setn rl5 42 ri4is the 00 setn rl5 42
n = int (input()) “return address’ 01 read rl n = int (input()) “return address’ 01 read rl
= fac(n) . 02 calln rl4 5 answer = fac(n) . 02 calln rl4 5
an-swer r15 is the 03 write r13\ _ r15is the 03 write rl3
print (answer) “stack pointer” 04 halt print (answer) “stack pointer” 04 halt
def fac(n): 05 jnezn rl 8 def fac(n): 05 jnezn rl 8
"""Recursive factorial!""" 06 éetn r13 1 """Recursive factorial!""" 06 éetn ri3 1
07 jumpxrl4 07 jumpr rl4
if n==0: if n==0:
return 1 08 pushr rl rl5 return 1

else:
res = fac(n-1)
return n*res

09
10
11
12
13
14
15

pushr rl4 rl5
addn rl -1
calln rl4 5
popr rl4 rl5
popr rl rl5
mul rl3 rl3 rl
jumpr rl4

else:

Prepare for function call! All [
precious belongings must

res = fac(n be saved on the stack!

08 pushr rl rl5
09 pushr rl4 ril5

return n*res

10 addn rl -1

11 calln rl4 5

12 popr rl4 rl5
13 popr rl rl5

14 mul rl3 rl3 rl
15 jumpr rl4

r13isthe
Python Hmmm
answer
rl4 is the 00 setn rl5 42
n = int (input()) “return address’ 01 read ril
= fac(n) X 02 calln rl4 5
answes ac rl5is the 03 write rl3
print (answer) “stack pointer” 04 halt
def fac(n): 05 jnezn rl 8
"""Recursive factorial!""" 06 setn ri3 1
07 jumpr rl4

if n==0:
return 1

else:
res = fac(n-1)
return n*res

08
09

pushr rl rl5
pushr rl4 rl5

10
11
12
13

addn rl -1

calln rl4 5
popr rl4d rl5
popr rl rl5

Python Hmmm
Python r13isthe Hmmm
answer
rl4isthe 00 setn rl5 42
n = int (input()) “return address’ g: ::i‘linriu 5
answer = fac(n) rl5 s the 03 write rl3

print (answer)

def fac(n):

“stack pointer”

04 halt

"""Recursive factorial!"""

if n==0:
return 1

else:

[res = fac(n-1) |

return n*res

05 jnezn rl 8
06 setn rl3 1
07 jumpr rl4

08 pushr rl rl5
09 pushr rl4 ril5
10 addn rl1 -1

(11 calin r14 5

12 popr rl4 rl5
13 popr rl rl5

14 mul rl3 rl3 rl 14 mul rl3 rl3 rl
15 jumpr rl4 15 jumpr rl4
13 is th 13 is th
Python r13 s the Hmmm Python r13 s the 'Hmmm |
answer answer
rlaisthe 00 setn rl5 42 ri4is the 00 setn rl5 42
n = int (input()) “return address’ g; ::iinriu 5 n = int (input()) “return address’
answer = fac (n) r15is the 03 write rl3 answer = fac(n) rl5is the 03 write r13
print (answer) “stack pointer” 04 halt print (answer) “stack pointer” 04 halt
def fac(n): 05 jnezn rl 8 def fac(n): 05 jnezn rl 8
"""Recursive factorial!""" 06 setn rl3 1 """Recursive 06 setn rl3 1
: 07 jumpr rl4
if n==0: 07 jumpr rl4 factoriall"""
return 1 08 pushr rl rl5 if n== 08 pushr rl rl5

Function call over! All
precious belongings
back into their
registers!

else:

res = fac(n-1)
return n*res

09
10
11

pushr rl4 rl5
addn rl -1
calln rl4 5

12
13

popr rl4 rlb5
popr rl rl5

)

14
15

mul rl3 rl3 rl
jumpr rl4

return 1

else:
res = fac(n-1)

[return n*res

09 pushr rl4 ril5
10 addn rl1 -1

12 popr rl4 rl5
13 popr rl rl5
——(14 mul rl13 rl3 rl

[15 jumpr rl4]

ene: Worksheet

Write down what happens in the registers and memory (the stack) as this program
runs. Remember that calln sets r14 to the address of the next instruction!

Program (“low part of RAM”)

CPU Registers Memory (“high part of RAM”)

00 setn rl5 42 The inputis 3. with labels “the stack"
01 read rl /

always-0 register
g§ cal!.ln rld 5 ro‘ O ‘ 42
write rl3
04 halt 43
argument: n
05 jnezn rl 8 rl‘ 44
06 setn r13 1 45
07 Jjumpr rl4 result, return value 46
-§ 08 pushr rl rl5 r13‘ 47
i
5[09 pushr ri4 ris
-‘_g“ 10 addn rl1 -1 return address (line #) 48
§|11 calln rl4 5 rl4 49
12 popr rl4 rl5
13 popr «rl rl5 50
14 mul rl3 rl3 rl Stack Pointer 51
15 jumpr rl4 rl5
52

How low could we start the stack? How deep does the stack get? What are the possible val

ues of r14?

Towers of Hanoi

This puzzle can
get Hanoi'ing!

hanoi (Disks, From, To)
hanoi(3, 1, 3)

Peg 1 Peg 2 Peg 3

Towers of Hanoi

This puzzle can
get Hanoi'ing!

hanoi (Disks, From, To)
hanoi(3, 1, 3)
1103

Peg 1 Peg 2 Peg 3

Towers of Hanoi

This puzzle can

get Hanoi'ing! hanoi (DiSkS; From, TO)

hanoi(3, 1, 3)
1103
1t02

Peg 1 Peg 2 Peg 3

Towers of Hanoi

Towers of Hanoi

This puzzle can hanoi (DiSkS, From, TO)
get Hanoi'ing! hanOi(S, 1 , 3)

1t03

1t02

3to2

Peg 1 Peg 2 Peg 3

This puzzle can hanoi (Disks, From, To)
get Hanoi'ing! hanOi(S, 1 , 3)

1t03

1t02

3to2

1t03

Peg 1 Peg 2 Peg 3

Towers of Hanoi

Towers of Hanoi

This puzzle can hanoi (Disks, From, To)
get Hanoi'ing! hanOi(S, 1 , 3)

1t03

1t02

3to2

1t03

2to1

Peg 1 Peg 2 Peg 3

This puzzle can hanoi (Disks, From, To)

get Hanoi'ing! hanOi(S, 1 , 3)
1t03
1t02
3to2
1t03
2to 1
2103

Peg 1 Peg 2 Peg 3

Towers of Hanoi

This puzzle can

hanoi (Disks, From, To)

get Hanoi'ing! hanOi(S, 1 , 3)

1103
1t02
3to2
1103
2to 1
2to 3
1to

Peg 1 Peg 2

7 =23-1 moves

Peg 3

The Hanoi Legend

The puzzle was invented by the French mathematician Edouard Lucas in 1883. There is a legend about a Vietnamese or Indian temple which
contains a large room with three time-worn posts in it surrounded by 64 golden disks. The priests of Brahma, acting out the command of an
ancient prophecy, have been moving these disks, in accordance with the rules of the puzzle. The puzzle is therefore also known as the Tower of
Brahma puzzle. According to the legend, when the last move of the puzzle is completed, the world will end. It is not clear whether Lucas invented
this legend or was inspired by it. The Tower of Hanoi is a problem often used to teach beginning programming, in particular, as an example of a
simple recursive algorithm.

If the legend were true, and if the priests were able to move disks at a rate of one per second, using the smallest number of moves, it would take
64
200 -1 NG
60 x 60 x 24 x 365.2425

them 2%4-1 seconds or roughly 600 billion years (operation taking place is

3 1 3
hanoi (Dﬂsks, Fram, fb)
if Disks ==

print (str (From) + "," + str(To))

return
else:
COMPUTE “Other” peg

hanoi (Disks—-1, From, Other)

hanoi (1, From, To)

hanoi (2, 1, 2)
hanoi(1, 1, 3)
hanoi (1, 1, 2)
hanoi (1, 3, 2)

hanoi (Disks-1, Other, To)
return

Peg 1 Peg 2

hanoi(1l, 1, 3)

———— hanoi(2, 2, 3)

Peg 3

What’ s Next?

Cool application areas...
» Data compression
* Secret sharing
* Al and games

Object-oriented programs (OOPS!)

Limits of computation: Are there things
computers cannot do?

