CS5 Coding in circles! Read

Section 5.3

Thinking loopily ___ and cumulatively

DO ds natural t |
M) sounds natural to me e
C g

Today Loops have arrived...

This week + next: putting loops to good use:

Hmmm-thinking in Python

/Loops in Python \ / Jumps in Hmmm \

def fac(x): 00 read rl
result = 1 01 setn r13 1
while x != O: rl 6
result *= x 03 mul rl3 rl3 rl
x =1 04 addn rl1l -1
return result 06 write ril3
07 halt
It figures a Python would prefer /
looping to jumping!

~

Iterative design in Python

for x in [40, 41, 42]:

for print (x)
jumpn, jeqzn,
x = 42
. while x > O:
while print (x)
x -=1

The initial value is
often not the one

/we want in the end.

_ = 41 addn rl 1
variables vary

x\+= 1

But we change it as we go...

This slide is

four for for! é
for loops: examples... oo

x [2, 4, 6, 8]:
print('x is', x)

y [7]1*6:
print (y)

c 'down with loops!':
print (c)
How could we get
i / t?‘ilselso?op to run 42
print (i)

There is a range of answers to this one...

It's what the fox £

for ' says: Duck!
.

1 X is assigned each value
from this sequence

NN

% x [2, 4, 6, 8]: 3

\ LOOP back to
. the top for
This is the v] v .
#1 for-loop (X 1s ’ X) EACtE‘;/iLLie n
error! < The BODY or BLOCK of the
(what? for loop runs with that x
why?)
v v
\ ('Done! ')
4 Code AFTER the loop will not run Anatomy?
until the loop is finished.
Empty?
x unused?

That's why they're called variables

Only in code can one's
newer age be older than

age = 41 The "old" value (41) one'solderage! o2

~

age age + 1
age += 1

The "new" value (42)

Python shortcuts

hwToGo = 7
hwToGo = hwToGo — 1 hwToGo —= 1
amoebas = 100000

*=
amoebas = amoebas * 2 amoebas 2

u235 = 10000000000000

u235 / 2 u235 /= 2

Four questions for for

print('x is', x)

avoid writing the whole list?
find the sum of the list?
showing partial sums?

factorial function?

fac with for

fac (N) : Hey!? This is not

£ the right answer...
YET

—

result =1
X list (range (1, N + 1)) :
result = result * x

result

for: two types

L[O] L[1] L[2] L[3]
L = [3, 15, 17/ 7]
0 1 2 3
N
1

for i in Iii‘ange(len (L)) :
print ()

Index-based loops

for x in L:

. Element-based loops
print (x)

Simpler vs. More Flexible

def sum(L): def sum(L):
total = 0 total = 0

list

for x in L: for i in 'range(len(L))

total += x total +=
return total return total

Element-based loops Index-based loops

Extreme Looping

Anatomy of awhile

print ('It keeps on')

The loop keeps on running
. while 4141 == 42: / as long as the test is True
while ¢ s .
print ('going and\)\
lOOp Other tests we
bOdy could use here?

print ('Phew! I\'m done!')

This won't print until the while loop finishes -
In this case, it never prints! I'm whiling away my

time with this one! s

~

Escape ?!

import random Starting value, not the

final or desired value!
escape = 0

Test to see if we keep looping
while escape != 42:

print ('Help! Let me out!')
escape = random.choice([41, 42, 43])

Watch out for infinite loops!

print (*At last!®) After the loop ends

How could we count the number of loops we run?

How could we make it easier/harder to escape?
dom.uniform!

What do these two
loops return?

Try these...

Letword= 'forty-two'

}

def count (word) :
n=20
for ¢ in word:
if ¢ not in 'aeiou':
n += 1

return n

letn=12 Letn=8

—

def mystery(n):
while n > 1:
if n%2 == 0:
n =n//2
else:
return False

12 8

return True

Challenge: for what values of n does mystery return True?

Finish this loop to find and return the min of a list, L
L will be a non-empty list of numbers.
def min (L) :
result = L [0] What to check about x?

x L: z//

| S
What to do?

result

Extra: Write a loop so that this function returns
True if the input n is prime and False otherwise

n will be a positive

def isPrime (n) : integer >=2

Hint: check all possible divisors to see if they "work"...

Name(s):

QUIZ What does the loop say?
res. X X i
result =1 x =0
x [2, 5, 1, 4]: i list (range (4)) :
result *= x x += 10
(result) (x)
L = ['golf',6 'fore!', 'club', 'tee'] S = '"time to think this over! '
i list (range (len(L))): result = '' 25
i%2 == list (range(len(S))):
(L[i]) i i%2 L[i] S[i-1] == "' ' onw\adderasneeded

These seem unexpected,
but only at first... 2

=

Extra!

result += S[i]

(result)

eoks!

mns etnsr

