A whole new class of Read CS 5 overview

programming 6.1-6.3

CS's building

V blocks: functions

and composition

behind CS's

curtain: circuits,
assembly, loops

NOW! & | Designing

- Data! The
Date
class

convenience? ¥ Coming

Lk soon... CS: theory + practice

Classes and Objects

An object-oriented programming language allows you
to build your own customized types of variables.

r

(1) A classis atype

(2) An object 1s one such variable.

=y

A/

\ (instance) J

There will typically
be MANY objects
* W ofasingle class.

Objects

Like a list, an object is a container, but much more customizable:
(1) Its data elements have names chosen by the programmer.
(2) An object contains its own functions, called methods

(3) In its methods, objects refer to themselves as self

(4) Python signals special methods with double underscores:

__init___ iscalled the constructor; it creates new objects

__repr___ tells Python how to print its objects

I guess we should doubly
SES underscore these two methods!

R

Date:
"""A user-defined data structure that The Date

stores and manipulates dates."""
class

This is the start of a new type called Date
It begins with the keyword class

This is the constructor for Date objects
As is typical, it assigns its arguments to the data members.

__init__ (self, month, day, yr):
"""Construct a Date with

the given month, day, and year."""
self.month = month

self.day = da
self.year =@
Names

don’t have
to match!

These are data members—
they are the information
inside every Date object.

This is a class. It is a user-defined data type
Date that you'll build in Lab 10 this week...
Ad
s;at:;'? Statee,
>>> d = Date(4, 6, 2021) Constructor! OWN:;ZS ouR®
>>> d.month
d contains data
4 members named day,
month, and year
>>> d.day
4
>>> d
04 / 06 /2 021 The repr! the representation of an object of type Date

The isLeapYear method returns True or False.

>>> d. 1SLeapYear () How does it know what year to check?

False

Date:

"""A user-defined data structure that The Date

stores and manipulates dates."""
class

__init__ (self, month, day, yr):
"""Construct a Date with

the given month, day, and year."""
self.month = month
self.day = day
self.year = yr

__repr__ (self):
"""Display a date in a nice format."""
s = f"{self.month:02d}/{self.day:02d}/{self.year:04d}"

return s
Why is everyone
2 so far away?!

This is the repr for Date objects
It tells Python how to print these objects.

Why self instead of d ?

self is the variable calling a method

d = Date (4, 6, 2021)
print (d)
04/06/2021

d.isLeapYear ()

False These methods need
access to the object that
ny = Date(1l, 1, 2024) calls them: it's self

print (ny)
01/01/2024
ny.isLeapYear ()

True

2.2.1 What years are leap years?

The Gregorian calendar has 97 leap years every 400 years:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years.

Date:
def __init__ (self, month, day, yr): # (constructor)
def __repr__ (self): # (for printing)

isLeapYear (self):
"""Here it is in all its glory"""

self.year % 400 == 0: True
self.year % 100 == O0: False
self.year % 4 == 0: True
False

>>> wd = Date(1l1l, 12, 2013)

>>> wd

11/12/2013

UFO license
Area 51, CA

What id is on your Date?

This constructs a different Date

>>> wd2 = Date (11, 12, 2013)
>>> wd2
11/12/2013
re
python object * ce
>>> wd == wd2 d\e a by referen .
False han par Eere“ce

How can this be False ?

Two Date objects:

wd

2 P
4 /
/ /

month day year

wd2

Lo

11 12 [zola

month day year

memory location ~ 42042778

memory location ~ 42042742

== compares memory locations, not contents

== VS. equals

>>> wd = Date(1l1l, 12, 2013)

>>> wd

UFO license
Area 51, CA

What date is on your id?
What id is on your Date?

11/12/2013
This constructs a different Date
>>> wd2 = Date (11, 12, 2013{
>>> wd2
11/12/2013
yon objects S
>>> d.equals (d2) yt fere“
True hand\ N dco y Coments
qua

Date:

_eq__(self, d2):

equals

L==k! Thisis T== C==L!

DDA
~

"""Returns True if self and d2

represent the same dat
False otherwise."""

self.year == d2.year
self.month == d2.month
self.day == d2.day:

return True

return False

To use this, write d

e;

\
\

Redefined for our
convenience!

== d2

| __1t__(self other) LESS!
More op erators: __le__(self, other) 1t < B
e (self, other
Booleans —9— _)
arithmetic ne__ (self, other)
t__ (self, other
—Bt_() Date:
ge__ (self, other)
__add__(seff, other) + __iadd__(self other) += —lt_— (?elf' d2):
__sub__(self, other) - isub__(self, other) —— """This is less than most code!"""
—m"i—(lse/f'(m'l’fe')) * __imul__(self, other) *= return self.isBefore (d2)
__matmul__(self, other " -
truediv__ (self, other) _%matmu}_(se/f, other)A @ -
T floordiv_ (s, ot} __itruediv__(self, other)
e __ifloordiv__(self, other) in-place
— -(39”. - __imod__ (self, other) 'tlll) i
_pow (self other[, moduio]) __ipow__(self, other], modulo]) — aritnmetic
" 1shift__(self, other) __ilshift__(self other)
__rshift__(self, other) __irshift__(self, other)
__and__(self, other) __iand__(self, other)
__xor__(self, other) __ixor__(self, other)
__or__(self, other) __ior__(self, other)
Date: Don't hand this in... Use for hw11pr1 this week! i /// _
Date: [-=) 5;-//\
<=

tomorrow (self) :
"""Moves the self date ahead 1 day."""

bIM = [O,31, 28,31, 30,31, 30,31, 31,30,31,30,31]

DIM looks pretty
. bright to me! ol
- First, add 1 to 008
self.day += 1 self.day =

= Test if we have gone
1 f "out of bounds!"

Then adjust the
month and year,
only if needed

Don't return anything.
. This CHANGES the date
how could we make this work for leap years, too? object that calls it.

tomorrow (self) :
"""Moves the self date ahead 1 day"""

if self.isLeapYear(): fdays = 29
else: fdays = 28

DIM = [O, 31, £fdays, 31, 30, 31, 30, 31, 31,30, 31,30, 31]

self.day += 1 # Add 1 to the day!

self.day > DIM[self.month]: # Check day

self.month += 1
self.day = 1

self .month > 12:
self.year +=1
self . month = 1

Check month

Date: Name(s) QUiZ

isBefore (self, d2):
"""True if self is before d2, else False."""

self.year < d2.year:
return True

self .month < d2.month:
return True

self.day < d2.day:
return True

: return False

What does d. isBefore (d2) return?

Which of the 4 return statements is used?
Is this the correct value?

d printsas 4/1/2021

Challenge #1 If d2 printsas 4/6/2021

Find different dates, d and d2, for which
Challenge #2 d.isBefore (d2) returns an INCORRECT value...

This Date is Late! <= . ' .
N, Extra! Above, show how to fix the isBefore method ...

e

