The CS 5 Black Gazette

CS 5 Penguins Located at Massive Penguin Party
(AP) The two missing CS 5 "Black" penguins surfaced on a large ice floe near Antarctica. Authorities indicated that an enormous penguin dance party was underway there that would likely last well into Novembrrrr. The CS 5 instructors were relieved to hear that the penguins are safe. "I'm glad they're OK, but I'm a bit disappointed that I wasn't invited to this very 'cool' party," said one of the profs

About the Midterm

- Thursday, October $22^{\text {nd }}$
- Comprehensive through 10/15
- You should definitely know:
- Recursion (including multiple base cases)
- map, reduce, filter, lambda
- List comprehension: [x*2 for x in L]
- Higher-order functions (functions that return functions)
- Use-it-or-lose-it
- World's most important society for computer scientists
- Publishes cutting-edge research
- Many, many benefits

Just visit https://www.acm.org/studentjoin

It's easy...and free!

More You Should Know

- Logic circuits
- AND, OR, NOT
- Writing truth tables
- Minterm expansion principle
- Using AND and OR to choose an output
- Hmmm programming
- Recursion techniques
- Conditional jumps
- (We will supply a Hmmm reference sheet)

Yet More

- Simple imperative programming
- Assignment statements
- If/else/elif
- For loops (for i in iterable)
- While loops
- Break and continue
- Return from inside loops
- Try/except

Your Cheat Sheet

You're allowed ONE sheet of 8.5×11 paper, with contents up to you

Gradescope Setup

- Exam will be released on $10 / 21$ at 8 AM
- Due time will be 10/22 at 1:00 PM
- If you want during-exam support, take it in class on Thursday morning (I will be there to answer questions in the chat)
- Otherwise feel free to sleep in!
- Closed book, under HMC Honor Code (see next slide)

Deep vs. Shallow Copy

Deep vs. Shallow Copy

\ggg from copy import $* \quad$ foo \longrightarrow bar \longrightarrow [1, 2, 3]
\ggg foo $=[1,2,3]$
\ggg bar $=$ deepcopy (foo)
\ggg bar $[0]=42$
>>> foo
[1, 2, 3]

Isn't Mutability Always Preferable?

```
def ben(List):
    List = ["yowza!"]
def jerry():
    myList = [1, 2, 3]
    ben(myList)
    print("My list is", myList)
>>> jerry()
My list is [1, 2, 3]
```


Isn't Mutability Always Preferable?

```
def ben(List):
    if List != []:
        List[0] = -1
def jerry():
    myList = [1, 2, 3]
    ben(myList)
    print("My list is", myList)
>>> jerry()
My list is [-1, 2, 3]
```

Isn't Mutability Always Preferable?
def ben(x):
$x=43$
def jerry():
myNum $=42$
ben (myNum)
print("My number is", myNum)
>>> jerry()
My number is 42

Type Casting

```
>>> int(1.3)
1
>>> str(1.3)
'1.3'
>>> str(2+3j)
'(2+3j)'
>>> str([1, 2, 3])
'[1, 2, 3]'
>>> str("hello")
'hello'
>>> int("hello")
Traceback (most recent call last):
    File "<stdin>", line 1, in ?
ValueError: invalid literal for int(): hello
```


Input and Output

def get_input():
"""Takes no arguments. Queries user for name and age and returns a list [name, age] where name is a string and age is an integer. "'"'"
name = input("Enter your name: ")
age = int(input("Enter your age: "))
return [name, age]
Worksheet: write a function that asks the user for a number n , asks the user to enter n integers, and returns the list of those \mathbf{n} integers. Be robust against input errors. Helper functions encouraged!

Non-Built-In "Types"

```
>>> from decimal import *
>>> getcontext().prec = 20
>>> x = Decimal(1)/Decimal(3)
>>> x
Decimal("0.33333333333333333333")
>>> x + 1
Decimal("1.3333333333333333333") >>> Decimal(0.333)
>>> int(x)
0
>>> float(x)
```

0.33333333333333331
>>> str (x)
'0.33333333333333333333'

Funky Series!

- Harmonic Sequence:

$$
1 / 1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6+\ldots
$$

- Without composites (primes only):
$1 / 1+1 / 2+1 / 3+1 / 4+1 / 5+1 / \$+1 / 7+\ldots$
- Without 9's...

$$
\begin{aligned}
& 1 / 1+1 / 2+\ldots+1 / 8+1 / 8+\ldots+1 / 18+1 / 2 \theta+ \\
& \ldots+1 / 88+1 / 89+1 / 88+1 /{ }_{1}+\ldots
\end{aligned}
$$

