CS 5 today:

More machines!

Final ideas...

Turing Machines and the **MANY** things computers can't compute...!

Final projects...

- Final tutoring hours & labs coming up
- HW12 & milestone due on Monday, 4/26
- 5 finite state machines due as part of HW 12 Turing

State-machine *limits*?

You don't need three

eyes to see some

<u>Unprogrammable</u> functions?

There are

well-defined mathematical functions

that no

computer program

even with any amount of memory!

or TM

Functions Programs

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is odd} \\ 0 & \text{if } x \text{ is even} \end{cases}$$

def prog1(x):
 return x%2

Different infinities!?

There are *infinitely many* functions & programs...

...but not all infinities are created equal!

Two sets have equal size if their elements have a one-to-one matching

This matching is called a bijection.

These sets have the same cardinality

Positive evens $\mathbf{E} = \{ 2, 4, 6, 8, 10, \dots \}$

def e2n(e):
 return e//2

def n2e(n):
 return 2*n

Positive integers

$$N = \{1, 2, 3, 4, 5, \dots\}$$

ALL integers

$$Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}$$

E and **N** and **Z** all have the same size!

Programs are integers (and vice-versa)

Programs = N Positive integers

Every program is a string.

Every string is just a sequence of bits

Every sequence of bits is also an int!

Georg Cantor 1845-1918

Cantor Diagonalization

There are always real numbers missing from *any* list!

R The Reals from 0 to 1

Positive integers N

Real #s are always missing

r, =

° _

 $r_{i} = .33333333333333... \leftrightarrow :$

 $r_2 = .4242424242424... \leftrightarrow 2$

 $r_3 = .314159426535897... \leftrightarrow 3$

 $r_4 = .0909090909090... \leftrightarrow 4$

 $\mathbf{r}_{s} = ... \longleftrightarrow 5$

For each real number...

Any real number

 $r_1 = .11111111...$

 $r_2 = .31415926...$

 $r_3 = .42424242...$

r₄ = .01101010...

There's a (mathematical) function that simply returns that number!

 $f_1(x) = 1/9$

 $f_2(x) = \pi/10$

 $f_3(x) = .42$ for ever

 $f_4(x) = \begin{cases} 1 & \text{if } x \text{ s prime} \\ 0 & \text{otherwise} \end{cases}$

6 and 8 are not prime, so these digits are 0

2 and 3 are prime, so these digits are 1

