
Below binary: physical circuits

More bits of CS Too many bits? Compress!

Hw #5 due Mon. 2/19

Lots of tutoring hrs - join in... !

pr1 (lab) binary ~ decimal

pr2 conversion + compression

extra image processing...

pr0 (reading) A bug and a crash!

I'd call this a
KNOT gate…

Circuit design, part 1

vs

Bits' big idea

Bitwise reason

left-shifting by 1
doubles a value

Python

Do I halve to
remember this?

42 << 1
84

'101010'

'1010100'

'101010'

'10101'

Concept

right-shifting by 1
halves a value

42 >> 1
21

in binary, columns double in value leftward

in binary, columns halve in value rightward

No - it falls out!

Aha! This can be implemented
just with wiring!

42

84

21

42

I hope I don't have to
remember L vs R!

Take-home

All computation is simply functions of bits

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

000
001
010
011
001
010
011
100
010
011

101

100

100

011

101
110

A B

binary inputs A and B output, A+B

bitwise
addition
function

Adding strings?

def add10(S,T):
""" adds the *strings* S and T

as decimal numbers
"""
if len(S) == 0: return T
if len(T) == 0: return S
eS = S[-1]
eT = T[-1]
if eS == '0' and eT == '1': return add10(S[:-1],T[:-1]) + '1'
if eS == '1' and eT == '1': return add10(S[:-1],T[:-1]) + '2'
if eS == '2' and eT == '1': return add10(S[:-1],T[:-1]) + '3'
if eS == '3' and eT == '1': return add10(S[:-1],T[:-1]) + '4'
Lots more rules - how many in all?

eS ~ the "end of S" eT ~ the "end of T"

'11''31'

S T

Notice that this code doesn't
"understand" addition at all!

'31'
'11'

S

T

Carrying on…

def add10(S,T):
""" adds the *strings* S and T

as decimal numbers
"""
if len(S) == 0: return T
if len(T) == 0: return S
eS = S[-1]
eT = T[-1]
if eS == '0' and eT == '1': return add10(S[:-1],T[:-1]) + '1'
if eS == '1' and eT == '1': return add10(S[:-1],T[:-1]) + '2'
if eS == '2' and eT == '1': return add10(S[:-1],T[:-1]) + '3'
if eS == '3' and eT == '1': return add10(S[:-1],T[:-1]) + '4'
what if we have to carry to the next column?
if eS == '3' and eT == '9':

return

'19''23'

S T

hw5: addB

'23'
'19'

eS ~ the "end of S" eT ~ the "end of T"

S

T

Notice that this code doesn't
"understand" addition at all!

Lab Debriefing &
hw5pr2.py

Lab Debriefing &
hw5pr1.py

def numToBin(N):
""" converts a decimal int to a binary string
"""
if N==0: return ''
elif N%2==0: return numToBin(N//2) + '0'
elif N%2==1: return numToBin(N//2) + '1'

ntb(42)

ntb(21) + '0'

'101010'

ntb(10) + '1'

ntb(5) + '0'

ntb(2) + '1'

ntb(1) + '0'

ntb(0) + '1'

''

42
in

out

these are awfully similar…

Lab Debriefing &
hw5pr1.py ntb(42)

ntb(21) + '0'

'101010'

ntb(10) + '1'

ntb(5) + '0'

ntb(2) + '1'

ntb(1) + '0'

ntb(0) + '1'

''

42
in

out

def numToBin(N):
""" converts a decimal int to a binary string
"""
if N==0: return ''
else: return numToBin(N//2) + str(N%2)

What if you wanted base-3 output?! base-B output? make sure your notes have TWO forward slashes!

btn('101010')

def binToNum(S):
""" converts a binary string to a decimal int
"""
if S=='': return 0
elif S[-1]=='0': return 2*binToNum(S[:-1]) + 0
elif S[-1]=='1': return 2*binToNum(S[:-1]) + 1

'101010'
2*btn('10101') + 0

2*btn('1010') + 1

2*btn('101') + 0

2*btn('10') + 1

2*btn('1') + 0

2*btn('') + 1

0

Lab Debriefing &
hw5pr1.py

2*1

2*2*2*1

2*2*2*2*2*1

42

in

out

again, awfully similar…

btn('101010')

def binToNum(S):
""" converts a binary string to a decimal int
"""
if S=='': return 0
else: return 2*binToNum(S[:-1]) + int(S[-1])

saves the need for another if

'101010'
2*btn('10101') + 0

2*btn('1010') + 1

2*btn('101') + 0

2*btn('10') + 1

2*btn('1') + 0

2*btn('') + 1

0

Lab Debriefing &
hw5pr1.py

2*1

2*2*2*1

2*2*2*2*2*1

42

in

out

What if you wanted base-3 input?! base-B input?

Ariane 5

TypeErrorIndexError HumanError

This week's reading: bits can be vital

version 5version 4
64 bits16 bits

1 bit

How far can we count…?

with

2 bits

3 bits

4 bits

8 bits

N bits

31 bits

7 bits

1

11

111

1111

I can see some patterns here –
even with one eye closed!

11111111

1111111

3

1

7

15

127

255

1 bit

How far back can we remember…?

with

2 bits

3 bits

4 bits

8 bits

N bits

31 bits

7 bits

1

11

111

1111

11111111

1111111

3

1

7

15

127

255

1 bit

How far back can we remember…?

with

2 bits

3 bits

4 bits

8 bits

N bits

31 bits

7 bits

1

11

111

1111

11111111

1111111

3

1

7

15

127

255

Another overflow error!
Less worrisome, perhaps...

The "sign bit" has flipped
to one. Thus, the number
has become negative... !

Ariane 5

TypeErrorIndexError HumanError

This week's reading: bits can be vital

version 5version 4
64 bits16 bits

Insight: Ancient Egyptian Multiplication

Not sure - but surprisingly much is ...

Write the factors in two columns.

Repeatedly halve the LEFT and
double the RIGHT. (toss remainders…)

Pull out the RIGHT values where
the LEFT values are odd.

Sum those values for the answer!

Buddy, can you
spare an eye?

Why does this work?

AEM/RPM algorithm

Insight Ancient Egyptian Multiplication

a.k.a. RPM

21 6
halver dbler (ans. should be 126)

21 6
halver dbler

Example

21 6
Write the factors in two columns.

Repeatedly halve the LEFT and
double the RIGHT. (toss remainders…)

Pull out the RIGHT values where
the LEFT values are odd.

Sum those values for the answer!

11 15

Extra: Why does this always work? Hint: it's binary!

AEM algorithm

Try it!

Quiz
halver dbler

halver dbler

Ancient Egyptian Multiplication!Name(s) _______________________

10
5
2
1

21
12
24
48
96

6

24

96

6

126
+

(ans. should be 126)

Example

(ans. ~ 165) 12 20
halver dbler

(ans. ~ 240)

21 6
Write the factors in two columns.

Repeatedly halve the LEFT and
double the RIGHT. (toss remainders…)

Pull out the RIGHT values where
the LEFT values are odd.

Sum those values for the answer!

11 15

Extra: Why does this always work? Hint: it's binary!

AEM algorithm

Try it!

Quiz
halver dbler

halver dbler

Ancient Egyptian Multiplication!Name(s) _______________________

10
5
2
1

21
12
24
48
96

6

24

96

6

126
+

(ans. should be 126)

Example

(ans. ~ 165) 12 20
halver dbler

(ans. ~ 240)

6

24

96

110
0000

11000
000000

1100000

Decimal

Insight AEM algorithm

Binary

110
10101

+

x

21 6
10 12
5 24
2 48
1 96

1111110 126
+

6

12

24

48

96

126

6

21

21 6

11 15

15
30

120

1111
11110

000000
1111000

1111
1011

+

x

11 15
5 30
2 60
1 120

10100101 165
+

15

30

60

120

165

15

11

Decimal Binary

Insight Egyptian + Russian Multiplication

12 20

80
160

00000
000000
1010000

10100000

10100
1100

+

x

12 20
6 40
3 80
1 160

11110000 240
+

20

40

80

160

240

20

12

Decimal Binary

Insight Egyptian + Russian Multiplication

hw5pr3 (extra)

how many bits represent each color channel?

Hw5: images are just bits, too!

old pixel at 42,42 has
red = 1 (out of 255)
green = 36 (out of 255)
blue = 117 (out of 255)

new pixel at 42,42 has

hw4pr3 (extra)

how many bits represent each color channel?

Hw4: images are just bits, too!

old pixel at 42,42 has
red = 1 (out of 255)
green = 36 (out of 255)
blue = 117 (out of 255)

new pixel at 42,42 has
red = 254 (out of 255)
green = 219 (out of 255)
blue = 138 (out of 255)

Binary Image Encoding as raw bits
one big string of 64 characters

10101010
01010101
10101010
01010101
10101010
01010101
10101010
01010101

"1010101001010101101010100101010110101010010101011010101001010101"

Hw5: images are just bits, too!

likelier binary image...

home!and a reasonable candidate for compression

image compression is everywhere!

How is it possible to
throw away 98% of

the image data!?

Too many pixels... too little time + space!

One solution!

How is it possible to
throw away 98% of

the image data!?

We throw away
98% of the

image area!

Looks like the right
2% to keep!

compressed to 40kb original: 2.3mb

Most often... what's done?

compressed to 40kb original: 2.3mb

compressed original

compressed original

Binary Image

00000000
00000000
11111111
11111111
00000000
00000000
00000000
00001111

Encoding as raw bits
one big string of 64 characters

"0000000000000000111111111111111100000000000000000000000000001111"

If our images tend to have long streaks of unchanging data, how
might we represent it more efficiently, but still in binary?

Hw5: lossless binary image compression

same-data
streaks

compress
uncompress

One possible algorithm:

bit #repeats

Any problems with this?

0100001100000111001100

0 is the first
digit

There are 16
of them.

1 is the
next digit

Again, there are
16 of them.

00000000
00000000
11111111
11111111
00000000
00000000
00000000
00001111

0 is the
next digit

There
are 28

1 is the
final digit

There
are 4

Hw5: lossless image compression

0100001100000111001100

0100001100000111001100

0100001100000111001100

0 is the
first digit

and there are 1,098,188 of them.

00000000
00000000
00000000
00000000
00000000
00000000
00000000
000000…

Hw5: lossless image compression

1,098,188 zeros!

our algorithm:

bit #repeats

could be misinterpreted!

fixed-width compression

00010000100100000001110010000100

0 is the first
digit

There are 16
of them.

1 is the
next digit

Again, there are
16 of them.

7 bits: # of repeats

and so on…

7 bits: # of repeats

8-bit data block 8-bit data block 8-bit data block 8-bit data block

28 zeros 4 ones

00000000
00000000
11111111
11111111
00000000
00000000
00000000
00001111

We need fixed-width blocks:

bit #repeats

8-bits total

00010000100100000001110010000100

1 bit fill 7 bits for the # of repeats

If you use 7 bits to hold the # of consecutive repeats, what
is the largest number of bits that one block can represent?

B bits?

00010000
7 bits: # of repeats

8-bit total data block

7 bits?

1 bit:
the

initial
pixel

What if you need a larger # of repeats?

hw4 pr2

def compress(I):
""" returns the RLE of the

input binary image, I """

def uncompress(CI):
""" returns the binary image I

from the run-length-encoded,
"compressed" input, CI """

hw5 pr2

def compress(I):
""" returns the RLE of the

input binary image, I """

def uncompress(CI):
""" returns the binary image I

from the run-length-encoded,
"compressed" input, CI """

"0000000000000000111111111111111100000000000000000000000000001111"

"00010000100100000001110010000100"

a binary image

the "compressed" image:

"0000000000000000111111111111111100000000000000000000000000001111"

back to the original binary image

16 zeros 16 ones 28 zeros 4 ones

16 16 28 4

16 zeros 16 ones 28 zeros 4 ones

hw5 pr2

def compress(I):
""" returns the RLE of the

input binary image, I """

def uncompress(CI):
""" returns the binary image I

from the run-length-encoded,
"compressed" input, CI """

"0000000000000000111111111111111100000000000000000000000000001111"

"00010000100100000001110010000100"

a binary image

the "compressed" image:

"0000000000000000111111111111111100000000000000000000000000001111"

back to the original binary image

16 zeros 16 ones 28 zeros 4 ones

16 16 28 4

16 zeros 16 ones 28 zeros 4 ones

Try it!
Try writing the recursive function, frontNum(S)

>>> frontNum('1111010')
4
>>> frontNum('00110010')
2

Examples…

def frontNum(S):

if
return

elif
return

else:
return

What are the BEST / WORST
compression results you can get
for an 8x8 input image (64 bits)?

shortest

EXTRA! How can you change our
algorithm so that compressed images
are always smaller than the originals?

longest

len(S)<=1:

S[0] ==

len(S)== 0:
len(S)== 1:

or 2 base cases:
1 base case:

:

frontNum(S) should return the # of times the first element
of the input S appears consecutively at the start of S:

What are the BEST and the WORST compression
results you can get for an 8x8 image input (64 bits)?

shortest compressed
representation

longest compressed
representation

How could we improve this compression
algorithm so that all images compress to

smaller than the originals? That is, how can
we make compression always work ?

?

BEST WORST

What are the BEST and the WORST compression
results you can get for an 8x8 image input (64 bits)?

shortest compressed
representation

longest compressed
representation

How could we improve this compression
algorithm so that all images compress to

smaller than the originals? That is, how can
we make compression always work ?

?

Anyone see why this is NOT QUITE the
worst-compressable image?

only 8 bits total! aargh! 512 bits!

What are the BEST and the WORST compression
results you can get for an 8x8 image input (64 bits)?

shortest compressed
representation

longest compressed
representation

How could we improve this compression
algorithm so that all images compress to

smaller than the originals? That is, how can
we make compression always work ?

!

Original Image T = 78/255 T = 120/255 Adaptive T

Binary images in practice...

T = 120/255

Adaptive Threshold

threshold too low threshold too high adaptive!original

Portrait vs. landscape?

This landscape image is
determined to contain a

portrait document.

Intensity profiles

Portrait vs. landscape?

Right-side up?

Lots of peaks == lots of text lines

fe
w

 p
ea

ks
 =

=
fe

w
 te

xt
 li

ne
s

This landscape image is
determined to contain a

portrait document.

Intensity profiles

Portrait vs. landscape?

Right-side up?

Lots of peaks == lots of text lines

fe
w

 p
ea

ks
 =

=
fe

w
 te

xt
 li

ne
s

It's all bits!

'forty*two'

011001100110111101110010011101000111100100101010011101000111011101101111

9*8 == 72 bits total

All computation boils down to manipulating bits!

even the string 'forty*two' is represented
as a sequence of bits…

9 ASCII characters
8 bits each

images, text, sounds, data, …

42
101010

In a computer, each bit is
represented as a voltage

(1 is +5v and 0 is 0v)

9
001001

ADDER
circuit

Computation is simply the
deliberate combination of

those voltages!

But what's this
green thing?

(1) set input voltages

42
101010

In a computer, each bit is
represented as a voltage

(1 is +5v and 0 is 0v)

9
001001

ADDER
circuit 1

1
0
0
1
1

Computation is simply the
deliberate combination of

those voltages!

(1) set input voltages

(2) perform computation

But what's this
green thing?

42
101010

In a computer, each bit is
represented as a voltage

(1 is +5v and 0 is 0v)

9
001001

ADDER
circuit 1

1
0
0
1
1

51

Computation is simply the
deliberate combination of

those voltages!

Richard Feynman: "Computation is just a
physics experiment that always works!"

(3) read output
voltages

(1) set input voltages

(2) perform computation

But what's this
green thing?

Adding strings?

Multiplying by machine:

Doing anything by machine…

means it can be done
purely via surface syntax,

which means it can be
done without thinking…

syntactic ~ meaning-free

Our building blocks: logic gates

AND outputs 1 only
if ALL inputs are 1

OR outputs 1 if
ANY input is 1

NOT reverses
its input

AND OR NOT

These circuits are physical functions of bits…

… and all mathematical functions can be built from them!

From gates to circuits...

What inputs make this circuit output 1?

Logisim What inputs make this circuit output 0?

next 2 weeks

from circuit design…

…to a full computer!

