CS 5: Putting loops to work...

[-35, -24, -13, -2, 9, 20, 31, ?]
[26250, 5250, 1050, 210, ?]
[90123241791111, 93551622, 121074, 3111, ?]

[1,11, 21, 1211, 111221, ?] What's next?
I'm glad you asked!

~

Reading: Section 5.5

def fac(N):
result = 1

for x in range(l, N + 1):
LOOpS result *= x

n the other?

def fac(N):
if N ==

Recursion = ===

return N * fac(N - 1)

elements vs. indices

L[0] L[1] L[2] L[3]
L = [3, 15, 17, 7]
Zggé%;::zi”/a3
x f/'/7
i
def sum(L): def sum(L):

total = 0 total = 0

for i in range(len(L)):
total += LJ[i]

return total

for x in L:
total += x
return total

element-based loops index-based loops

User input...

meters = input ('How many m? ')
cm = meters * 100

print ('That is', cm, 'cm.')

Wh at wi II Pyt h on th in k ? i ——— f

Fix #1: convert to the right type

m_str = input ('How many m? ')
meters = float (m_str)

cm = meters * 100
print ('That is', cm, 'cm.')

'42" 42.0 4200.0
name: m_str name: meters name: cm
type: string type: float type: float
put crash-able

Fix #2: convert and check

m_str = input ('How many m? ')

try:
meters = float (m_str)
except:
print ("What? Does not compute!")
print ("I don't get", m_str) "
print ("Setting meters = éﬁu@“ﬂwiﬁiﬁw
meters = 42.0 am:;xﬁémmm“
cm = meters * 100
print ('That is', cm, 'cm.')

Fix #3: eval executes Python code!

m_str = input ('How many m? ')
try:

meters = eval (m_str)
except:

print ("What? Does not compute!")
print ("I don't get", m_str)
print ("Setting meters = 42")
meters = 42.0

cm = meters * 100

Lld go wrone here?
. - O
print ('That is', cm, 'cm.')Whe

A larger application

def menu() :
"""Prints our menu of options."""
print (" (0) Continue")
print (" (1) Enter a new list")
print (" (2) Predict")
print (" (9) Break (quit)")

def main() :

"""Handles user input for our menu."""

while True:

Calls a helper
«——
menu () function

uc = input ('Which option? ')

/ try:

Perhaps uc the _____—>uc = int (uc)

£ reason for this? except

~

print ("I didn't understand that")
continue

Functions you'll write

Menu

(0) Input a new list
(1) Print the current 1list
(2) Find the average price

(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan

(9) Quit
Enter your choice:

import webbrowser &£
webbrowser.open_new_tab (url) =

Alluse loops...

def average (L)

def stdev (L)

2 (L[i] - L_)?

i

len (L)

def minday (L)

def maxday (L)

6is

returned

minloec =0 —— =2 =6 —
i day diy diy d§y d‘a‘y dgy dgy d;y

L = [40, 80, 10, 30, 27, 52, 5, 15]

s R

40 10

minval

track both day
and price

def i_min (L) :
minval = L[?/
minloc 0]
for i in range(len(L)): «— loop!
if

> update when

. needed
return minloc

Write mindiff to return the smallest abs. diff.
between any two elements from L.

def mindiff (L) :

m = abs(L[1]-L[0])

for i in range(len(L)) :

for j in range(

if

return m

’

len(L)) :

mindiff([42,3,7,100,-9])
4 ot
L

Hint: Use nested loops:

for i in range(4):

for j in range(4):

Track the value of the
minimum so far as you

loop over L twice...

What is the best
TTS investment
strategy here?

The TTS advantage!

Your stock's prices: L = [40, 80, 10, 30, 27, 52, 5, 15]

Day Price

0 40.0 for each buy-day, b:

1 80.0

2 10.0 for each sell-day, s:

3 30.0 compute the profit

4 27.0 rent

5 52.0 if it's the max-so-far:

6 5.0 remember it in a variable!
7 15.0

Important fine print:

To make our business plan realistic, however, we only allow selling after buying.

Full program example of user interactions

def menu() :
"""A function that simply prints the menu"""
print ()
print (" (0) Continue!")
print (" (1) Enter a new list")
print (" (2) Predict the next element")
print (" (9) Break! (quit)")
print ()

main function

user—-interaction loop"""

def main() :
"""A sample ma
print ()
print ("++++HHHHtH)
print ("Welcome to the PREDICTOR!")
print ("+++++H+HttH bbb E)
print ()

secret_value = 4.2

L = [30, 10, 20] # an initial 1list

while True: # the user-interaction loo while True:
print ("\nThe list is", L)
menu ()
uc = input ("Choose an option: ")
"clean and check" the user's input
#
try:
uc = int (uc) # make into an int!
except:
print ("I didn't understand your input! Continuing..
continue
run the appropriate menu option (3)VVhatlhugofc0de
runs after this break ?
if uc == 9: #-we want to quit
break # leaves the while loop altogether
elif uc == 0: # we want to continue...

continue # goes back to the top of the while loop

(5) What could you
type for newlL that
would print this?

(1) Which block below handles an input of 7 ?

(4) What could you
input for newL that
would print this?

L.")

L.")

(6) predict is a function defined
elsewhere (off this page). Find the
two other functions called here, but
defined elsewhere. They both
include find in their names!

(2) What does choice 0 not print that 3 does?

elif uc == # we want to enter a new list
newlL = input ("Enter a new list: ") # enter _something_

"clean and check" the user's input

#
try:
newL = eval (newL) # Note: Danger!
if type (newl) != type([]):
print ("That didn't seem like a list. Not changing
else:
L = newL # things were OK, so let's set L
except:
print ("I didn't understand your input. Not changing
elif uc == # predict and add the next element
n = predict (L) # get next element from predict function
print ("The next element is", n)
print ("Adding it to your 1list...")
L =1L + [n] # and add it to the list
elif uc == 3: # unannounced menu option!
pass # this is Python’s "nop" (do-nothing) statement
elif uc == 4: # intersting unannounced menu option
m = find_min (L)
print ("The minimum value in L is", m)
elif uc == # more interesting unannounced option
minval, minloc = find_min_loc (L)
print ("The minimum in L is", minval, "at day #", minloc)
else:
print (uc, " ? That's not on the menu!")
last line of while True loop
print ("\nRunning again... !\n")

print ()
print ("I predict...

\n\n that you'll be back!")

(EC) How could a user learn the
value of secret_value if they
knew that variable name and
could run the program—but
didn't have this code?

Finish this code to return the
index (location) of L's min.

>>>i min([9, 8, 5, 7, 42])
2

def i_min (L) :

minval L[O]

minloc = 0

for i in IiSrEange(Ien(L)):

if

minval

minloc

return minloc

Hints:
track of the minimum value in minval
track the location of the min inside minloc

What does this print?

for 1 inmiange(4):

for j inniange(4):
print (abs(i-j), end="

print ()

Only consider abs differences.
L will be a list of numbers.
Hint: Use a nested loop!

Write mindiff to return the smallest absolute
difference between any two elements from L.

>>> mindiff([42, 3,47, 100,-9]) —> §

def mindiff (L) :

Quiz, p.2

