
The CS 5 Times-Picayune

Claremont Penguin Takes Olympics Gold
London: In a stunning upset, a local penguin has been retroactively

awarded the gold medal in the women’s 10-meter platform diving

event at the Antarctic Olympics.

“All of the judges agreed that her dives were flawless,” stated an

unidentified official. “But our computerized scoring system

calculated her totals incorrectly. A careful audit has revealed that

the computer system we purchased from a Saudi Arabian

manufacturer could malfunction in the presence of water. Worse, it

would break down completely if exposed to fish oil. We’re terribly

sorry, but it could have happened to anybody.”

Other observers were less forgiving. “How anyone could use a

desert computer at a water-based event is beyond me,” said a U.S.

coach. I have no clue what they were thinking—and it’s clear that

they have no clue, period.”

The penguin herself was apparently too excited to comment,

limiting herself to a few loud squawks.

Reading: Sections 6.1–6.6

Rocket Science!

>>> fuelNeeded = 42/1000

>>> tank1 = 36/1000

>>> tank2 = 6/1000

>>> tank1 + tank2 >= fuelNeeded

True? False? Maybe? DEMO!

SWEET!

That would be so

SWEET!

Wishful Thinking…

>>> from Rational import *

>>> fuelNeeded = Rational(42, 1000)

>>> tank1 = Rational(36, 1000)

>>> tank2 = Rational(6, 1000)

>>> tank1 + tank2 >= fuelNeeded

True

����Rational ����	
��

Thinking Rationally

class Rational(object):

def _ _init_ _(self, n, d):

if d == 0:

print("Invalid denominator!”)

sys.exit(1) # import sys for this to work (ugly!)

else:

self.numerator = n

self.denominator = d

>>> from Rational import *

>>> myNum1 = Rational(1, 3)

>>> myNum2 = Rational(2, 6)

>>> myNum1.numerator

?

>>> myNum1.denominator

?

>>> myNum2.numerator

?

numerator = 1

denominator = 3

numerator = 2

denominator = 6

myNum1

myNum2

������	
��
���	
� Why is this code so

selfish?

�
�������������� Rational.pyNothing is returned here!

Thinking Rationally

from exceptions import ValueError

class Rational(object):

"""Support rational numbers."""

def _ _init_ _(self, n, d):

if d == 0:

raise ValueError("Invalid denominator!")
else:

self.numerator = n

self.denominator = d

def isZero(self):

return self.numerator == 0

>>> myNum1 = Rational(1, 3)

>>> myNum2 = Rational(0, 6)

>>> myNum1.isZero()

?

>>> myNum2.isZero()

?

numerator = 1

denominator = 3

numerator = 0

denominator = 6

myNum1

myNum2

This is so class-y!

Thinking Rationally

class Rational(object):

def _ _init_ _(self, n, d):

if d == 0:

raise ValueError("Invalid denominator!")
else:

self.numerator = n

self.denominator = d

def isZero(self):

return self.numerator == 0

numerator = 42

denominator = 3
myNum1

>>> myNum1 = Rational(1, 3)

>>> myNum2 = myNum1

>>> myNum2.numerator = 42 # CHEATING!

>> myNum1

<Rational instance at 0x14ba68e87438>

__init__ially I

thought this was

weird, but now I

like it!

Thinking Rationally

class Rational(object):

def _ _init_ _(self, n, d):

self.numerator = n

self.denominator = d

def isZero(self):

return self.numerator == 0

def _ _str_ _(self):

return str(self.numerator) + "/" + str(self.denominator)

numerator = 1

denominator = 3
myNum

>>> myNum = Rational(1, 3)

>>> myNum._ _str_ _()

'1/3'

>>> myNum

<__main__.Rational object at 0x2b513566b7d0>

>>> print(myNum)

1/3

Thinking Rationally

class Rational(object):

def _ _init_ _(self, n, d):

self.numerator = n

self.denominator = d

def isZero(self):

return self.numerator == 0

def _ _repr_ _(self):

return "Rational(" + str(self.numerator) + \

", " + str(self.denominator) + ")"

numerator = 1

denominator = 3
myNum

>>> myNum = Rational(1, 3)

>>> myNum._ _repr_ _()

Rational(1, 3)

>>> myNum

Rational(1, 3)

Thinking Rationally

class Rational(object):

def _ _init_ _(self, n, d):

self.numerator = n

self.denominator = d

def isZero(self):

return self.numerator == 0

The lazy way to do both str and repr

def _ _repr_ _ (self):

return str(self.numerator) + ����/���� + str(self.denominator)

numerator = 1

denominator = 3
myNum1

>>> myNum1 = Rational(1, 3)

>>> myNum2 = Rational(2, 6)

>>> print(myNum2)

2/6

>>> myNum1 == myNum2

False

numerator = 2

denominator = 6
myNum2

Thinking Rationally

class Rational(object):

"""Support rational numbers."""
def _ _init_ _(self, n, d):

"""Construct a Rational: no error checking, not reduced."""

self.numerator = n

self.denominator = d

def isZero(self):

return self.numerator == 0

def _ _repr_ _(self):

return str(self.numerator) + ✁✁ ✁✁ / ✂✂ ✂✂ + str(self.denominator)

def equals(self, other):

return self.numerator * other.denominator ==

self.denominator * other.numerator

myNum1
>>> myNum1 = Rational(1, 3)

>>> myNum2 = Rational(2, 6)

>>> myNum1.equals(myNum2)

True

>>> myNum2.equals(myNum2)

True

myNum2

�

�

�

�

numerator = 1

denominator = 3

numerator = 2

denominator = 6

Working at

cross

purposes?

Thinking Rationally

numerator = 1

denominator = 3
myNum1

>>> myNum1 = Rational(1, 3)

>>> myNum2 = Rational(2, 6)

>>> myNum1 == myNum2

True

>>> myNum2 == myNum1

True

numerator = 2

denominator = 6
myNum2

This is what I

would really

like!

class Rational(object):
def _ _init_ _(self, n, d):

self.numerator = n

self.denominator = d

def isZero(self):

return self.numerator == 0

def _ _repr_ _(self):

return str(self.numerator) + ✁✁ ✁✁ / ✂✂ ✂✂ + str(self.denominator)

def _ _eq_ _(self, other):

return self.numerator * other.denominator ==
self.denominator * other.numerator

Thinking Rational-ly
class Rational(object):

def _ _init_ _(self, n, d):

self.numerator = n

self.denominator = d

def add(self, other):

numerator = 36

denominator = 1000
myNum1

>>> myNum1 = Rational(36, 1000)

>>> myNum2 = Rational(6, 1000)

>>> myNum3 = myNum1.add(myNum2)

>>> myNum3

42000/1000000
numerator = 6

denominator = 1000
myNum2

What kind of
thing is add
returning?

What kind of
thing is add
returning?

������������	
��
��������������
������������������
���

�	������������������������������������
����������������

Overloaded Operator Naming

+ __add__

- __sub__

* __mul__

/ __div__

// __floordiv__

% __mod__

** __pow__

+ __pos__

- __neg__

__abs__

__int__

__float__

__complex__

== __eq__

!= __ne__

<= __le__

>= __ge__

< __lt__

> __gt__

def _ _int_ _(self):

return self.numerator//self.denominator

Very _ _int_ _eresting!

>>> myNum = Rational(9, 2)

>>> myNum.int()

Barf!

>>> int(myNum)

4

Putting It All Together
class Rational(object):

def __init__(self, n, d):

self.numerator = n

self.denominator = d

def __add__(self, other):

newNumerator =

newDenominator =

return Rational(newNumerator, newDenominator)

def __eq__(self, other):

return ???

def __ge__(self, other):

return ???

def __repr__(self):

return str(self.numerator) + "/" + str(self.denominator)
Mission accomplished!

>>> from Rational import *

>>> fuelNeeded = Rational(42, 1000)

>>> tank1 = Rational(36, 1000)

>>> tank2 = Rational(6, 1000)

>>> tank1 + tank2 >= fuelNeeded

True

Rationals Are Now �First Class� Citizens!

>>> r1 = Rational(1, 2)

>>> r2 = Rational(1, 4)

>>> r3 = Rational(1, 8)

>>> L = [r1, r2, r3]

True Story

Max Krohn Jeremy StriblingDan Aguayo

kth Order Markov Processes

Andrey Markov

1856-1922

Training File: "I like spam. I like

toast and spam. I eat ben

and jerry's ice cream too."

First order Markov Dictionary:

I : like, like, eat

like : spam., toast

spam. : I, I

and : spam, jerry's

MORE ENTRIES…

Generating “random” text:

"I like spam. I like spam."

"I eat ben and spam. I like toast

and jerry's ice cream too."

kth Order Markov Processes

Andrey Markov

1856-1922

Training File: Wikipedia essay on

Huffman Compression

First order Markov sentences

generated…

"Huffman was a source symbol."

"Huffman became a known as a character in

a particular symbol frequencies agree

with those used for each possible value

of Engineering."

kth Order Markov Processes

Andrey Markov

1856-1922

Training File: "I like spam. I like

toast and spam. I eat ben

and jerry's ice cream too."

First order Markov Dictionary:

I : like, like, eat

like : spam, toast

spam. : I, I

and : spam, jerry's

MORE ENTRIES…

Second order Markov Dictionary:

I like : spam., toast

like spam. : I

spam. I : like, eat

kth Order Markov Processes

Training File: Wikipedia essay on

Huffman Compression

Second order Markov sentences

generated…

"Huffman coding is such a code

is not produced by Huffman's algorithm."

"Huffman was able to design the most

common characters using shorter strings

of bits than are used for lossless

data compression."

