)

dhe €8 5 dimescPicayune

(laremont Penguin Takes Olympics Gold

London: In a stunning upset, a local penguin has been retroactively
awarded the gold medal in the women’s 10-meter platform diving
event at the Antarctic Olympics.

“All of the judges agreed that her dives were flawless,” stated an
unidentified official. “But our computerized scoring system
calculated her totals incorrectly. A careful audit has revealed that
the computer system we purchased from a Saudi Arabian
manufacturer could malfunction in the presence of water. Worse, it
would break down completely if exposed to fish oil. We’re terribly
sorry, but it could have happened to anybody.”

Other observers were less forgiving. “How anyone could use a
desert computer at a water-based event is beyond me,” said a U.S.
coach. I have no clue what they were thinking—and it’s clear that
they have no clue, period.”

The penguin herself was apparently too excited to comment,
limiting herself to a few loud squawks.

Reading: Sections 6.1-6.6

Rocket Science!

>>> fuelNeeded = 42/1000

>>> tankl = 36/1000

>>> tank2 = 6/1000

>>> tankl + tank2 >= fuelNeeded

[True? False? Maybe? DEMO! }

Wishful Thinking...

>>> from Rational import *
>>> fuelNeeded = Rational (42, 1000)
>>> tankl = Rational (36, 1000)
>>> tank2 = Rational (6, 1000)
>>> tankl + tank2 >= fuelNeeded

Rational Factory

True

That would be so
B SWEET!
T LRV

The Rational factory!

Thinking Rationally

IIEIIII “ ” -
@RationaW The "constructor Why i's this code so
def _ _init_ _(self, n, d): selfish?
if d ==
print ("Invalid denominator!”) =
sys.exit (1) # import sys for this to work (ugly!)
else:

self.numerator =
self.denominator

Nothing is returned here! | In afile called Rational.py

>>> from Rational import *
>>> myNuml = Rational(l, 3)
>>> myNum2 = Rational (2, 6)
>>> myNuml .numerator

?

>>> myNuml.denominator

?

myNuml mmdl numerator = 1
denominator = 3

myNum2 — Rl
denominator = 6

>>> myNum2 .numerator

?k

Thinking Rationally

lIT&uu

from exceptions import ValueErroréif’_‘
class Rational (object):

"""Support rational numbers."""

def _ _init_ _(self, n, d):

if d ==

This is so class-y!

raise ValueError ("Invalid denominator!")

else:
self.numerator = n
self.denominator = d

def isZerogkelf):
return/self.numerator == 0

>>> myNuml Rational (1, 3)
>>> myN = Rational (0, 6)
>>> myNuml.isZeroﬁ)) ’

>>> myNum2.isZero ()

numerator = 1
denominator = 3

numerator = 0
denominator = 6

Thinking Rationally

uT&uu !
class Rational (object):
def _ _init_ _(self, n, d):
if d ==
raise ValueError ("Invalid denominator!")

else:
self.numerator = n

self.denominator = d
__init__jallyI
thought this was
weird, but now I
like it!

def isZero (self):
return self.numerator ==

>>> myNuml = Rational(l, 3)

>>> myNum2 = myNuml

>>> myNum2.numerator = # CHEATING! myNuml__, [t l s
denominator = 3

>> myNuml

<Rational instance at 0x14ba68e87438>

Thinking Rationally

IITQIIH
class Rational (object):
def _ _init_ _(self, n, d):
self.numerator = n
self.denominator = d

def isZero(self):
return self.numerator ==

Tn str(self.numerator) + "/" + str(self.denominator)

—_—

>>> myNum = Rational (1, 3)
>>> myNum._ _str_ _()

'1/3" myNum numerator = 1

>>> myNum
<__main__ .Rational object at 0x2b513566b7d0>

>>> print (myNum) $:;\
O

denominator = 3

Thinking Rationally

IITQIIH !
class Rational (object):

def _ _init_ _(self, n, d):
self.numerator = n

self.denominator = d

(
def isZero(self): A€
return self.numerator ==

def _ _repr_ _ (self):
return "Rational (" + str(self.numerator)
", " + str(self.denominator) + ")"

>>> myNum = Rational(l, 3)
>>> myNum._ _repr_ _ ()
Rational (1, 3)

>>> myNum

Rational (1, 3)

myNum numerator = 1
denominator = 3

Thinking Rationally

lIEllll !
class Rational (object):
def _ _init_ _(self, n, d):
self.numerator = n

self.denominator = d

def isZero(self):
return self.numerator ==

The lazy way to do both str and repr

(self):
return str(self.numerator) + “IT o+ str (self.denominator)

O 2

def _ _repr

>>> myNuml = Rational(l, 3)
>>> myNum2 = Rational (2, 6)
>>> print (myNum2)

numerator = 1

denominator = 3

numerator = 2
myNuml == myNum2 denominator = 6

False

Thinking Rationally

lIEuu

class Rational (object):

"""Support rational numbers."""

def _ _init_ _(self, n, d):
"nnConstruct a Rational: no error checking, not reduced."""
self.numerator = n
self.denominator = d

def isZero(self):
return self.numerator == 0

def _ _repr_ _(self):
return str(self.numerator) + “/” + str(self.denominator)

def equals(self, othg{l:
return .numérator * other.denominator ==
s£1f.denominator * other.numerator

Working at
cross
purposes?

>>> myNuml = Rational(l, 3)

>>> myNugi2 = Rational (2, 6) myNuml —
>>> myNuml.equals (my! 2)

True

>>> myNum2.equals (myNum2) myNum2 —
True

numerator =
denominator = 3

numerator = 2
denominator = 6

Thinking Rationally

lIEuu !

class Rational (object):
def _ _init_ _(self, n, d):
self.numerator = n

self.denominator = d

def isZero(self):
return self.numerator == 0

def _ _repr_ _(self):
return str(self.numera

ther.denominator ==
other.numerator

>>> myNuml
>>> myNum2
>>> myNuml
True
>>> myNum2
True

numerator = 1
denominator = 3

This is what |
would really
like!

myNuml —

numerator = 2

myNum2 —
Y denominator = 6

llkll

.. Thinking Rational-ly

class Rational (object):
def _ _init_ _(self, n, d):

self.numerator = n

self.denominator d

def add(self, other):

Start by assuming that the denominators are the same,

but then try to do the case that they may be different!

What kind of
thing is add
returning?

=
>>> myNuml = Rational (36, 1000)

>>> myNum2 = i 7 myNuml—
>>> myNum3 = |myNuml.add (myNum2)

>>> myNum3

42000/1000000 myNum2 —

numerator
denominator

numerator
denominator

~Overloaded Operator Naming

+ __add
- __sub__
* __mul___
/ __div
% __mod___
*% __ pow___

__talA_ _

) >>> myNum = Rational (9, 2)
def _ _int_ _(self):

return self.numerator//self.denominator >>> myNum. int ()

Barf!
Very __int_ _eresting!
I
NSy

Putting It All Together

class Rational (object):
def __init__ (self, n, d):
self.numerator = n

self.denominator = d

def __add__ (self, other):
newNumerator =
newDenominator =
return Rational (newNumerator, newDenominator)

def __eq (self, other):
return 2?7

def __ge_ (self, other):

return ???

def __repr__ (self):

return str(self.numerator) + "/" + str(self.denominator) (Mission accomplished|
>>> from Rational import *
>>> fuelNeeded = Rational (42, 1000)

>>> tankl = Rational (36, 1000) 1
>>> tank2 = Rational (6, 1000)
>>> tankl + tank2 >= fuelNeeded
True

&

Rationals Are Now “First Class” Citizens!

>>> rl = Rational(l, 2)
Rational (1, 4)
>>> r3 = Rational (1, 8)
>>> L = [rl, r2, r3]

>>> r2

True Story

Dan Aguayo Max Krohn Jeremy Stribling

Rooter: A Methodology for the Typical Unification

of Access Points

and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-

have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10] is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the

concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
Q((n + logn)) time [22]. In the end, we conclude.

II. ARCHITECTURE

kth Order Markov Processes

Training File: "I like spam. I like
toast and spam. I eat ben
and jerry's ice cream too."

First order Markov Dictionary:
I : like, like, eat
like : spam., toast
spam. : I, I
and : spam, Jjerry's
MORE ENTRIES...

Andrey Markov
1856-1922

Generating “random” text:
"I like spam. I like spam."
"I eat ben and spam. I like toast
and jerry's ice cream too."

kth Order Markov Processes

(]

Training File: Wikipedia essay on
Huffman Compression

First order Markov sentences
generated...

"Huffman was a source symbol.

Andrey Markov
1856-1922

"Huffman became a known as a character in
a particular symbol frequencies agree
with those used for each possible wvalue

of Engineering."

kth Order Markov Processes

Training File: "I like spam. I like
toast and spam. I eat ben
and jerry's ice cream too."

First order Markov Dictionary:
I : like, like, eat
—>like : spam, toast
spam. : I, I
and : spam, jerry's
MORE ENTRIES..

Second order Markov Dictionary:
: spam., toast
like spam. : I
spam. I : like, eat

Andrey Markov
1856-1922

kth Order Markov Processes

Training File: Wikipedia essay on
Huffman Compression

Second order Markov sentences
generated...

"Huffman coding is such a code
is not produced by Huffman's algorithm."

"Huffman was able to design the most
common characters using shorter strings
of bits than are used for lossless
data compression."

