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The Education of a Computer* 
GRACE MURRAY HOPPER 
with an introduction by David Gries 

Categories and Subject Descriptors: K.2 [Computing Milieux]: History of 
Computing-hardware, software, systems; 0.3 [Programming Languages]: 
Processors-compilers, interpreters 
General Terms: Languages 
Additional Terms: Subroutine, Short-order Code 

Introduction language existed, perhaps, but not much else. In 

Reading an old article in computer science can be 
this paper, Grace Hopper tells the world about 

amusing and enlightening. The old article may 
the tools and techniques she and others at Rem- 

often seem quaint, in the way it uses some of our 
ington Rand were attempting to create for the 

well-worn and defined terms; or naive, in the way 
UNIVAC, so that “the programmer may return to 
being a mathematician.” 

it treats some of the topics we now know so much 
about; or a bit off the mark, in the way it at- 

Hopper anticipates well what will happen- 

tempts to solve a problem whose solution we now 
even, perhaps, artificial intelligence-when she 

know. Yet, we read the article with a sense of 
says, “it is the current aim to replace, as far as 

appreciation, respect, and even awe, as we reflect 
possible, the human brain by an electronic digi- 

on the times in which it was written, how little 
tal computer.” She is one of the first to recognize 

was then known, and the contribution it makes. 
that the software and not the hardware will turn 

We can see-in the full development of some really 
out to be most expensive: “With the computer paid 

important idea, or perhaps just hints of things to 
for, the cost and time of programming comes to 

come-a sign of some concept struggling to emerge 
the notice of vice-presidents and project direc- 

but still needing a few more years, we know, be- 
tors.” She looks for the day when the mathema- 

fore it has grown enough to get out of its cocoon, 
tician won’t have to know the instruction codes 

We can sense a bit of what the field was like in 
of the machine, and, although her programs deal 

those days, gain an appreciation for the past, and 
with mathematics, she foresees the same kind of 

understand in some small way the problems with 
applications in commercial programming (which 

which people were faced. 
in those days was essentially nonexistent). 

Grace Hopper’s paper The Education of a 
On a more technical level, there are glimmer- 

Computer, presented in 1952 at one of the first 
ings of many tools and techniques concerning 

conferences of the Association for Computing 
compilers that we now accept as commonplace: 

Machinery, is one such gem. Thirty-five years ago 
the subroutine library, complete with specifica- 

there were no programming languages, and con- 
tions; the translation of a formula into its ele- 

sequently no compilers. There were not even nice 
mentary components, the prime function of a 

assembly languages as we now know them today, 
compiler; the subroutine interface and relative 

so no assemblers. A primitive symbolic machine 
addressing, which obviates the need to recompile 
it for each use; the linking loader; and code op- 
timization. Hopper even anticipates symbolic 

*Reprinted with permission from the Proceedings of the 
manipulation. In discussing the processing of a 

Association for Computing Machinery Conference, Pitts- function f(x), she says “the formulas for the der- 
burgh, Pennsylvania, May 1952. ivatives of f(x) will be derived by repeated ap- 
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plications of [a compiling routine of type] Bl” and W. Mauchly of Eckert-Mauchly and M. V. Wilkes 
declares later on that more type B routines must of the University of Cambridge. From Aiken came, 
be designed. in 1946, the idea of a library of routines de- 

Hopper builds her paper around a diagram- scribed in the Mark I manual, and the concepts 
matic model of a production line consisting of an embodied in the Mark III coding machine, from 
operation, with a control, a set of tools, input, and Mauchly, the basic principles of the “short-order 
output. She adeptly uses it to model the mathe- code” and suggestions, criticisms, and untiring 
matician, the computer, and a compiling pro- patience in listening to these present attempts; 
gram, as well as a composition of all three that from Wilkes, the greatest help of all, a book on 
describes a complete human-computer system. the subject. For those of their ideas which are in- 
Her diagrams are reminiscent (actually, the other eluded herein, I most earnestly express my debt 
way around!) of the diagrams used to show how and my appreciation. 
a compiler is bootstrapped or moved from one 
machine to another. 

Enjoy this paper, while learning about the be- /n troduction 

ginnings of our field. Don’t expect to see all words To start at the beginning, Figure 1 represents the 
used as they are today. Even the notion of the configuration of the elements required by an op- 
programmer and his task may be different (Hop- eration: input to the operations; controls, even if 
per wants “the compiling routine [to be] the pro- they be only start and stop; previously prepared 
grammer and perform all those services neces- tools supplied to the operation; and output of 
sary to the production of a finished program”; the products, which may, in turn, become the input 
mathematician supplies the formula and some of another operation. This is the basic element of 
control information). The phrases and terminol- a production line; input of raw materials, con- 
ogy are based on the notions and technology of trolled by human beings, possibly through in- 
the day, which were far removed from ours, with struments; supplied with machine tools; the op- 
our massive software system and proliferation of eration produces an automobile, a rail, or a can 
computers into all aspects of our lives. This pa- of tomatoes. 
per, by one of the pioneers, will give you a re- The armed services, government, and industry 
markable glimpse of the past. are interested not only in creating new opera- 

David Gries 
tions to produce new results, but also increasing 
the efficiency of old operations. A very old op- 
eration, Figure 2, is the solution of a mathemat- 

David Gries is a Professor of Computer Science ical problem. It fits the operational configura- 
at Cornell University, previous chairman of the tion: input of mathematical data; control by the 
Computer Science Department, and current mathematician; supplied with memory, formu- 
chairman of the Computer Research Board. las, tables, pencil, and paper; the brain carries on 
When Grace Hopper was first presenting this the arithmetic, and produces results. 
paper, he was finishing eighth grade at P.S. 107 It is the current aim to replace, as far as pos- 
in New York and had not yet heard the word sible, the human brain by an electronic digital 
“computer.” He is author of text Compiler computer. That such computers themselves fit this 
Construction for Digital Computers (1971), one of configuration may be seen in Figure 3. (With your 
the first texts on compilers and for almost 10 permission, I shall use UNIVAC as synonymous 
years a major text on the subject. with electronic digital computer; primarily be- 

cause I think that way, but also because it is con- 
venient.) 

The Education of a Computer Adding together the configurations of the hu- 
man being and the electronic computer, Figure 4 

While the materialization is new, the idea of shows the solution of a problem in two levels of 
mechanizing mathematical thinking is not new. operation. The arithmetical chore has been re- 
Its lineage starts with the abacus and descends moved from the mathematician, who has become 
through Pascal, Leibnitz, and Babbage. More im- a programmer, and this duty assigned to the UNI- 

mediately, the ideas here presented originate from VAC. The programmer has been supplied with a 
Howard H. Aiken of Harvard University, John “code” into which he translates his instructions 
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Figure 1. An operation. 

where she earned an M.A. in 1930, and a Ph.D. 
in 1934. She also attended New York University 
as a Vassar Faculty Fellow in 194 1. 

In December 1943 she was sworn in, and in 
May 1944, she joined the U.S. Naval Reserve 
(USNR) and attended the USNR Midshipman 
School (W). After graduation she was 
commissioned a Lieutenant (JG) and ordered to 
the Bureau of Ordinance Computation Project at 
Harvard, where she learned to program 
computers. In 1946, she was returned to inactive 
duty, only to be recalled to active duty in August 
1967. She was appointed on 8 November 1983 
as Commodore; the title of that grade changed to 
Rear Admiral on 8 November 1985. 

Figure 2. Solution of problem. 

She also worked as a senior mathematician at 
Eckert-Mauchly Computer Corp. in Philadephia, 
and helped program the UNIVAC I, first commercial 
large-scale electronic computer. She remained 
with the company when it was bought by 
Remington Rand and later merged with Sperry 
Corporation. 

At her retirement ceremony aboard the U. S.S. 
Constitution in Boston, Navy Secretary John F, 
Lehmann Jr. presented Admiral Hopper with the 
Distinguished Service Medal. More than 40 
colleges and universities have conferred honorary 
degrees on Admiral Hopper, and she has been 
honored by her peers on several occasions. She 
was the recipient of the first Computer Sciences 
“Man of the Year” award presented by the Data 

1 UNwPER 1 bF;m 

UNISERVO 

Figure 3. UNIVAC system. 

to the computer. The “standard knowledge” de- 
signed into the UNIVAC by its engineers, consists 
of its elementary arithmetic and logic. 

This situation remains static until the novelty 
of inventing programs wears off and degenerates 
into the dull labor of writing and checking pro- 
grams. This duty now looms as an imposition on 
the human brain. Also, with the computer paid 
for, the cost of programming and the time con- 
sumed, comes to the notice of vice-presidents and 
project directors. Common sense dictates the in- 

Processing Management Association. Her en try 
in “Who’s Who” requires 34 lines to thumbnail 

sertion of a third level of operation, Figure 5. 

her accomplishments, appointments, and honors. 
The programmer may return to being a math- 

ematician. He is supplied with a catalogue of 
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r---------- ______- -- --____ ------- ------------ ---------7 
I I 
I OP. I I 
I PROGRAMMER I 

I I 
I I 
b I 
I r---------------------------,-- 

Figure 4. Solution of a problem. 

subroutines. No longer does he need to have 
available formulas or tables of elementary func- 
tions. He does not even need to know the partic- 
ular instruction code used by the computer. He 
needs only to be able to use the catalogue to sup- 
ply information to the computer about his prob- 
lem. The UNIVAC. on the basis of the information 

supplied by the mathematician, under the con- 
trol of a “compiling routine of type A,” using sub- 
routines and its own instruction code, produces a 
program. This program, in turn directs the UNI- 
VAC through the computation on the input data 
and the desired results are produced. A major re- 
duction in time consumed and in sources of error 

- .- .- !- ‘- .__ .- .- .- .- .- .- __ .- .-.- .- 
OP. II 

_ _- .- .- .- .- .- - 

iop,L ‘1.j ,-----i l’“i”‘. __ _,__ __ __(__ -[ _,__ __ _, 

,I., .,,\, >.,, ,..,. ‘I - ! 
i T ! ! 
iA; I I 

I I 
! 1 TASK I! I ! I 

I 
CATALOGUE 

I 
[ 1 ROUTINES I! 

I ! 1 

Figure 5. Compiling routines and subroutines. 
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has been made. If the library is well-stocked, pro- derivatives. This information processed under a 
gramming has been reduced to a matter of hours, 
rather than weeks. The program is no longer sub- 

compiling routine of Type A yields a program to 
direct the computation. 

ject either to errors of transcription or of un- 
tested routines. 

Specifications for computer information, a cat- 
alogue, compiling routines, and subroutines will 
be given after adding another level to the block 
diagram. As Figure 5 stands the mathematician 
must still perform all mathematical operations, 
relegating to the UNIVAC programming and com- 
putational operations. However, the computer in- 
formation delivered by the mathematician no 
longer deals with numerical quantities as such. 
It treats of variables and constants in symbolic 
form together with operations upon them. The 
insertion of a fourth level of operation is now 
possible, Figure 6. Suppose, for example, the 
mathematician wishes to evaluate a function and 
its first n derivatives. He sends the information 
defining the function itself to the UNIVAC. Under 
control of a “compiling routine of type B,” in this 
case a differentiator, using task routines, the 
UNIVAC delivers the information necessary to 
program the computation of the function and its 
derivatives. From the formula for the function, 
the UNIVAC derives the formulas of the successive 

Expansion makes this procedure look, and seem, 
long and complicated. It is not. Reducing again 
to the two-component system, the mathematician 
and the computer, Figure 7 presents a more ac- 
curate picture of the computing system. 

Presuming that code, program, input data, and 
results are familiar terms, it remains to define 
and specify the forms of information and routines 
acceptable to this system. These include 

catalogue, 
computer information, 
subroutine, 
compiling routines, type A and B, 
and task routines. 

Catalogue and Computer Information 

As soon as the purpose is stated to make use of 
subroutines, two methods arise. In one, the pro- 
gram refers to an immediately available subrou- 
tine, uses it, and continues computation. For a 
limited number of subroutines, this method is 

._._.________~.___._______________ 
/ OP. II 

,-.-.-.-.-._._.-. _____._.___.___.~_._.____________,~, 

lop’ -1 j 1-1 

!____- .--.-----.-.--.-.-.-.-.-.-i.-.-.-.-.-.-.--~ 

t 
L .-.-.-.- _ -.-.- -_ -.-.-.-.-.-. --.. 

~-.________---.-._.____________________-.-.-.-. 
1 OP. III 

b INFORM AT ION 

I 
..-.----.--.L.-.- 

OP. IY i j 
I 

Figure 6. Compiling Type B and task routines. 
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COMPILING A 

I  
I  I  

-_-----__---_--------~,-----~--~~4 

INFORMATION 

I 
I 
I 
I 
I SUBROUTINES 
I 
8 
I 
I 
I 
I 
I 
L-----------------.----I-___L-___I. -__------------ 

Figure 7. Computing system. 

feasible and useful. Such a system has been de- 
veloped under the nickname of the “short-order 
code” by members of the staff of the Computa- 
tional Analysis Laboratory [at Eckert-Mauchly 
Computer Corporation]. 

The second method not only looks up the sub- 
routine, but translates it, properly adjusted, into 
a program. Thus, the completed program may be 
run as a unit whenever desired, and may itself 
be placed in the library as a more advanced sub- 
routine. 

Each problem must be reduced to the level of 
the available subroutines. Suppose a simple 
problem, to compute 

As presented in Figure 9, however, this infor- 
mation is not yet sufficiently standardized to be 
acceptable to a compiling routine. Several prob- 
lems must be considered and procedures defined. 

The operations are numbered in normal se- 
quence and this number becomes part of the com- 
puter information. Thus when it is desired to 
change the normal sequence, the alternate des- 
tination is readily identified. The compiling rou- 
tine translates these operation numbers into in- 
structions in the coded program. Two fundamental 
situations arise, the alternate destination either 

y = e-x2 sin cx, CONTROL 

using elementary subroutines. Each step of the 
formula falls into the operational pattern, Figure 

?I 

8; that is, 
p-yq ,~I ,pr-1 

u = x2 
u = e-u 

&I 
STANDARD 

v = cx CONSTANTS 

V = sin v 
y=uv. Figure 8. Operation. 

276 * Annals of the History of Computing, Volume 9, Number 3/4, 1988 



G. M. Hopper l Education of a Computer 

y  = e-x 
2 
sin cx 

OPERATION 

NUMBER 
OPERATION ARGUMENTS RESULTS I CONTROL 

TRANSFER 0,01,99,2,5 

bOi 1(1,2,3,4,5) 

x,Ax,Lx ,n,c 
1 ,2,3,10,6 

u=x 2 

4 

X" 

apn 

x2 
1 .lO 

@-u 
x-e 

U 

4 

U = ecu 

5 I 

CqP 

amc 

u = cx 

7 I 
c,x 

6,1 

sin v  

tso 

V V = sin v  

7 8 

y  = uv 
9 

0;; ‘I2, 

x+Ax--+x xiL,-+l , xcL,-+ 8 

1 8 1 

@ 
am0 

u, v 

518 

x, Y 
1,g 

x, Ax, Lx 
~,2,3 

6 
EDIT 

yr= 

e-+L 

daL 

8 
STOP 

ust 

Figure 9. Example. 

precedes the operation under consideration or fol- 
lows it, by-passing several intermediate opera- 
tions. In both cases, it is necessary only to have 
the compiling routine remember where it has 
placed each subroutine or that a transfer of con- 
trol to operation h has been indicated. In any event 
the mathematician need only state, “go to oper- 
ation K,” and the compiling routine does the rest. 

The symbols to be used for the arguments and 
results, as well as for the operations, are of next 
concern. One mathematician might write 

y z e-2 sin cx 

and another 

u = .P2 sin gv. 

The obvious solution proves best. Make a list of 
arguments and results and number them. (This 
amounts to writing all constants and variables as 
xi.) The order is immaterial, so that forgotten 
quantities can be added at the end. 

1 x x1 6 c x6 
2 Ax x2 7 v  x7 
3 L. X8 8 v x8 
4 u xq 9 Y x9 
5 u xg 10 n Xl0 

As symbols for the operations and subroutines, 
a system of “call-numbers” is used. These alpha- 
betic characters represent the class of subrou- 
tines. Following Wilkes’ example, these symbols 
are partially phonetic; that is, a = arithmetic, t 
= trigonometric, and x = exponential; amc = 
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arithmetic, multiplication by a constant, z - e = ecu, 
ts0 = trigonometric, sine. Placed with the call-, 
numbers, n, f, or s, indicates normal, floating, or 
stated (fixed) decimal point. Other letters and 
digits indicate radians or degrees for angles, 
complex numbers, etc. These call-numbers are 
listed in the catalogue together with the order in 
which arguments, controls, and results are to be 
stated. The general rules for the description of an 
operation are: 

1. call-numbers, 
2. number of operation, 
3. arguments in order of appearance in formula, 

variables preceding constants, 
4. controls, normal exit if altered, followed by al- 

ternate exits in order of appearance in sub- 
routine, 

5. results, in order of appearance. __ 

All exceptions to the general rules are listed in 
the catalogue. 

The problem has been reduced to computer in- 
formation. The exact positions of characters in 
words as submitted to the UNIVAC has been omit- 
ted since it hardly seems of general interest. The 
preparation of information might be called cre- 
ating a “multiple-address code,” by which any 
number of arguments may enter an operation, to 
produce any number of results, and to proceed di- 
rectly to the next operation unless routed to any 
one of several other operations. 

Subroutines 

1. call-number; 
2. arguments, the destination of the arguments 

within the subroutine, expressed in the rela- 
tive coding of the subroutine; 

3. non-modification indicators locating constants 
embedded in the subroutine which are not to 
be altered; 

4. results, the positions of the results within the 
subroutine, expressed in relative coding. 

Each subroutine is arranged in a standard pat- 
tern. 

Entrance line. The first line of subroutine is he. The first line of subroutine is 
its entrance line, thus in relative coding it is line, thus in relative coding it is 
number one. It is the first line of the subroutine lt is the first line of the subroutine 
transferred to a program, and it contains an in- 1 a program, and it contains an in- 
struction transferring control to the first action isferring control to the first action 
line. 

Exit lines. The second line of a subroutine is The second line of a subroutine is 
its normal exit line. This contains an instruction ILS normal exit line. This contains an instruction 
transferring control to the line following the last 
line of the subroutine. Unless an alternate trans- 
fer of control is desried, all exists from the sub- 
routine are referred to the normal exit line. Al- 
ternate exit lines, involving transfers of control 
from the usual sequence, follow the normal exit 
line in a predetermined order as listed in the cat- 
alogue. 

Arguments. The exit lines are followed by 
spaces reserved for the arguments arranged in 
predetermined order. 

Results. The results, also in specified order, 
follow the arguments. 

Constants. The results are followed, when pos- 
sible, by any arbitrary constants peculiar to the 
subroutine. When the subroutine has been com- 
pounded from other subroutines, groups of con- 
stants may also appear embedded in the subrou- 
tine. These are cared for by the non-modification 
information. 

The first action line appears next in the sub- 
routine. Its position in the relative coding is de- 
fined by the entrance line. No instruction line may 
precede this line. 

The sequence assigned to the entrance and exit 
lines, arguments, results, and constants is arbi- 
trary. It is convenient. All that is required is that 
a sequence be established and that the computer 
recognize this sequence. 

For convenience in manipulation, a certain 
number of elementary subroutines have been 
combined to form a sub-library. These include 

a = arithmetic 

Each subroutine in the library is expressed in 
coding relative to its entrance line considered as 
001. They are, in general, programmed and coded 
for maximum accuracy and minimum computing 
time. They may store within themselves con- 
&ants peculiar to themselves. They may also make 
use of certain “permanent constants” read in with 
every program. These permanent constants oc- 
cupy a reserved section of the memory and are 
called for by alphabetic memory locations, a trick, 
at present peculiar to UNIVAC. Thus, these ad- 
dresses are not modified in the course of posi- 
tioning the subroutine in a program. They in- 
elude such quantities as 1/27r: rr/4,log,,e, ~0, .2, 
.5, and the like. 

Each subroutine is preceded by certain infor- 
mation, matching and supplementing that sup- 
plied by the mathematician: b = transfer of data 
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c = counters treatment to such values as zero and infinity, and 
h = hyperbolic functions provide signals and printed information when the 
i = input routines capacity of the computer is exceeded. 
I = logarithmic functions An elementary subroutine consists of a 
0 = output routines threading routine accompanied by one or more 
p = polynomials kernel routines. Hence, the threading routines are 
r = roots and fractional exponents similar to the subroutines in form having at the 
t = trigonometric functions beginning an entrance line, exit lines, (usually 
u = control transfers undetermined until the kernel routine is sup- 
w  = storage routines plied), arguments, results, and constants. At the 
x = exponential functions end of a threading routine are certain lines pre- 
y = editing routines pared to “overlap” the first section of the kernal 

routine. This overlap contains 

As subroutines are added to extend the li- 
brary, it becomes more useful and programming 1. the entrance line of the kernal routine; 

time is further reduced. 2. the exit line of the kernel routine set-up by 

Indeed, the day may come when the elemen- threading routine; 

tary subroutines are rarely used and the com- 3. arguments; and 

puter information will contain but seven or eight 4. results. 

items calling into play powerful subroutines. 
Compiling Routines of Type A are designed to se- 
lect and arrange subroutines according to infor- 

Construction of Subroutines mation supplied by the mathematician or by the 
computer. Basically, there is but one Type A rou- 

It is not necessary, nor is it advisable, that the tine. However, since the UNIVAC code contains in- 
inexperienced programmer tamper with the cod- structions transferring two neighboring quan- 
ing within a subroutine. It is usually minimum tities simultaneously, a second compiling routine 
latency coding using every trick and device known has been designed to care for floating decimal, 
to the experienced programmer. It has been tested complex number, and double precision programs. 
by operation on the computer. However, in order For each operation listed by the mathematician, 
to speed the original construction, on paper, of a type A routine will perform the following ser- 
the elementary routines, kernel routines and vices: 
threading routines have been devised. 

A kernel routine computes a mathematical 1. locate the subroutine indicated by the cell- 
function or carries out an elementary process for number; 
a limited range of the variable concerned; for 2. from the computer and subroutine informa- 
example, sin X, for 0 < x < n/4 and lo-” for tion combined with its record of the program, 
0 < x < 1. A kernel routine is always entered fabricate and enter in the program the in- 
and left by way of a threading routine. structions transferring the arguments from 

Threading routines, incomplete without ker- working storage to the subroutine; 
nels, remove from the arguments and store, such 3. adjust the entrance and normal exit lines to 
quantities as algebraic signs, integral parts, and the position the subroutine in the program and 
exponents, deliver the reduced arguments to the enter them in the program; 
kernel routine, receive results from the kernel, 4. according to the control information supplied 
and adjust algebraic signs and exponents. For ex- by the programmer, adjust alternate exit lines 
ample, the threading routines for sin y remove and enter them in the program (this process 
the algebraic sign of y, reduce y by multiples of involves reference to the record); 
2n, reduce the remainder to a quantity x less than 5. according to the control information supplied 
n/4, store the information and select the sin x or with previous operations adjust auxiliary en- 
cos x kernel routine. The kernel routine returns trance lines and enter them in the program; 
sin z or cos X. The threading routine adjusts the 6. modify all addresses in the subroutine in- 
sign, exponent, and decimal point completing the structions and enter these instructions in the 
computation. program; 

Threading routines recognize and give special 7. according to information supplied by the sub- 
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routine, leave unaltered all constants embed- 
ded in the subroutine and transfer them to the 
program; 

8. from the computer and the subroitine infor- 
mation fabricate and enter in the program the 
instructions transferring the results to 

9. maintain and produce a record of the program 
including the call-number of each subroutine 
and the position of its entrance line in the pro- 
gram. 

2. removal of error sources such as programming 
errors and transcription errors; 

The compiling routines also contain certain in- 
structions concerning input tapes, tape library, 
and program tapes, peculiar to the UNIVAC. All 
counting operations such allocation of temporary 
storage and program space, and control of input 
and output are carried on steadily by the com- 
piling routine. Stated bluntly, the compiling rou- 
tine is the programmer and performs all those 
services necessary to the production of a finished 
program. 

Compiling Routines of Type B will for each _ - 
operation, by means of “task routines,” replace or 
supplement the given computer information with 
new information. Thus, compiling routine B-l will, 
for each operation, copy the information concern- 
ing that operation and call in the corresponding 
task routine. The task routine will generate the 
formula, and derive the information, necessary to 
compute the derivative of the operation. Compil- 
ing routine B-l then records this information in 
a form suitable for submission to a Type A rou- 
tine. 

3. conservation of programming time; 
4. ability to operate on operation; 
5. duplication of effort is avoided, since each pro- 

gram in turn may become a subroutine. 

Only two disadvantages are immediately evi- 
dent. Because of a standardization, a small amount 
of time is lost in performing duplicate data trans- 
fers which could be eliminated in a tailor-made 
routine. In base load problems, this could become 
serious. Even in this case, however, it is worth- 
while to have UNIVAC produce the original pro- 
gram and then eliminate such duplication before 
rerunning the problem. The second disadvantage 
should not long remain serious. It is the fact that, 
if a desired subroutine does not exist, it must be 
programmed and added to the library. This will 
be most likely to occur in the case of input and 
output editing routines until a large variety is 
accumulated. This situation also emphasizes the 
need for the greatest generality in the construc- 
tion of subroutines. 

Since information may be re-submitted to a type 
B routine, it is obvious that in order to obtain a 
program to compute f(x) and its first n deriva- 
tives, only the information defining f(x) and the 
value of n need be given. The formulas for the 
derivatives of f(x) will be derived by repeated ap- 
plications of B-l and programmed by a type A 
routine. 

It is here that the question can best be an- 
swered concerning a liking for or an aversion to 
subroutines. Since the use of subroutines in this 
fashion increases the abilities of the computer, 
the question becomes meaningless and trans- 
forms into a question of how to produce better 
subroutines faster. However, balancing the ad- 
vantages and disadvantages of using subrou- 
tines, among the advantages are: 

1. relegation of mechanical jobs such as memory 
allocation, address modification, and tran- 
scription to the UNIVAC; 
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Several directions of future developments in 
this field can be pointed out. It is to be hoped that 
reports will be presented on some of them next 
September. 

More type A compiling routines will be de- 
vised; those handling commercial rather than 
mathematical programs; some special purpose 
compiling routines such as a routine which will 
compute approximate magnitudes as it proceeds 
and select sub-routines accordingly. Compiling 
routines must be informed of the average time 
required for each sub-routine so that they can 
supply estimates of running time with each pro- 
gram. Compiling routines can be devised which 
will correct the computational procedure submit- 
ted to produce the most efficient program. For ex- 
ample, if both sin 8 and cos 8 are called for in a 
routine, they will be computed more rapidly si- 
multaneously. This will involve sweeping the 
computer information once to examine its struc- 
ture. 

Type B routines at present include linear op- 
erators. More type B r&tines must be designed. 
It can scarcely be denied that type C and D rou- 
tines will be found to exist adding higher levels 
of operation. Work is already in progress to pro- 
duce the formulas developed by type B routines 
in algebraic form in addition to producing their 
computational programs. 

Thus by considering the profesional program- 
mer (not the mathematician), as an integral part 
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subject only to translation into suitable lan- 
guage. And it is further evident that the com- 
puter is fully capable of remembering and acting 
upon any instructions once presented to it by the 
programmer. 

df the computer, it is evident that the memory of 
the programmer and all information and data to 

not forget and does not make mistakes. It is hoped 

which he can refer is available to the computer 
that its undergraduate course will be completed 
shortly and it will be accepted as a candidate for 
a graduate degree. 
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