More bits of CS

Circuit design, part 1

Hw \#5 due Mon. 2/19
prO (reading) A bug and a crash!
pr1 (lab) binary ~decimal
pr2 conversion + compression
extra image processing...

Lots of tutoring hrs - join in... !

Below binary: physical circuits

Bits' big idea

Take-home

Concept
left-shifting by 1 doubles a value
right-shifting by 1
halves a value

Python

$42 \ll 1$
 84

Bitwise reason
'101010 '

'101010'

All computation

 is simply functions of bitsbinary inputs \mathbf{A} and \mathbf{B}
output, $\mathbf{A + B}$

00	00		\rightarrow	000
00	01		\rightarrow	001
00	10	This week:	\rightarrow	010
00	11	you'll build tis	\rightarrow	011
01	00		\rightarrow	001
01	01		\rightarrow	010
01	10		\rightarrow	011
01	11	bitwise	\rightarrow	100
10	00	addition	\rightarrow	010
10	01	function	\rightarrow	011
10	10	function	\rightarrow	100
10	11			101
11	00			011
11	01	ddB	\rightarrow	100
11	10	addB	\rightarrow	101
11	11		\rightarrow	110
A	B			

Adding strings?

is circuit addition!

```
N
    S \31'l
    """ adds the *strings* S and T
    as decimal numbers
    """
    if len(S) == 0: return T
    if len(T) == 0: return S
    eS =S[-1] eS ~ the "end of S" eT ~ the "end of T"
    eT = T[-1]
    if eS == '0' and eT == '1': return add10(S[:-1],T[:-1]) + '1'
    if eS == '1' and eT == '1': return add10(S[:-1],T[:-1]) + '2'
    if eS == '2' and eT == '1': return add10(S[:-1],T[:-1]) + '3'
    if eS == '3' and eT == '1': return add10(S[:-1],T[:-1]) + '4'
    # Lots more rules - how many in all?
```


Carrying on...

hw5: addB

S
 '19'
 '23'

""" adds the *strings* S and T
as decimal numbers
"" "
if len $(S)==0$: return T
if len $(T)==0$: return S
$e S=S[-1]$
$e T=T[-1]$
if $\mathbf{e S}==$ '0' and $\mathbf{e T}==$ '1': return $\operatorname{add10(S[:-1],T[:-1])+'1'}$
if $\mathbf{e S}==$ '1' and $\mathbf{e T}==$ '1': return $\operatorname{add10(S[:-1],T[:-1])~+~'2'~}$
if $e S==$ '2' and $\mathbf{e T}==$ '1': return add10(S[:-1],T[:-1]) + '3'
if $\mathbf{e S}==$ '3' and $\mathbf{e T}==$ '1': return $\operatorname{add10(S[:-1],T[:-1])+'4'~}$
\# what if we have to carry to the next column?
if $\mathbf{e S}==$ '3' and $\mathbf{e T}==$ '9':
return

Lab Debriefing \&
 hw5pr2.py

Lab Debriefing \& hw5pr1.py

def numToBin (N):
""" converts a decimal int to a binary string ""
if $\mathrm{N}==0$: return ' '
elif $\mathbf{N} \% \mathbf{2 =}=0$: return numToBin ($\mathrm{N} / / 2$) $+\mathrm{I}^{\prime}$
elif $\mathbf{N} \% \mathbf{2 =}=1$: return numToBin ($\mathbf{N} / / 2$) + '1'

Lab Debriefing \& hw5pr1.py

def numToBin (\mathbf{N}):

""" converts a decimal int to a binary string "" "
if $N==0$:
return
else: return numToBin ($\mathrm{N} / / 2$) $+\operatorname{str}(\mathrm{N} \% 2)$

\section*{Lab Debriefing \& hw5pr1.py
 in

def binToNum(S):

```
""" converts a binary string to a decimal int
"""
if S=='': return 0
elif S[-1]=='0': return 2*binToNum(S[:-1]) + 0
elif S[-1]=='1': return 2*binToNum(S[:-1]) + 1

\title{
Lab Debriefing \& hw5pr1.py \\ in \\ 
}
def binToNum( S ):
```

""" converts a binary string to a decimal int

```
"" "
if \(\mathrm{S}=={ }^{\prime}\) ': return 0
else: return 2*binToNum(S[:-1]) + int( \(S[-1])\)
\(\uparrow\)

\section*{Ariane 5}

This week's reading: bits can be vital


IndexError
TypeError
HumanError

version 4

\section*{64 bits}
version 5

\section*{How far can we count...?}
with 1 bit 1
    2 bits \(\quad 11 \quad 3\)
        3 bits \(\quad 111 \quad 7\)
        4 bits \(1111 \quad 15\)
        7 bits \(1111111 \quad 127\)
        8 bits 11111111255
    N bits
        31 bits

\section*{How far back can we remember...?}


\section*{How far back can we remember...?}

\section*{List of most viewed YouTube videos}

From Wikipedia, the free encyclopedia

This list of most viewed YouTube videos consists of the 30 most viewed videos of all time as derived from YouTube charts. \({ }^{[1]}\) Videos that YouTube suspects have had their view counts manipulated \({ }^{[2]}\) are not included in this list. View counts are based on the YouTube website; many of the videos are music videos that play through YouTube's partner site, Vevo, and YouTube view counts will lag those of Vevo by a few days. \({ }^{\text {[1] }}\)

As of September 2015, nine music videos have received over 1 billion views, with the top video, "Gangnam Style", exceeding 2 billion views.

\section*{only briefly, of course...}


Psy's "Gangnam Style" is the most watched video on YouTube as of September 2015, with over 2.4 billion views.

Top videos
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rank & Video name \({ }^{[A]}\) & Uploader / artist & Views
\[
\begin{gathered}
\text { (as of September } \\
29,2015 \text { ) }
\end{gathered}
\] & Upload date \(\uparrow\) & Notes \\
\hline 1. & "Gangnam Style"[3] & Psy & 2,421,271,749 & July 15, 2012 & [B] \\
\hline 2. & "Baby"[4] & Justin Bieber featuring Ludacris & 1,216,729,955 & \[
\begin{aligned}
& \text { February 19, } \\
& 2010
\end{aligned}
\] & [C] \\
\hline 3. & "Blank Space"[5] & Taylor Swift & 1,173,509,710 & November 10, 2014 & [D] \\
\hline
\end{tabular}
\(\cdots 11\) Nicu

\section*{Another overflow error!}

THE WALL STREET JOURNAL. ミ arts \& entertainment

9:19 am ET
Dec 3. 2014
MUSIC

\section*{Psys ‘Gangnam Style’ Has Forced YouTube to 'Upgrade’ Systems}

\section*{Gangnam Style Video Overflows YouTube Counter \\ By Rick Regan (Published December 3rd, 2014)}

On Monday, Psy's Gangnam Style video exceeded the limit of YouTube's view counter; this is what Google had to say (hat tip: Digg):
"We never thought a video would be watched in numbers greater
than a 32 -bit integer ( \(=2,147,483,647\) views)..."

The "sign bit" has flipped to one. Thus, the number has become negative... !


\section*{Ariane 5}

This week's reading: bits can be vital


IndexError
TypeError
HumanError

version 4
version 5

\section*{Insight: Ancient Egyptian multiplication}

\section*{Insight Ancient Egyptian Multiplication}
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{array}{r}
\text { abler } \\
\times \quad 6
\end{array}
\] & \multirow[t]{2}{*}{(ans. should be 126)} & \multirow[b]{4}{*}{Example} & AEM/RPM algorithm \\
\hline & & & & Write the factors in two columns. \\
\hline \multirow[t]{4}{*}{21} & dbler & & & \\
\hline & 6 & & & Repeatedly halve the LEFT and double the RIGHT. (toss remainders...) \\
\hline & & & & Pull out the RIGHT values where the LEFT values are odd. \\
\hline & & & & Sum those values for the answer! \\
\hline
\end{tabular}
Name(s)
\begin{tabular}{|ccc|}
\hline halver \\
21 & \(\times 6\) & \begin{tabular}{c} 
dabler \\
and
\end{tabular} \\
\hline 21 & 6 & 6 \\
\hline 10 & 12 & \\
\hline 5 & 24 & 24 \\
\hline 2 & 48 & \\
\hline 1 & 96 & +96 \\
\hline
\end{tabular}

126

Quiz
Ancient Egyptian Multiplication!

\section*{AEM algorithm}

Write the factors in two columns.
Repeatedly halve the LEFT and double the RIGHT. (toss remainders...)

Pull out the RIGHT values where the LEFT values are odd.

Sum those values for the answer!
\[
\begin{aligned}
& \text { halver } \\
& 12 \times 20 \\
& \text { (ans. } \sim 240 \text { abler }
\end{aligned}
\]
Name(s)
\begin{tabular}{|ccc|}
\hline halver \\
21 & \(\times 6\) & \begin{tabular}{c} 
dabler \\
and
\end{tabular} \\
\hline 21 & 6 & 6 \\
\hline 10 & 12 & \\
\hline 5 & 24 & 24 \\
\hline 2 & 48 & \\
\hline 1 & 96 & +96 \\
\hline
\end{tabular}

126

Quiz
Ancient Egyptian Multiplication!

\section*{AEM algorithm}

Write the factors in two columns.
Repeatedly halve the LEFT and double the RIGHT. (toss remainders...)

Pull out the RIGHT values where the LEFT values are odd.

Sum those values for the answer!
\[
\begin{aligned}
& \text { halver } \\
& 12 \times 20 \\
& \text { (ans. } \sim 240 \text { abler }
\end{aligned}
\]

\section*{Insight AEM algorithm}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Decimal} & \multicolumn{3}{|c|}{Binary} \\
\hline 21 & 6 & & \[
\begin{array}{r}
110_{6} \\
\times \quad 10101_{2}
\end{array}
\] & \\
\hline 21 & 6 & & \(110{ }_{6}\) & 6 \\
\hline 10 & 12 & & \(0000{ }_{12}\) & \\
\hline 5 & 24 & \(\checkmark\) & \(11000{ }_{24}\) & 24 \\
\hline 2 & 48 & & \(000000{ }_{48}\) & \\
\hline 1 & 96 & & \(\underline{+1100000} 96\) & +96 \\
\hline & & & 1111110 & 126 \\
\hline
\end{tabular}

Although in ancient Egypt the concept of base 2 did not exist, the algorithm is essentially the same algorithm as long multiplication after the multiplier and multiplicand are converted to binary. The method as interpreted by conversion to binary is therefore still in wide use today as implemented by binary multiplier circuits in modern computer processors.

\section*{Insight Egyptian + Russian Multiplication}
Decimal


\section*{Insight Egyptian + Russian Multiplication}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Decimal} & \multicolumn{3}{|c|}{Binary} \\
\hline 12 & 20 & & \(10100_{20}\) & \\
\hline 12 & 20 & & \(\times 1100_{12}\) & \\
\hline 12 & 20 & & \(00000{ }_{20}\) & \\
\hline 6 & 40 & & \(000000_{40}\) & \\
\hline 3 & 80 & \(\checkmark\) & \(1010000_{80}\) & 80 \\
\hline 1 & 160 & & \(+{ }^{10100000}{ }_{160}\) & +160 \\
\hline & & & 11110000 & 240 \\
\hline
\end{tabular}

\section*{Hw5: images are just bits, too! hw5pr3 (atra)}

old pixel at 42,42 has
red \(=1 \quad\) (out of 255)
green = 36 (out of 255)
blue \(=117\) (out of 255)

new pixel at 42,42 has
guesses as to what this transformation was?
how many bits represent each color channel?

\section*{Hw4: images are just bits, too! hw4pr3 (eatr)}

old pixel at 42,42 has
red =1 (out of 255)
green = 36 (out of 255)
blue \(=117\) (out of 255)

new pixel at 42,42 has
red \(=254 \quad\) (out of 255)
green \(=219\) (out of 255)
blue \(=138 \quad\) (out of 255)

Hw5: images are just bits, too!

"1010101001010101101010100101010110101010010101011010101001010101"

\section*{likelier binary image...}



We throw away 98\% of the image area!

Looks like the right


what's done?

original: 2.3 mb

compressed to 40 kb

original: 2.3 mb

compressed
original


\section*{Hw5: lossless binary image compression}


Binary Image

 streaks
11111111
11111111
00000000 00000000 00000000 00001111

Encoding as raw bits one big string of 64 characters \(\square\)

If our images tend to have long streaks of unchanging data, how might we represent it more efficiently, but still in binary?
compress uncompress

\section*{Hw5: lossless image compression}


\section*{Hw5: lossless image compression}


\section*{fixed-width compression}


\section*{Run-length encoding}

From Wikipedia, the free encyclopedia

If you use 7 bits to hold the \# of consecutive repeats, what is the largest number of bits that one block can represent?

\author{
00010000 \\ \(\underset{\substack{1 \text { bit: } \\ \text { the }}}{ } \quad 7\) bits: \# of repeats initial pixel \\ 7 bits? \\ B bits? \\ 8-bit total data block
}

What if you need a larger \# of repeats?

\section*{hw4 pr2}

\section*{def compress( I ):}
""" returns the RLE of the input binary image, I """
def uncompress( CI ):
" " "
returns the binary image \(I\) from the run-length-encoded, "compressed" input, CI """

\section*{hw5 pr}
a binary image
\begin{tabular}{cccc}
\hline \(0000000000000000111111111111111100000000000000000000000000001111 "\) \\
16 zeros & 16 ones & 28 zeros & 4 ones
\end{tabular}

\section*{def compress( I ):}
""" returns the RLE of the input binary/image, I """
"00010000100100000001110010000100"
def uncompress( CI ):
" " "
returns the binary image I from the run-length-encoded,
"compressed" input, CI "r"
back to the original binary image

\begin{tabular}{ccc}
\hline \(000000000000000011111111111111100000000000000000000000000001111 "\) \\
16 zeros & 16 ones & 28 zeros
\end{tabular}

\section*{hw5 pr}
a binary image
" \(0000000000000000111111111111111100000000000000000000000000001111 "\)

\section*{def compress( I ):}
""" returns the RLE of the input binary/image, I ""'
image:
the "compressed" image:

def uncompress( CI ):
\| \| \|
returns the binary image \(I\) from the run-length-encoded,
"compressed" input, CI ""中
back to the original binary image

\section*{Try it!} frontNum (S) should return the \# of times the first element of the input \(S\) appears consecutively at the start of \(S\) :

Try writing the recursive function, frontNum (S)

\section*{def frontNum(S):}

Examples...
```

>>> frontNum('1111010')
4
>>> frontNum('00110010')
2

```
```

1 lasecse
return

```
S[0] ==
    return
else:
    return
 compression results you can get for an \(8 \times 8\) input image ( 64 bits)?

EXTRA! How can you change our algorithm so that compressed images are always smaller than the originals?

\section*{shortest compressed representation \\ \(\downarrow\) \\ ฟ \\ representation \\ What are the BEST and the WORST compression results you can get for an \(8 \times 8\) image input ( 64 bits)?}


BEST


WORST

How could we improve this compression algorithm so that all images compress to smaller than the originals? That is, how can we make compression always work ?

\section*{shortest compressed representation \(\downarrow\) \\ What are the BEST and the WORST compression results you can get for an \(8 \times 8\) image input ( 64 bits)?}
only 8 bits total!

aargh! 512 bits!


Anyone see why this is NOT QUITE the worst-compressable image?
 algorithm so that all images compress to smaller than the originals? That is, how can we make compression always work ?

\section*{shortest compressed \\ representation \\ \(\downarrow\) \\ What are the BEST and the WORST compression results you can get for an \(8 \times 8\) image input ( 64 bits)?}



This is provably IMpossible!
How could we improve this compression algorithm so that all images compress to smaller than the originals? That is, how can we make compression always work ?

\section*{Binary images in practice...} Laserfiche


Original Image

\(\mathrm{T}=78 / 255\)

\(\mathrm{T}=120 / 255\)


Adaptive T

Stion became something of a mania th. ie introduction of the luxury, or sur.i. chanical and architectural wor ey were often heavily subsidizec ecorated to reflect that nation's culture.
y ine 1930s, reached its The luxury liners were "ships of state," ial overnments and ition became something of a mania that, by the 1930s, reached its e introduction of the luxury, or super " Ar. The luxury liners were chanical and architectural wonders. \({ }^{7}\) to as "ships of state," zy were often heavily subsidized \({ }^{2}\), .at zcorated to reflect that nation's culture.

Adaptive Threshold

\section*{Portrait vs. landscape?}


\section*{Portrait vs. landscape?}


Right-side up?

\section*{Portrait vs. landscape?}


Right-side up?

\section*{It's all bits!} images, text, sounds, data, ... even the string 'forty* two' is represented as a sequence of bits...

\section*{'forty*two'}

011001100110111101110010011101000111100100101010011101000111011101101111
9 ASCII characters 8 bits each

9*8 == 72 bits total

All computation boils down to manipulating bits!

\title{
In a computer, each bit is represented as a voltage ( \(\mathbf{1}\) is +5 v and \(\mathbf{0}\) is 0 v )
}

Computation is simply the deliberate combination of those voltages!

But what's this green thing?


\title{
In a computer, each bit is represented as a voltage ( \(\mathbf{1}\) is +5 v and \(\mathbf{0}\) is 0 v )
}

Computation is simply the deliberate combination of those voltages!

But what's this green thing?


In a computer, each bit is represented as a voltage
( \(\mathbf{1}\) is +5 v and \(\mathbf{0}\) is 0 v )

Computation is simply the deliberate combination of those voltages!

But what's this green thing?


\section*{Adding strings? is circuit addition!}
```

is syntactic addition!

```

\section*{Multiplying by machine:}

\section*{Doing anything by machine...}
is syntactic
interaction! means it can be done purely via surface syntax, which means it can be done without thinking...

\section*{Our building blocks: logic gates}


These circuits are physical functions of bits...
... and all mathematical functions can be built from them!

\section*{From gates to circuits...}

What inputs make this circuit output 1?
File Edit Project Simulate Window Help
s \(\quad \square \square D\)



\section*{\begin{tabular}{|l|l|}
\hline \multicolumn{2}{c|}{ Circuit: What does this do? } \\
\hline Circuit Name & What does this do? \\
\hline Shared Label & \\
\hline Shared Label Facing & East \\
\hline Shared Label Font & SansSerif Plain 12 \\
\hline & \\
\hline & \\
\hline
\end{tabular}}

from circuit design...

\section*{next 2 weeks}

\section*{...to a full computer!}

\section*{Have an outst \(=\square\)-ing and \(f \Rightarrow D\)-tuitous week(end)! \\ Why \(-\square^{-}\)?!}
```

