
The CS 5 Black Gazette

CS 5 Penguins Fail

to Return from Fall

Break in Arctic

Claremont (AP): The two

official CS 5 “Black” penguins

failed to return from their fall-

break trip to the Arctic Circle.

“They went up to Northern

Alaska for a little R&R before

the second half of CS 5,” sniffled

one of the CS 5 professors.

“They said they were going to

just chill and maybe play a few

practical jokes. I can’t imagine what

could have happened to them!”

�������������	
�������
�
����

�
��������
���
���
���

����
������������
�����

Read Sections

5.1-5.3

Loops!

Mystery 1 ������������	�
��
����

>>> leppard(�hello�)

>>> leppard(�hello to you�)

��� ����������	
���
	��

������
���
	 ����

��� ��������
 ��	
���
	�

�� ��������������

������
���
	 ��������
���
	 �������

�����

������
���
	 ��������
���
	 ��������

���
��������
���
	�

����������������������������������

��� ��������������

��� � �
 ��
	����
��������

�� ��������
����
 �������

�����
 ����� ����������������������!��

�����
�����

Mystery 2 ������������	�
��
����

>>> spamify(�oui�)

>>> spamify(�hello�)

>>> spamify(�aardvark�)

����
����
�
���	����

���return �������

for

for <variable> in <iterable>:

Do stuff!

for symbol in �blahblahblah�:

for element in [1, 2, 3, 4]:

for index in range(42):

Three uses of for! Three uses of for!
���������	
������

��
����
��	�����

import random

def play():

print("Welcome!”)

secret = random.choice(range(1, 100))

numGuesses = 0

userGuess = 0

while userGuess != secret:

userGuess = eval(input("Enter your guess: "))

numGuesses += 1

if userGuess > secret:

print("Too high”)

elif userGuess < secret:

print("Too low”)

print("You got", secret, "in", numGuesses, "guesses!”)

print("Thanks for playing!”)

Move Over XBox!

Printing strings, numbers, etc.

def safeDivide(x, y):

try:

return x / y

except:

print("Don't DO that!”)

return float("inf")

Try-als and Tribulations

def saferDivide(x, y):

try:

return x / y

except ZeroDivisionError:

print("Don't DO that!”)

return float("inf")

def safestDivide(x, y):

try:

return x / y

except ZeroDivisionError:

print("Don't DO that!")

if x == 0:

return float("nan")

else:

return float("inf")

except (ValueError, TypeError):

print("That's just silly")

return float("nan")

except:

print("I don't know what happened")

raise

An Exceptional Program

import random

def play3():

print("Welcome!”)

secret = random.choice(range(1, 100))

numGuesses = 0

userGuess = 0

while userGuess != secret:

userGuess = input("Enter your guess: ")

try:

userGuess = int(userGuess)

except ValueError:

print("Please enter a number”)

continue

numGuesses += 1

if userGuess > secret:

Rest of program is the same...

Input Validation

def count_to_n(n):

assert n > 0

for i in range(1, n + 1):

print(i)

def fact(i):

assert n >= 0

if n <= 1:

return 1

return n * fact(n – 1)

assert fact(0) == 1

assert fact(7) == 5040

Getting assertive

Good Design

Programs must be written for people to read, and only

incidentally for machines to execute. - Abelson and Sussman

1. Design your program �on paper� first. Identify the separate logical parts and the arguments and
return value for each part.

2. Once your design is established, write the function �signatures� (function name, arguments) and
docstrings.

3. Fill in the code for a function, test that function carefully, and proceed only when you are
convinced that the function works correctly.

4. Use descriptive function and variable names (how about x, stuff, florg, jimbob ????))))....

5. Don�t replicate functionality. Break out repeated code into helper functions. (Often happens
after the fact!)

6. Keep your code readable and use comments to help! # Here�s one now!

7. Use whitespace liberally.

8. Avoid global variables unless absolutely necessary! Instead, pass each function just what it
needs.

9. Use recursion, list comprehension, and functional constructs (e.g. map, reduce, filter, lambda)
where appropriate.

An Example… Tic tac toe

Objective: Write a tic-tac-toe program that lets two human players play, and
stops when a player has won.

Functions:

main(): Welcomes user, plays a game, asks if we want to play again

welcome(): Prints the welcome message

playGame(): Maintains a board and plays one game

getMove(board, player): Queries the player (1 or 2) for their move

and changes the board accordingly

printBoard(board): Takes a board as argument and displays it

gameOver(board): Evaluates a board to see if game over

Tic-tac-toe by Ran Libeskind-Hadas

debug = True

def main():

"""Play tic-tac-toe with a human"""

welcome()

while True:

if debug: print("About to enter playGame”)

playGame()

response = input("Would you like to play again? (y or n): ")

if response not in ["y", "Y", "yes", "Yes����, ����Yup����, ����si����, ����oui����, ����youbetcha����]:

print("Bye")

return

def welcome():

"""Prints the welcome message for the game.

We might also print the rules for the game and any other

information that the user might need to know."""

print("Welcome to tic-tac-toe!")

def playGame():

"""Play one game of tic-tac-toe"""

if debug: print("Entering the playGame function")

board = [[" ", " ", " "], [" ", " ", " "], [" ", " ", " "]]

player = 1

while not gameOver(board):

print("The board looks like this:”)

printBoard(board)

getMove(board, player)

if player == 1: # Can this be done with clever arithmetic?

player = 2

else:

player = 1

Tic-tac-toe by Ran Libeskind-Hadas

debug = True

def main():

"""Play tic-tac-toe with a human"""

welcome()

while True:

if debug: print("About to enter playGame”)

playGame()

response = input("Would you like to play again? (y or n): ")

if response not in ["y", "Y", "yes", "Yes����, ����Yup����, ����si����, ����oui����, ����youbetcha����]:

print("Bye")

return

def welcome():

"""Prints the welcome message for the game.

We might also print the rules for the game and any other

information that the user might need to know."""

print("Welcome to tic-tac-toe!")

def playGame():

"""Play one game of tic-tac-toe"""

if debug: print("Entering the playGame function")

board = [[" ", " ", " "], [" ", " ", " "], [" ", " ", " "]]

player = 1

while not gameOver(board):

print("The board looks like this:”)

printBoard(board)

getMove(board, player)

if player == 1:

player = 2

else:
player = 1

What����s this?!

How �bout:
row = [" ", " ", " "]

board = [row, row, row]

Or

board = [[" ", " ", " "]] * 3

def gameOver(board):

"""Returns False if the game is NOT over. Otherwise, prints a message

indicating which player has won and then returns True indicating that the

game is over. THIS FUNCTION IS NOT IMPLEMENTED CORRECTLY!"""

return False

def getMove(board, player):

"""Takes the board and the current player (1 or 2) as arguments.

Asks the player for a move. If it's legitimate (position

exists and is empty), updates the board. Otherwise, the player

is queried again until a valid move is provided."""

print(����Player ���� + str(player) + ����'s turn����)

while True:

def printBoard(board):

Fill these in!

print() # new line!

Coming Lab Problem: The Mandelbrot Set

Consider some complex number C

z0 = 0

zn+1 = zn
2 + C

For which values of C does this not diverge?

Real axis

Imag axis

C

Consider some complex number C

z0 = 0

zn+1 = zn
2 + C

For which values of C does this not diverge?

Hey,

that�s a

fractal!

Lab Problem: The Mandelbrot Set

Image courtesy of Aaron Gable, CS 5 Black

Image courtesy of Aaron Gable, CS 5 Black

