
�����������	
��

�����������	
�������	����
Claremont (AP): Seven rooms were damaged in
a Harvey Mudd College dormitory Tuesday
evening after a misguided attempt to cheer up
sleep-deprived students. “We were approached
by a group of three penguins who wanted to sing
Christmas carols,” explained a witness. “They
promised that it would help us study.” Instead, the
raucous squawking of the untrained and
untalented birds quickly led to a violent dispute
between supporters and detractors. One student
attempted to encase the singers in foam rubber,
but a second set fire to the material in hopes of
freeing the animals. The resulting explosion
unleashed a conflagration that spread to North
Dorm, where there was extensive damage.
However, losses in North were estimated at only
$35.47, due to the advanced age of the furniture
there.

Read 6.7-6.9

Data Compression

The zzyzva is
known to be a
xenophobic
creature with a
zealous
personality…

TEXT FILE
zzyzva.txt

58,254 bytes

compression
algorithm
(e.g. zip)

B6^9)=\n%%
spam!=&&pe
nguin/?����,/+

TEXT FILE
zzyzva.txt.Z

23,124 bytes

Now we can

delete the

original file!

Data Compression!

The zzyzva is known to be
a xenophobic creature
with a zealous
personality…

TEXT FILE

Letter ord(Letter) Binary

T 84 01010100

h 104 01101000

e 101 01100101

z 122 01111010
• ' '- 1226754 19.04%

• E - 655257 10.17%

• T - 474521 7.37%

• A - 425718 6.61%

• … skipping a few …

• J - 5329 0.08%

• Q - 4923 0.08%

• Z - 3378 0.05%

But these statistics

are on average, not

for my essay on the

zzyzva!

English text
letter frequencies

Variable Length Encodings

TEXT FILE

Letter frequency Binary code

z 0.25 0

y 0.10 1

x 0.09 00

a 0.08 01

…

r 0.02 10100111100

p 0.01 10100111101

The zzyzva is known to be
a xenophobic creature
with a zealous
personality…

Yes!! These

frequencies are

for my essay!!

Cute idea, but what����s the problem here?

The Prefix Property

TEXT FILE

Letter frequency Binary code

z 0.25 00

y 0.10 01

x 0.09 10

a 0.08 111

r 0.02 1100

101110100001100 = 10 111 01 00 00 1100

The zzyzva is known to be
a xenophobic creature
with a zealous
personality…

Consider the Language �Spamish� which
has only four letters in its alphabet…

Letter freq Fixed Length Variable Length

s 0.6 00 0

p 0.2 01 10

a 0.1 10 110

m 0.1 11 111

Expected average number of bits
per symbol = 2

Expected average number of bits per symbol =
0.6x1 + 0.2x2 + 0.1x3 + 0.1x3 = 1.6

1.6 is 80% of 2.0, so we expect

20% space savings!

The Variable Length Coding Problem…

Letter Frequency

a1 freq(a1)

a2 freq(a2)

a3 freq(a3)

…
an freq(an)

Objective: Find a binary prefix code that minimizes…
freq(a1) × codelength(a1) +
freq(a2) × codelength(a2) + …
freq(an) × codelength(an)

These frequencies

are from the

specific file that

we�re planning to

compress!!

The David Huffman Story!

Letter freq

s 0.6

p 0.2

a 0.1

m 0.1

map smppam
ssampamsmam
…

TEXT FILE

ENCODING:
1. Scan text file to compute frequencies
2. Build Huffman tree
3. Find code for every symbol (letter)—why is this a prefix code?
4. Create new compressed file by saving the entire code at the top of

the file followed by the code for each symbol (letter) in the file

I wonder about trees—Robert Frost

Recursive definition of a binary tree…
A binary tree is:
1. Just a symbol (i.e. a “leaf”) or
2. A left subtree and a right subtree

We wonder about Robert Frost—Trees

"a" “m"

"p"

"s"
("a", "m")

???

Shouldn’t that be

the list

["a", "m"] ?

("p", ("a", "m"))

???("s", ("p", ("a", "m")))

I wonder about trees—Robert Frost

Recursive definition of a binary tree…
A binary tree is:
1. Just a symbol (i.e. a “leaf”) or
2. A left subtree and a right subtree

"a" "m"

"p"

"s"

We wonder about Robert Frost—Trees

Huffman’s Algorithm

• Find two lowest-frequency symbols

• Combine them into a tree node

– Add their frequencies

• Repeat until only one node left

Huffman Example

.60

.20

.10 .10

.20

.40

1.0

You Try It!

Letter Frequency

h 0.40
a 0.20
r 0.15
v 0.15
e 0.06
y 0.04

Build the tree and write down the codes for each of the
symbols

Then encode the string ����haha���� using this code

Worksheet

Building the Huffman Tree!

Letter Frequency

h 0.40
a 0.20
r 0.15
v 0.15
e 0.06
y 0.04

frequencies = {"h": 0.40,

"a": 0.20, "r": 0.15,

"v": 0.15, "e": 0.06,

"y": 0.04}

OBJECTIVE: Convert this into a tree…

How do I get these!?

Building the Huffman Tree!

def make_tree(self, counter):

Assume a function minfrequency(frequencies)

that returns the character (key) with min frequency!

(((a, r) , (v, (e, y))) , h)

minfrequency can be written
using Counter’s most_common()
function with [-1] and the del
keyword!

frequencies = {"h": 0.40,

"a": 0.20, "r": 0.15,

"v": 0.15, "e" :0.06,

"y": 0.04}

The Huffman Encoder

Read input file into string S
Count letter frequencies in S
Build the Huffman tree
Find the Huffman code for each character
binary_sequence = ""
for each character c in S
binary_sequence += Huffman code for c

Write encoding to codes file
Write output to compressed file

frequencies = {"h": 0.40,

"a": 0.20, "r": 0.15,

"v": 0.15, "e": 0.06,

"y": 0.04}

h: 1 a : 000 r: 001
v: 010 e: 0110 y: 0111

The Huffman Decoder

Read compressed file into string E
Read Huffman table from codes file
Expand E to original text string S
Save S to file

6
2001
h: 1 a : 000 r: 001
v: 010 e: 0110 y: 0111
$a!*&spam^>\n):^)
pen*guin!*blah/~.\cs5!.<-42
blahblahblah

OOPs! (Object-Oriented Programs)

>>> today = Date(11, 10, 2020)

>>> due = Date(11, 16, 2020)

>>> due – today

6

>> if due > today:

print("Go watch a movie!”)

One Implementation

class Date(object):

def __init__(self, m, d, y):

self.month = m

self.day = d

self.year = y

>>> d = Date(1, 21, 1969)

Another Implementation…

class Date(object):

def __init__(self, m, d, y):

self.daysSince1900 = …

>>> d = Date(1, 21, 1969)

Why would any sane
person want to store the

date as the number of days
since January 1, 1900?

Getters and Setters

class Date(object):

def __init__(self, m, d, y):

self._daysSince1900 = …

def setDay(self, d):

if d <= 0 or d > 31:

…

else:

self._daysSince1900 = …

>>> d = Date(1, 21, 1969)

>>> d.setDay(28) # SETTER

>>> x = d.getDay() # GETTER

Date “Abstraction”

Date

__init__(self, month, day, year)

setDay(self, day)

setMonth(self, month)

setYear(self, year)

getDay(self)

getMonth(self)

getYear(self)

==, >, <, >=, <=, +, -

The Advantage of Abstraction

Rack-and-pinion?
Recirculating ball?
Worm-and-sector?

Steer-by-wire?

An Important Point

import turtle

import math

import Date

turtle.forward(100)

print(math.cos(math.pi))

today = Date.Date(11, 9, 2011)

from turtle import *

from math import cos, pi

from Date import *

forward(100)

print(cos(pi))

today = Date(11, 9, 2011)

Default Arguments

class Student(object):

def __init__(self, firstName, lastName,

school = "HMC", major = "undeclared")

>>> where = Student("Carmen", "Sandiego")

>>> stu = Student("Stu", "Dious", "PIT")

>>> anna = Student("Anna", "Litik", major = "Physics")

>>> elmo = Student("Elmo")

>>> bigBird = Student("Big", "Bird", firstName = "Tweety")

>>> bart = Student(school="PIT", "Bart", "Simpson")

In my experience, arguments
are usually default of

deperson who started them!

Inheritance

class Person(object):

def __init__(self, first, last):

self.firstName = first

self.lastName = last

def asleep(self, time):

return 0 <= time <= 7 # MILITARY TIME IN HOURS

def __repr__(self):

return self.firstName + " " + self.lastName

>>> geoff = Person("Geoff", "Kuenning")

>>> geoff

Geoff Kuenning

>>> geoff.asleep(2)

True

class Person(object):

def __init__(self, first, last):

self.firstName = first

self.lastName = last

def asleep(self, time):

return 0 <= time <= 7

def __repr__(self):

return self.firstName + " " + self.lastName

class Student(Person):

def __init__(self, first, last, age):

super(Student, self).__init__(self, first, last)

self.age = age

def asleep(self, time):

return 3 <= time <= 11

def __repr__(self):

return Person.__repr__(self) + ", " + str(self.age) + " years old"

>>> s = Student("Sue", "Persmart", 18)

>>> s

Sue Persmart, 18 years old

>>> s.asleep(2)

False

Sleeping until 11 AM!?

class Person(object):

def __init__(self, first, last):

self.firstName = first

self.lastName = last

def asleep(self, time):

return 0 <= time <= 7

def __repr__(self):

return self.firstName + " " + self.lastName

class Student(Person):

def __init__(self, first, last, age):

super(Student, self).__init__(self, first, last)

self.age = age

def asleep(self, time):

return 3 <= time <= 11

def __repr__(self):

return Person.__repr__(self) + ", " + str(self.age) + " years old"

class Mudder(Student):

def __init__(self, first, last, age, dorm):

super(Mudder, self).__init__(self, first, last, age)

self.dorm = dorm

def asleep(self, time):

return False

Get some
sleep!!!

>>> wally = Mudder("Wally", "Wart",

42, "West")

>>> wally

?

>>> wally.asleep(4)

?

The Dangers of Inheritance

