
CS 5 Nightly Wrapup

College Canceled

Claremont (The Student Life): The administrators of Harvey

Mudd College announced today that the entire institution had

been canceled. Classes will terminate immediately.

“We realized that there is a much better economic model,”

explained President G. Reedy. We will continue to accept

students, and the tuition will remain the same. After four years

of paying tuition, the students will be awarded a degree, just as

in previous years. The only difference will be that we won’t

hold classes. That will give the students more time for the

pursuits they love, like video gaming, dancing, partying, and

setting things on fire, without harming their chances of getting

a lucrative job after they get their degree.”

When asked what the faculty would be doing, President

Reedy smiled. “That’s the best part!” he exclaimed. “We’ll

finally be rid of the pesky critters.”

No penguins could be reached for comment.

Reminders of Countability

So what?

Last time we showed:

• Programs are countable

• Real numbers are not countable

Consider all the constant mathematical functions f(N) = x,

where x is a real number from 0 to 1:

• f(N) = 0.5

• f(N) = 0.707107…

• f(N) = 0.314159…

Functions

I can do that math

in my head!

We know that programs are countable...

…and even simple functions are uncountable…

Functions and Programs

What Can’t’ Be Computed?

But are all the

uncomputable functions

as boring as f(N) = x?

Show me

something

interesting!

Measuring the �Complexity� of Data

105000

versus

15623410342347958394180745…2123975

5001 digits long

Andrei Kolmogorov

1903-1987

Measuring the �Complexity� of Data

105000 = 1000000000000000000…0000000000000

5001 digits long

def a():
return 100000000000000000…000000000000

program takes no arguments!

program returns desired number

and halts!

Total length: 5017

I sorta think we can

do much better!

Measuring the �Complexity� of Data

105000

def a():
result = "1"
for d in range(0, 5000):

result += "0"
return int(result)

program takes no arguments!

program returns desired number

and halts!

Total length: 100

Maybe we could

do even better!

Measuring the �Complexity� of Data

15623410342347958394180745…2123975

5001 digits long

def a():

return 1562341034234745…2123975

program takes no arguments!

program returns desired number

and halts!

Total length: 5017

I sorta doubt we can

do much better!

What is the Complexity Of…?

def f():return ...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Python has at least 15

bytes of “overhead”

kc(1000000000) = 20 = 15 + 5 10**9
(1 followed by 9 0’s)

kc(100…000) =
(1 followed by 100 0’s)

This is called a googol

kc(100…000) =
(1 followed by a googol 0’s)

This is a googolplex

kc(999…999) =
(100 9’s)

kc(1010…) =
(10 a billion times…try using a string)

kc(314159265…) =
(2 billion digits of pi) Worksheet!

Measuring the �Complexity� of Data

Objective…

Complexity 105000

Argument: An integer n

100

Result: The length of the

shortest Python program

that:

-takes no arguments

-runs

-returns the integer n
Did Kolmogorov

explicitly specify

Python?

def a():
result = "1"
for d in range(5000):

result += "0"
return int(result)

length 100

Measuring the �Complexity� of Data

There is at least one number for which it will

return the wrong answer!

We will show that Complexity is uncomputable

Specifically, we will show that any implementation of
Complexity must necessarily contain a bug:

Measuring the �Complexity� of Data

Our key insight:

For any value k, there is a number n whose complexity is

greater than k (why?)

Measuring the �Complexity� of Data

By Way of Contradiction (�BWOC�), assume we have

a �Complexity� function…

Complexity105000 100
def Complexity(number):

code goes here
return complexity

def BFF():
def Complexity(number):
code goes here
return complexity

counter = 0
while Complexity(counter) <= 50000 + 200:

counter = counter + 1
return counter

Assume the

length of this
code is 50000

Notice that BFF takes no arguments, returns a

number, and halts!

Look at the value

returned by BFF. What

can you say about this

value?

Here’s a Way to Do Complexity

How about this?

1. There are countably many programs

2. Order them from shortest to longest

3. Check each in order to see if it returns n

The one that we find first is the shortest that can return n!

That would
work, right?

Here’s a Way to Do Complexity

How about this?

1. There are countably many programs

2. Order them from shortest to longest

3. Check each in order to see if it returns x

The one that we find first is the shortest that can return x!Can’t be

done!

x = 0

while True:

x = x + 1

Halt Checking Is Uncomputable

It is impossible to write a bug-free function hc(f) that

decides whether f halts, i.e.,

1. Returns True if f() halts, or

2. Returns False if f() loops forever

Dang!

def hc(f):
Clever stuff here

The code for a

Python function

Halt Checking Is Uncomputable

Suppose hc(f) works for all zero-argument functions f.

Write this zero-argument BFF:

Double
dang!

def BFF():
if hc(BFF):

while True:
print('Ha!’)

else:
return 42

Should hc(BFF) return True or False?

The Halting Problem

and Famous Open Problems

Fermat�s Last Theorem: There exists no
integer n > 2 s.t. an + bn = cn for non-zero

integers a, b, and c

Pierre de Fermat

1601-1665

We have a nice proof

of this theorem but

there�s not enough
room for it in this little

box.

The Halting Problem

and Famous Open Problems

Goldbach’s Conjecture: Every positive even integer >= 4

can be written as the sum of two primes.

4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 3 + 7 = 5 + 5

12 = 5 + 7

14 = 3 + 11 = 7 + 7

Verified up to 4 x 1018

42 = 5 + 37

The Halting Problem

and Famous Open Problems

Goldbach’s Conjecture: Every positive

even integer >= 4 can be written

as the sum of two primes.

$1,000,000 has been offered!

The Halting Problem

and Famous Open Problems

Goldbach�s Conjecture: Every positive
even integer >= 4 can be written

as the sum of two primes.

at most 300,000

(Schnilerman, 1939)

Getting from

300,000 down to 2

shouldn�t be so
hard!

Using a Halt-checker to Prove or

Disprove the Goldbach Conjecture…

def prime_split(n):
"""Takes an EVEN POSITIVE integer argument
n and returns True if n can be
written as the sum of two primes and
False otherwise."""

def goldbach(current):
while True:

if not prime_split(current):
return # DONE!

else current = current + 2

Yowza this is cool!
Who needs chocolate when

there are proofs this sweet?

Consider… goldbach(4)

Kleene's Answer:

Regular Expressions

• Union a | b “a or b”

A regular expression is composed of three

operations:

• Concatenation ab “a then b”

where a and b can be any bit strings—or regular expressions

����������	�
��

• Kleene Star a* “0 or more a’s”

��������	�
��

��������� ������������	���
�	��

����������	�
�����������	�����������������	�
���
���
������
��

��� �����	�
����10

1* | 10*

(10)*
��������	
�	����	

�������	��������
��	���	

������	�������	�������

Regular Expressions

• Union a | b “a or b”

A regular expression is composed of three

operations:

• Concatenation ab “a then b”

where a and b can be any bit strings—or regular expressions

����������	�
��

• Kleene Star a* “0 or more a’s”

��������	�
��

��������� ������������	���
�	��

10

1* | 10*

(10)*

matches the string 10, which is the language { 10 }

…or L = { w | w is 10 }

What strings are in the other two REs' languages?

Regular Expressions

• Union a | b “a or b”

A regular expression is composed of three

operations:

• Concatenation ab “a then b”

where a and b can be any bit strings—or regular expressions

����������	�
��

• Kleene Star a* “0 or more a’s”

��������	�
��

��������� ������������	���
�	��

(01* | 10)*

Here is a fairly complex regular expression.

What strings are in (and out of) this language?

Try It!

���������������	
�����������
����
�	����������

����������	�	���������������������	������

�����������������������������������	���	����	��

How could you
implement other

operators?

a+

~(11)

one or more as

strings not matching 11

Try writing these REs in

terms of the original three…

Extra: can every RE avoid nested *'s ?

������������
������������	������	����

���������	
�	����	�����
���� �������
����

Is there an equivalent RE to this one

that avoids the nested * operators? (01* | 10)*

~astrings not matching a

• Union a | b “a or b”

• Concatenation ab “a then b”

• Kleene Star a* “0 or more a’s”

Operator Name Example Description

1*0(0|1)*

����

���������	

✁ ✂ ✄ ☎ ✝ ✞ ✟ ✠ ✡ ✂ ☛ ✁ ✡ ✞ ☞ ✠ ✌ ✍ ✎ ✂ ✏ ✑ ✝ ✞ ✟ ✠

✡ ✂ ☛ ✁ ✡ ✞ ✒ ☛ ✞ ✡ ✓ ✌ ☞ ✂ ✠ ✟ ✞ ✌ ✠

��������	������

✝ ✞ ✟ ✠ ✡ ✂ ☛ ✁ ✡ ✞ ☞ ✠ ✌ ✍ ✎ ✂ ✏ ✝ ✌ ✎ ✔ ✂ ✕

����

REs in Practice

Unix’s egrep does a line-by-line search for a regex:

egrep 'hh'

egrep 'y.*y'

egrep '(xq|hq)'

egrep '^y.*y$'

���	�����

�������	���

���������

���������
egrep '^(0|1(01*0)*1)(0|1(01*0)*1)*$' binStr

Almost all languages
have an RE library…

/usr/share/dict/words

symbol for start of a line
symbol for end of a line

symbol for any
character—a shortcut for
(a|b|c|…|z|0|1|…|9|…)

vowel vowelU

egrep –f regexFile matchingStringFile

with first and last the same?

knuth: ~cs60/egrep

REs to the Rescue!
PERL

practical

extraction

and report

language

www.regular-expressions.info/regexbuddy/email.html

But how does regular expression

matching actually work... ?

xkcd to the rescue, perhaps?

�����������				
���

