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To the Reader

Welcome! This book (and course) takes a unique approach to “Intro CS.” In a nutshell, our
objective is to provide an introduction to computer science as an intellectually rich and vi-
brant field rather than focusing exclusively on computer programming. While programming
is certainly an important and pervasive element of our approach, we emphasize concepts
and problem-solving over syntax and programming language features.

This book is a companion to the course “CS for Scientists and Engineers” developed at
Harvey Mudd College. At Mudd, this course is taken by almost every first-year student— Our name is Mudd!

irrespective of the student’s ultimate major—as part of our core curriculum. Thus, it serves
as a first computing course for future CS majors and a first and last computing course for
many other students. The course also enrolls a significant number of students from the
other Claremont Colleges, many of whom are not planning to major in the sciences or
engineering. At other schools, versions of this course have also been taught to students
with varying backgrounds and interests.

The emphasis on problem-solving and big ideas is evident beginning in the introductory
chapter, where we describe a very simple programming language for controlling the virtual
“Picobot” robot. The syntax takes ten minutes to master but the computational problems
posed here are deep and intriguing.

The remainder of the book follows in the same spirit. We use the Python language due
to the simplicity of its syntax and the rich set of tools and packages that allow a novice
programmer to write useful programs. Our introduction to programming with Python in
Chapter 2 uses only a limited subset of the language’s syntax in the spirit of a functional
programming language. In this approach, students master recursion early and find that
they can write interesting programs with surprisingly little code. Chapter 3 takes another
step in functional programming, introducing the concept of higher-order functions.

Chapter 4 addresses the question “How does my computer do all this?” We examine
the inner-workings of a computer, from digital logic through the organization of a machine
and programming the machine in its native machine and assembly language.

Now that the computer has been demystified and students have a physical representa-
tion of what happens “under the hood,” we move on in Chapter 5 to explore more complex
ideas in computation and, concomitantly, concepts such as references and mutability, and
constructs including loops, arrays, and dictionaries. We explain these concepts and con-
structs using the physical model of the computer introduced in the previous chapter. In
our experience, students find these concepts are much easier to comprehend when there is
an underlying physical model.

Chapter 6 explores some of the key ideas in object-oriented programming and design.
The objective here is not to train industrial-strength programmers but rather to explain the
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CHAPTER 0. TO THE READER

rationale for the object-oriented paradigm and allow students to exercise some key concepts.
Finally, Chapter 7 examines the “hardness” of problems—providing a gentle but math-

ematically sound treatment of some of the ideas in complexity and computability and ul-
timately proving that there are many computational problems that are impossible to solve
on a computer. Rather than using formal models of computation (e.g., Turing Machines),
we use Python as our model.

This book is intended to be used with the substantial resources that we have developed
for the course, which are available on the Web at https://www.cs.hmc.edu/twiki/bin/

view/ModularCS1. These resources include complete lecture slides, a rich collection of
weekly assignments, some accompanying software, documentation, and papers that have
been published about the course.

We have kept this book relatively short and have endeavored to make it fun and readable.New! Improved! With
many “marginally”

useful comments!
The content of this book is an accurate reflection of the content of the course rather than
an intimidating encyclopedic tome that can’t possibly be covered in a single semester. We
have written this book in the belief that a student can read all of it comfortably as the
course proceeds. In an effort to keep the book short (and hopefully sweet), we have not
included the exercises and programming assignments in the text but rather have posted
these on the course Web site.

We wish you happy reading and happy computing!
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Chapter 1

Introduction

1.1 What is Computer Science?

Computer science is to the information revolution what mechanical engineering
was to the industrial revolution.

——Robert Keller

You might be uncertain about what computer science (CS) is, but you use it every day.
When you use Google or your smartphone, or watch a movie with special effects, there’s lots
of CS in there. When you order a product over the Internet, there is CS in the web site, in
the cryptography used to keep your credit card number secure, and in the way that FedEx
routes their delivery vehicle to get your order to you as quickly as possible. Nonetheless,
even computer scientists can struggle to answer the question “What exactly is CS?”

Many other sciences try to understand how things work: physics tries to understand
the physical world, chemistry tries to understand the composition of matter, and biology
tries to understand life. So what is computer science trying to understand? Computers?
Probably not: computers are designed and built by humans, so their inner workings are
known (at least to some people!).

Perhaps it’s all about programming. Programming is indeed important to a computer
scientist, just as grammar is important to a writer or a telescope is important to an as-
tronomer. But nobody would argue that writing is about grammar or that astronomy is
about telescopes. Similarly, programming is an important piece of computer science but
it’s not what CS is all about.

If we turn to origins, computer science has roots in disparate fields that include engineer-
ing, mathematics, and cognitive science, among others. Some computer scientists design
things, much like engineers. Others seek new ways to solve computational problems, ana-
lyze their solutions, and prove that they are correct, much like mathematicians. Still others
think about how humans interact with computers and software, which is closely related to
cognitive science and psychology. All of these pieces are a part of computer science.

One theme that unifies (nearly) all computer scientists is that they are interested in the
automation of tasks ranging from artificial intelligence to zoogenesis. Put another way, Zoogenesis refers to the

origin and evolution of a
particular animal
species. Computational
biology is a field that
uses CS to help solve
zoogenetic questions,
among many others.

computer scientists are interested in finding solutions for a wide variety of computational
problems. They analyze those solutions to determine their “goodness,” and they implement
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CHAPTER 1. INTRODUCTION

the good solutions to create useful software for people to work with. This diversity of
endeavors is, in part, what makes CS so much fun.

There are several important concepts at the heart of computer science; we have chosen
to emphasize six of them: data, problem solving, algorithms, programming, abstraction,
and creativity.

1.1.1 Data

When you Google the words “pie recipe,” Google reports that it finds approximately 38
million pages, ranked in order of estimated relevance and usefulness. Facebook has approx-
imately 1 billion active users who generate over 3 billion comments and “Likes” each day.
GenBank, a national database of DNA sequences used by biologists and medical researchers
studying genetic diseases, has over 100 million genetic sequences with over 100 billion DNA
base pairs. According to the International Data Corporation, in 2010 the size of our “Digi-
tal Universe” reached 1.2 zettabytes. How much is that? Jeffrey Heer, a computer scientist
who specializes in managing and visualizing large amounts of data, puts it this way: A stack
of DVDs that reached to the moon and back would store approximately 1.2 zettabytes of
data.That’s astronomical!

Without computer science, all of this data would be junk. Searching for a recipe on
Google, a friend on Facebook, or genes in GenBank would all be impossible without ideas
and tools from computer science.

Doing meaningful things with data is challenging, even if we’re not dealing with millions
or billions of things. In this book, we’ll do interesting things with smaller sets of data. But
much of what we’ll do will be applicable to very large amounts of data too.

1.1.2 Algorithms

Making Pie and Making π

When presented with a computational problem, our first objective is to find a computational
solution, or “algorithm,” to solve it. An algorithm is a precise sequence of steps for carrying
out a task, such as ranking web pages in Google, searching for a friend on Facebook, or
finding closely related genes in Genbank. In some cases, a single good algorithm is enough
to launch a successful company (e.g., Google’s initial success was due to its Page Rank
algorithm).

Algorithms are commonly compared to recipes that act on their ingredients (the data).
For example, imagine that an alien has come to Earth from a distant planet and has a
hankering for some pumpkin pie. The alien does a Google search for pumpkin pie and finds

I’ve come to
Earth for

pumpkin pie!

the following:

1. Mix 3/4 cup sugar, 1 tsp cinnamon, 1/2 tsp salt, 1/2 tsp ginger and 1/4 tsp cloves in
a small bowl.

2. Beat two eggs in a large bowl.

3. Stir 1 15-oz. can pumpkin and the mixture from step 1 into the eggs.

4. Gradually stir in 1 12 fl. oz. can evaporated milk into the mixture.
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1.1. WHAT IS COMPUTER SCIENCE?

5. Pour mixture into unbaked, pre-prepared 9-inch pie shell.

6. Bake at 425◦F for 15 minutes.

7. Reduce oven temperature to 350◦F.

8. Bake for 30–40 minutes more, or until set.

9. Cool for 2 hours on wire rack.

Assuming we know how to perform basic cooking steps (measuring ingredients, cracking
eggs, stirring, licking the spoon, etc.), we could make a tasty pie by following these steps No! Don’t lick the

spoon—there are raw
eggs in there!

precisely.

Out of respect for our gastronomical well-being, computer scientists rarely write recipes
(algorithms) that have anything to do with food. As a computer scientist, we would be
more likely to write an algorithm to calculate π very precisely than we would be to write
an algorithm to make a pie. Let’s consider just such an algorithm:

1. Draw a square that is 2 by 2 feet.

2. Inscribe a circle of radius 1 foot (diameter 2 feet) inside this square.

3. Grab a bucket of n darts, move away from the dartboard, and put on a blindfold.

4. Take each dart one at a time and for each dart:

(a) With your eyes still covered, throw the dart randomly (but assume that your Please don’t try this at
home.throwing skills ensure that it will land somewhere on the square dartboard).

(b) Record whether or not the dart landed inside the circle.

5. When you have thrown all the darts, divide the number that landed inside the circle
by the total number, n, of darts you threw and multiply by 4. This will give you your
estimate for π.

Figure 1.1 shows the scenario.

That’s the description of the algorithm, but why does it work? Here’s why: The area
of the circle is πr2 which is π in this case because we made the radius of the board to be
1. The area of the square is 4. Since we’re assuming that darts are equally likely to end up
anywhere in the square, we expect the proportion of them that land in the circle to be the
ratio of the area of the circle to the area of the square: π/4. Therefore, if we throw n darts
and determine that some number k land inside the circle, then k/n should be approximately
π/4. So multiplying the ratio by 4 gives us an approximation of π.

Hey, watch it!
That dart
almost hit me.

Happily, the computer does not have to robotically throw physical darts; instead we
can simulate this dart throwing process on a computer by generating random coordinates
that describe where the darts land. The computer can throw millions of virtual darts in a
fraction of a second and will never miss the square—making things considerably safer for
your roommate!
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Figure 1.1: Using a dartboard to approximate π.

1.1.3 Programming

Although we noted earlier that computer science is not exclusively about programming,
ultimately we usually want to have a program—that is, software—that implements the
algorithm that will operate on our data.

Learning to program is a bit like learning to speak or write in a new language. The
good news is that the syntax of a programming language—the vocabulary and grammar—
is not nearly as complicated as for a spoken language. In this book, we’ll program in a
language called Python, whose syntax is particularly easy to learn. But don’t be fooled
into thinking it’s not a real programming language—Python is a very real language used
by real programmers to write real software. Moreover, the ideas that you’ll learn here will
be transferable to learning other languages later.

1.1.4 Abstraction

While data, algorithms, and programming might seem like the whole story, the truth is that
there are other important ideas behind the scenes. One of these is the notion of abstraction
– the idea that when designing something big and complicated, whether it be a car or a
cool software app, it’s difficult (or even impossible) to keep all of the interacting pieces in
mind at the same time. Therefore, we divide up the design into constituent pieces and then
assemble them into a working whole.

For example, a car has an engine, a drivetrain, an electrical system, and other compo-
nents. These components can be designed individually and then assembled to work together.
The designer of the drivetrain doesn’t need to understand every aspect of how the engine
works, but just enough to know how the drivetrain and the engine will be connected. To
the drivetrain designer, the engine is an “abstraction.” In fact, the engine itself is divided
into components such as the engine block, distributor, and others. These parts too can
be viewed as abstract entities that interact with one another. When designing the engine
block, we don’t need to think about every detail of how the distributor works.
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1.2. PICOBOT

Similarly, software systems can be large and complicated – arguably much more com-
plicated than a car. Designing software requires that we think about abstractions in order
to ensure that many people can contribute to the project without everyone needing to un-
derstanding everything, in order to test the software methodically, and in order to be able
to update it in the future by simply replacing one “component” by a new and improved
component. Abstraction, therefore, is a key idea in the design of any large system, and
software in particular.

1.1.5 Problem Solving and Creativity

This book strives to prepare you to write well-designed programs that do interesting things
with data. In the process, we hope to convey to you that computer science is an enor-
mously creative endeavor that requires innovative problem-solving, exploration, and even
experimentation. Often times, there’s more than one way to solve a problem. In some cases
there’s not even a clear “best” way to solve a problem. Different solutions will have different
merits. While Google, Facebook, GenBank are wonderfully easy to use, many challenges
arose – and continue to arise – in the design and continual updating of such systems. These
challenges often lead to groups of computer scientists working together to find different
solutions and evaluate their relative merits. While the challenges that we’ll confront in this
book are of a more modest scope, we hope to share with you the sense of problem solving
and creativity that are at the heart of computer science.

Takeaway message: In a nutshell, the objective of this book is to demonstrate the
breadth of activities that comprise computer science, show you some fundamental and beau-
tiful ideas, and provide you with the skills to design, implement, and analyze your own
programs.

1.2 Picobot

Leap before you look.
—W. H. Auden

The best way for you to get a feel for computer science is to jump right in and start
solving a computer science problem. So let’s do just that. In this section, we’ll examine
solutions to an important problem: How to make sure you’ll never have to clean—or at least
vacuum—your room again. To solve this problem we’ll use a simple programming language

If your room
has no open
floor space, this
claim is
“vacuously”
true!

named Picobot that controls a robot loosely based on the Roomba vacuum cleaner robot.
You’re probably wondering what happened to Python, the programming language we

said we would be using throughout this book. Why are we sweeping Python under the carpet
and brushing aside the language that we plan to use for the remainder of the book? The
answer is that although Python is a simple (but powerful!) programming language that’s
easy to learn, Picobot is an even simpler language that’s even easier to learn. The entire
language takes only a few minutes to learn and yet it allows you to do some very powerful
and interesting computation. So, we’ll be able to start some serious computer science before
we get sucked into a discussion of a full-blown programming language. This will be new
and fun—and whether you have programmed before, it should offer a “Eureka!” experience.
So, dust off your browser and join us at http://www.cs.hmc.edu/picobot. This web site offers a

simulation environment
for exploring Picobot’s
capabilities.5 Draft 157 for use at HMC and Stevens, 2012-09-03
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CHAPTER 1. INTRODUCTION

1.2.1 The Roomba Problem

It is the humblest of tasks—cleaning up—that has turned out to be the “killer app” forOr, at least, the
“breakout” app that

enabled the industry’s
first large-scale profits.

household robots. Imagine yourself as a Roomba vacuum named Picobot: your goal is to
suck up the debris from the free space around you—ideally without missing any nooks or
crannies. The robotics community calls this the coverage problem: it is the task of ensuring
that all the grass is mown, all the surface receives paint, or all the Martian soil is surveyed.

An iRobot Roomba.

At first this problem might seem pretty easy. After all, if your parents gave you a vacuum
cleaner and told you to vacuum your room without missing a spot, you’d probably do a
pretty great job without even thinking too much about it. Shouldn’t it be straightforward
to convey your strategy to a robot?

Unfortunately, there are a couple of obstacles that make the Picobot’s job considerably

You’ll notice that we use
the word “Picobot” to

refer to both the
Roomba robot and the

language that we will use
to program it.

more difficult than yours. First, Picobot has very limited “sight” ; it can only sense what’s

Actually, Picobot might
not be able to actually
“see” at all. Instead, it

might sense its
environment through one
of many possible sensors
including bump sensors,
infrared, camera, lasers,

etc.

directly around it. Second, Picobot is totally unfamiliar with the environment it is supposed
to clean. While you could probably walk around your room blindfolded without crashing
into things, Picobot is not so lucky. Third, Picobot has a very limited memory. In fact, it
can’t even remember which part of the room it has seen and which part it has not.

While these challenges make Picobot’s job (and our job of programming Picobot) more
difficult, they also make the coverage problem an interesting and non-trivial computer
science problem worth serious study.

1.2.2 The Environment

Our first task in solving this problem is to represent it in a way that the computer can
handle. In other words, we need to define the data we will be working with to solve this
problem. For example, how will we represent where the obstacles in the room are? Where
Picobot is? We could represent the room as a plane, and then list the coordinates of the
object’s corners and the coordinates of Picobot’s location. While this representation is
reasonable, we will actually use a slightly simpler approach.

Whether lawn or sand, an environment is simpler to cover if it is discretized into cells

“Discretize” is
CS-speak for

“break up into
individual

pieces.”

as shown in Figure 1.2. This is our first example of an abstraction: we are ignoring the
details of the environment and simplifying it into something we can easily work with. You,
as Picobot, are similarly simplified: you occupy one grid square (the green one), and you
can travel one step at a time in one of the four compass directions: north, east, west, or
south.

Picobot cannot travel onto obstacles (the blue cells—which we will also call “walls”);
as we mentioned above, it does not know the positions of those obstacles ahead of time.
What Picobot can sense is its immediate surroundings: the four cells directly to its north,
east, west, or south. The surroundings are always reported as a string of four letters in
“NEWS” order, meaning that we first see what is in our neighboring cell to the North,
next what’s to the East, then West, and finally South. If the cell to the north is empty,
the letter in the first position is an x. If the cell to the north is occupied, the letter in
that first position is an N. The second letter, an x or an E, indicates whether the eastern
neighbor is empty or occupied; the third, x or W, is the west; the fourth, x or S, is the south.
At its position in the lower-left-hand corner of Figure 1.2, for example, Picobot’s sensors
would report its four-letter surroundings as xxWS. There are sixteen possible surroundings
for Picobot, shown in Figure 1.3 with their textual representations.
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1.2. PICOBOT

Figure 1.2: There are four types of cells in a Picobot environment, or map: green is Picobot
itself, blue cells are walls, and gray cells are free space. Picobot can’t sense whether a empty
cell has been visited or not (dark or light gray), but it can sense whether each of its four
immediate neighbors is free space or an obstacle.
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CHAPTER 1. INTRODUCTION

Figure 1.3: There are sixteen possible surroundings strings for Picobot. The one in which
Picobot is completely enclosed will not occur in our simulator!

1.2.3 State

As we’ve seen, Picobot can sense its immediate surroundings. This will be important in its
decision-making process. For example, if Picobot is in the process of moving north and it
senses that the cell to its north is a wall, it should not try to continue moving north! In
fact, the simulator will not allow it.

But how does Picobot “know” whether it is moving north or some other direction?
Picobot doesn’t have an innate sense of direction. Instead, we make use of a powerful
concept called state. The state of a computer (or a person or almost any other thing) is
simply its current condition: on or off, happy or sad, underwater or in outer space, etc. In

I’m currently in
an inquisitive

state.

computer science, we often use “state” to refer to the internal information that describes
what a computer is doing.

Picobot’s state is extremely simple: it is a single number in the range 0–99. SomewhatThe state of anything
can be described with a

set of numbers. . . but
describing human states

would take at least
trillions of values.

surprisingly, that’s enough to give Picobot some pretty complex behaviors. Picobot always
starts in state 0.

Although Picobot’s state is numeric, it’s helpful to think of it in English terms. For
example, we might think of state 0 as meaning “I’m heading north until I can’t go any
further.” However, it’s important to note that none of the state numbers has any special
built-in meaning; it is up to us to make those decisions. Moreover, Picobot doesn’t actually
have a sense of which directions it is pointing. But we can define our own conception of
which direction Picobot is “pointing” by defining an appropriate set of states.

For example, imagine that Picobot wants to perform the subtask of continually moving
north until it gets to a wall. We might decide that state 3 means “I’m heading north until
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Each rule’s first part is
an integer from 0 to 99:
Picobot’s current state.

-

The second part is Pi-
cobot’s four-letter cur-
rent surroundings.

��
��1

0 xxWx -> E 1

0 xxxx -> W 0

The third part is a text
arrow : a hyphen fol-
lowed by a greater-than
symbol.

HH
HY

The fourth part is Picobot’s resulting
move. If the current state and the cur-
rent surroundings apply, this is the di-
rection Picobot moves.

�����9
The fifth part is Picobot’s
new state. Picobot’s state
becomes this value after ap-
plying the rule.

�

Figure 1.4: The five parts of two Picobot rules. One useful way to interpret the idea of
state is to attribute a distinct intention to each state. With these two rules, Picobot’s initial
state (state 0) represents “go west as far as possible.”

I can’t go any further (and when I get to a wall to my north, then I’ll consider what to
do next!).” When Picobot gets to a wall, it might want to enter a new state such as “I’m
heading west until I can’t go any further (and when I get to a wall to my west, I’ll have
to think about what to do then!).” We might choose to call that state 42 (or state 4; it’s
entirely up to us).

As we’ll see next, your job as the Picobot programmer is to define the states and their
meanings; this is what controls Picobot and makes it do interesting things!

Takeaway message: The state is simply a number representing a subtask that you
would like Picobot to undertake.

1.2.4 Think locally, act globally

Now we know how to represent Picobot’s surroundings, and how to represent its state. But
how do we make Picobot do anything?

Picobot moves by following a set of rules that specify actions and possibly state changes.
Which rule Picobot chooses to follow depends on its current state and its current surround-
ings. Thus, Picobot’s complete “thought process” is as follows:

1. I take stock of my current state and immediate surroundings.

2. Based on that information, I find a rule that tells me (1) a direction to move and (2)
the state I want to be in next.

Picobot uses a five-part rule to express this thought process. Figure 1.4 shows two examples
of such rules.

The first rule,

0 xxWx -> E 1

re-expressed in English, says “If I’m in state 0 and only my western neighbor contains an
obstacle, take one step east and change into state 1.” The second rule,
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CHAPTER 1. INTRODUCTION

Figure 1.5: The result of running Picobot with this section’s four rules.

0 xxxx -> W 0

says “If I’m in state 0 with no obstacles around me, move one step west and stay in stateGo west, young Picobot!

0.” Taken together, these two rules use local information to direct Picobot across an open
area westward to a boundary.

At each step, Picobot examines the list of rules that you’ve written looking for the one
rule that applies. A rule applies if the state part of the rule matches Picobot’s current stateRemember that Picobot

always begins its mission
in state 0.

and the surroundings part of the rule matches the current surroundings. What happens
if there are NO rules that match Picobot’s current state and surroundings? The Picobot
simulator will let you know about this in its Messages box and the robot will stop running.
Similarly, if more than one rule applies, Picobot will also complain.

Figure 1.5 shows how Picobot follows the first rule that matches its current state and
surroundings at each time step. But what about state 1? No rules specify Picobot’s actions
in state 1—yet! Just as state 0 represents the “go west” subtask, we can specify two rules
that will make state 1 be the “go east” subtask:

1 xxxx -> E 1

1 xExx -> W 0

These rules transition back to state 0, creating an infinite loop back and forth across an
open row. Try it out—the Picobot Web site contains these four rules by default. The WebPicobot cannot sense

whether or not a cell has
been visited. This
limitation is quite

realistic: the Roomba,
for example, does not

know whether a region
has already been

cleaned.

site also starts Picobot at a randomly selected empty cell. Note, however, that if Picobot
starts along a top or bottom wall, no rules match and it does not move! We will remedy
this defect in the next section.

By the way, sometimes you might not want Picobot to move as the result of applying a
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0 **x* -> W 0

0 **W* -> E 1

1 *x** -> e 1

1 *E** -> W 0

0 xxxx -> W 0 0 xxWx -> E 1 1 xxxx -> E 1 1 xExx -> W 0
0 xxxS -> W 0 0 xxWS -> E 1 1 xxxS -> E 1 1 xExS -> W 0
0 xExx -> W 0 0 xEWx -> E 1 1 xxWx -> E 1 1 xEWx -> W 0
0 xExS -> W 0 0 xEWS -> E 1 1 xxWS -> E 1 1 xEWS -> W 0
0 Nxxx -> W 0 0 NxWx -> E 1 1 Nxxx -> E 1 1 NExx -> W 0
0 NxxS -> W 0 0 NxWS -> E 1 1 NxxS -> E 1 1 NExS -> W 0
0 NExx -> W 0 0 NEWx -> E 1 1 NxWx -> E 1 1 NEWx -> W 0
0 NExS -> W 0 0 NEWS -> E 1 1 NxWS -> E 1 1 NEWS -> W 0

Table 1.1: Two equivalent formulations of a more general “go-west-go-east” behavior for
Picobot. Both sets of rules use only two states, but the wildcard character * allows for a
much more succinct representation on the left than on the right!

rule. Rather than specifying a move direction (“E”, “W”, ”N”, or “S”), you may use the
upper-case letter “X” to indicate “stay where you are”. For example, the rule

0 Nxxx -> X 1

is saying “if I’m in state 0 and there is a wall to the north, don’t move but enter state 1.”

1.2.5 Whatever

The problem with the previous “go-west-go-east” example is that the rules are too specific.
When going west, we really don’t care whether or not walls are present to the north, south,
or east. Similarly, when going east, we don’t care about neighboring cells to the north, south,
or west. The wildcard character * indicates that we don’t care about the surroundings in
the given position (N, E, W, or S). Table 1.1’s rules use the wildcard to direct Picobot to

Picobot needs
to get over its
“don’t care”
attitude!

forever visit (vacuum) the east-west row in which it starts.

1.2.6 Algorithms and Rules

So far we’ve looked at how to write rules that make Picobot move. But in trying to solve
problems with Picobot, it’s usually helpful to take a more global view of how Picobot is
accomplishing its task, and then to translate that approach into rules. In other words, we
want to develop an algorithm that allows Picobot to accomplish the desired task, where
that task is usually to cover the entire room.

In the previous section, Picobot had the more modest goal of simply moving back and
forth in an empty room. The algorithm for accomplishing this task was the following:

1. Move west until Picobot hits a wall to the west

2. Then move east until Picobot hits a wall to the east

3. Then go back to step 1

Now the question becomes: how do we translate this algorithm into the the rules from
the previous section:

0 **x* -> W 0

0 **W* -> E 1

1 *x** -> E 1

1 *E** -> W 0
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As written, it is difficult to see the connection between the steps of the algorithm and
the Picobot rules. We can see that Picobot will need two states to keep track of which
direction it is moving (i.e., is it in step 1 or step 2), but it’s still not exactly clear how
the algorithm translates into precise rules. Essentially, each of Picobot’s rules applies in an
“if-then” fashion (i.e., “If Picobot is in particular state and sees a particular environment,
then take a certain action and change into a different state (or not).”

With some minor modifications, we can rewrite the algorithm above to follow Picobot’s
“if-then” rule structure more directly:

1. Repeat the following steps forever:

(a) If Picobot is moving west and there is no wall to the west, then keep moving
west.

(b) If Picobot is moving west and there is a wall to the west, then start moving east.

(c) If Picobot is moving east and there is no wall to the east, then keep moving east.

(d) If Picobot is moving east and there is a wall to the east, then start moving west.

Now we can see more clearly the direct translation between the steps of this algorithm
and the Picobot rules: each step in the algorithm translates directly into a rule in Picobot,
where state 0 represents “Picobot is moving West” and state 1 represents “Picobot is moving
East”. Formulating algorithms in this way is the key to writing successful programs in
Picobot.

1.2.7 The Picobot challenge

Table 1.1’s rules direct Picobot to visit the entirety of its starting row. This section’s
challenge is to develop a set of rules that direct Picobot to cover the entirety of an empty
rectangular room, such as the rooms in Figures 1.2 and 1.5. The set of rules—that is, your
program—should work regardless of how big the room is and regardless of where Picobot
initially begins.

Because Picobot does not distinguish already-visited from unvisited cells, it may not
know when it has visited every cell. The online simulator, however, will detect and report
a successful, complete traversal of an environment.

Try it out. You might find it helpful to simply play around with modifying the rules
we’ve given you here. For example, you might start by altering the rules in Figure 1.1 so
that they side-step into a neighboring row after clearing the current one. However, onceThis back-and-forth

ot nwonk saw euqinhcet
ancient Greek ox-drivers,

ti dellac ohw
“boustrophedon.” Text

lacissalc emos ni
manuscripts is known to
.nrettap emas eht wohs

you have an idea for how you might solve the problem, we encourage you to plan your
algorithm, and then express that algorithm in a way that is easily translatable into Picobot
rules.

1.2.8 A-Maze Your Friends!

Once you’ve developed a Picobot program that completely traverses the empty room, try
to write other programs for more complex environments. You’ll see a “MAP” option on the
Picobot Web page where you can scroll forward or backward through a collection of maps
that we’ve created. You can also edit these maps by clicking on a cell with your mouse;
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clicking on an empty cell turns it into a wall and clicking on a wall turns it into an empty
cell. Remember that your program should work no matter where Picobot begins.

One environment that is particularly interesting is the maze shown in Figure 1.6. Notice

Thank you for
sparing us from
any corny
maize jokes.

that in this maze, all the walls are connected to the outer boundary and all empty cells are
adjacent to a wall. A smaller maze with this property is shown in Figure 1.7(a). Any maze
with this property can be completely explored with a simple algorithm called the right-hand
rule (or the left-hand rule if you prefer).

Imagine for a moment that you are in the maze rather than Picobot. In contrast to
Picobot, you have a clear sense of the direction you’re pointing and you have two hands.
You start facing north with your right hand touching the wall. Now, you can visit every
empty cell by simply walking through the maze, making sure that your right hand is always
touching the wall. Pause here for a moment to convince yourself that this is true. Notice
also that this algorithm will not visit every cell if some walls are not connected to the outer
boundary, as shown in the maze in Figure 1.7(b) or if some empty cells are not adjacent to
a wall, as shown in Figure 1.7(c).

Converting the right-hand rule into a set of Picobot rules is an interesting computational
challenge. After all, you have a sense of direction and you have a right hand that was guiding
you around the walls, whereas Picobot has neither hands nor a sense of orientation. To
“teach” Picobot the right-hand rule, we’ll again need to use states to represent the direction
that Picobot is pointing. It may seem that an impossibly large number of situations must
be considered, but in fact, the number of situations is finite and actually quite small, which
makes it possible to program Picobot for this task.

To get started, it seems pretty natural to use the four states 0, 1, 2, and 3 to represent
Picobot pointing north, south, east, or west. Now, we’ll need to introduce rules that allow
Picobot to behave as if it had a right hand to touch against the wall.

Assume we are in state 0, which we (arbitrarily) choose to correspond to representing
Picobot pointing north. Picobot’s imaginary right hand is then pointing east. If there is
a wall to the east and none to the north, the right-hand rule would tell us to take a step
to the north and keep pointing north. Taking a step to the north is no problem. “Keep
pointing north” means “stay in state 0.” On the other hand, if we are in state 0 and there
is no wall to the east, Picobot should take a step to the east and think of itself as pointing
to the east. “Pointing east” will mean changing to another state that is intended to encode
that information. This is a fun challenge and we encourage you to stop here and try it.
(Remember, your program should work regardless of where Picobot starts and for any maze
with the property that all walls are connected to the outer boundary and all empty cells
are adjacent to a wall.)

1.2.9 Uncomputable environments

Is it possible to write a Picobot program that will fully explore any room that we give it? Of course, all empty cells
must be reachable. If
some cells are isolated
from others, the problem
is just physically
impossible.

Surprisingly, the answer is “no,” and it’s possible to prove that fact mathematically. Pi-
cobot’s computational capabilities aren’t enough to guarantee coverage of all environments.
However, by adding one simple feature to Picobot, it can be programmed to fully explore
any room. That feature is the ability to drop, sense, and pick up “markers” along the way.

The fact that computational challenges as elementary as Picobot lead us to provably
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Figure 1.6: Picobot’s maze.

Figure 1.7: (a) A maze in which all walls are connected to the outer boundary and all empty
cells are adjacent to a wall. (b) A maze in which some walls are not adjacent to the outer
boundary. (c) A maze in which some empty cells are not adjacent to walls.
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unsolvable problems suggests that computation—and computers—are far from omnipotent.
And by the time you’re done reading this book, you’ll have learned how to prove that certain
problems are beyond the limits of what computers can solve.
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Chapter 2

Functional Programming

I never did a day’s work in my life. It was all fun. – Thomas A. Edison

2.1 Humans, Chimpanzees, and Spell Checkers

For many years, scientists were uncertain whether humans were more closely related to
chimpanzees or gorillas. New technologies and clever computational methods have allowed
us to resolve this issue in recent years: humans are evidently more closely related to chimps
than to gorillas. Humans and chimps diverged from their common ancestor approximately
4–6 million years ago, while gorillas diverged about 2 million years before that. How did
we come to that conclusion? One of the primary methods involves computational analysis
of DNA, the genetic code—or genome—that is essentially the “program” for all living
creatures.

It seems that
biology beat
computer
science to
programming!

As you may recall from your biology class, DNA is a sequence of molecules fondly known
as “A”, “T”, “C”, and “G”. Each living organism has a long sequence of these “letters”
that make up its genome. Computer scientists refer to a sequence of symbols as a string .

Imagine that we look at a DNA string from the human genome and a string from the
corresponding location of the chimp genome. For example, in the human we might see the
string “ATTCG” and in the chimp we might see “ACTCG.” The human and chimp DNA
differ in only one position (the second one). In contrast, imagine that the gorilla’s DNA
string at the corresponding part of its genome is “AGGCG.” Notice that the gorilla differs
from the human in two positions (the second and third) and also differs from the chimp in
two positions (again, the second and third). So the gorilla exhibits more differences from the
human and the chimp than those two species differ from one another. This kind of analysis
(on a larger scale and with more complex ways of comparing differences) allows scientists
to make inferences about when species diverged. In a nutshell, the key computational idea
here is determining the level of similarity between two strings.

But how exactly do we measure the similarity between two strings? We’re glad you
asked! Biologists know that there are three fundamental ways in which DNA changes over
time. First, a single letter in the genome can change to another letter. This is called sub-
stitution. Second, a letter in the genome can be deleted, and third, a new letter can be
inserted. A reasonable definition of “similarity” is to find the smallest number of substi-
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tutions, insertions, and deletions required to get from our first string to our second string.
For example, to get from the DNA string “ATC” to the string “TG”, we can delete the “A”
in “ATC” to get “TC”. Then we can change the “C” to a “G” to get “TG.” This took two
operations—and that’s the best that we can do in this case. We say that the edit distance
between these two strings is 2.

Interestingly, this problem also arises in spell checking. Many word processing programs
have built-in spell checkers that will try to offer you a number of alternatives to a word that
you’ve misspelled. For example, when we typed “spim” in one spell checker it offered us a list
of alternatives that included “shim”, “skim”, “slim”, “spam”, “spin”, “spit”, “swim”, among
others. You can probably see why those words were suggested: They are all legitimate
English words that differ from “spim” by only a little bit. In general, a spell checker might
check every word in its dictionary against the word that we typed in, measure the difference
between those two words, and then show us a short list of the most similar words. Here
again, we need a way to compute the similarity between two strings.

For example, consider the pair of strings “spam” and “poems”. One way to get from
“spam” to “poems” is through the following sequence of operations: Delete “s” from “spam”
resulting in “pam” (a deletion), replace the “a” with an “o” resulting in “pom” (a substi-
tution), insert an “e” after the “o” resulting in “poem” (an insertion), and insert an “s”
at the end of “poem” resulting in “poems” (another insertion). This took a total of four
operations. Indeed, that’s the smallest number of operations required to get from “spam”
to “poems.” In other words, the edit distance between “spam” and “poems” is 4.

By the way, you’ll notice that we defined the edit distance to be the smallest number
of operations needed to get from the first string to the second. A few moments of thought
will convince you that this is exactly the same as the number of operations required to get
from the second string to the first. In other words, edit distance is symmetric—it doesn’t
depend on which of the two strings we start with.

Our ultimate goal in this chapter is to write a program to compute the edit distance.
We’ll begin with the foundations of programming in the Python and then explore a beautiful
technique called “recursion.” Recursion will allow us to write short and very powerful
computer programs to compute the edit distance between two strings—and many other
useful things.We promise that our

sentences won’t rhyme
all of the time.

2.2 Getting Started in Python

Python is a programming language that, according to its designers, aims to combine “re-
markable power with very clear syntax.” Indeed, in very short order you’ll be able to write
programs that solve interesting and useful problems.The name “Python”

comes from the British
comedy group “Monty

Python.”

While we hope that this and later chapters will be pleasant reading, there’s
no better way to learn the material than by trying it yourself. Therefore, we
recommend that you pause frequently and try some of the things that we’re doing here
on a computer. Moreover, this book is relatively short and to-the-point. To truly digest
this material, it will be important for you to do the exercises on the book’s Web site or
assignments given to you by your instructor. Let’s get started!

When you start up Python, it presents you with a “prompt” that looks like this:

>>>
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2.2. GETTING STARTED IN PYTHON

That’s your invitation to type things in. For now, let’s just type in arithmetic—essentially
using Python as a calculator. (We’ll do fancier things soon.) For example, below we’ve
typed 3+5 (throughout this tutorial, the user’s input is always shown in black and Python’s
response is always shown in blue).

>>> 3 + 5

8

Next, we can do more complex things, like this:

>>> (3 + 5) * 2 - 1

15

Notice that parentheses were used here to control the order of operations. Normally, mul-
tiplication and division have higher precedence than addition or subtraction, meaning that
Python does multiplications and divisions first and addition and subtractions afterwards.
So without parentheses we would have gotten:

>>> 3 + 5 * 2 - 1

12

You can always use parentheses to specify your desired order of operations. Here are a few
more examples of arithmetic in Python:

>>> 6 / 2

3

>>> 2 ** 5

32

>>> 10 ** 3

1000

>>> 52 % 10

2

You may have inferred what /, **, and % do. In particular, 52 % 10 is the remainder when
52 is divided by 10—it’s pronounced “52 mod 10”. Arithmetic symbols like +, -, / *, **,
and % are called operators.

2.2.1 Naming Things

Python lets you give names to values—the results of calculations. Here’s an example:

>>> pi = 3.1415926

>>> pi * (10 ** 2)

314.15926

In the first line, we defined pi to be 3.1415926. In the second line, we used that value
to compute the area of a circle with radius 10. Computer scientists call a name like pi a
variable because we can assign it any value that we like. In fact, we could, if we wanted to,
give pi a new value later. We could even give it some crazy value like 42 (although that’s
probably not a great idea if we’re going to use it compute the area of a circle). The point
here is that a “variable” in the computer science sense is different from a variable in the
mathematical sense. No sane mathematician would say that the number π is a variable!

Calling π a
“variable”
would be
irrational.
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CHAPTER 2. FUNCTIONAL PROGRAMMING

Notice that the “=” sign is used to assign a value to a variable. On the left of the equal
sign is the name of the variable. On the right of the equal sign is an expression that Python
evaluates and then assigns that value to the variable. For example, we could have done this:

>>> pi = 3.1415926

>>> area = pi * (10 ** 2)

>>> area

314.15926

In this case, we define a variable called pi in the first line. In the second line, the expression
pi * (10 ** 2) is evaluated (its value is 314.15926) and that value is assigned to another
variable called area. Finally, when we type area, Python displays the value. Notice, also,
that the parentheses weren’t actually necessary in this example. However, we used them
just to help remind us which operations will be done first. It’s often a good idea to do
things like this to make your code more readable to other humans.

Note that the equals sign represents an action, namely changing the variable on the left
(in this case, pi or area) so that it has a new value. That value can be changed later. It
is important to distinguish this notation from the use of the equals sign in mathematics,
where it means that the left and right side are forever the same. That’s not the case in CS!

2.2.2 What’s in a Name?

Python is not too picky about the names of variables. For example naming a variable Joe or
Joe42 is fine. However, naming a variable Joe+Sally is not permitted. You can probably
imagine why: if Python sees Joe+Sally it will think that you are trying to add the values of
two variables Joe and Sally. Similarly, there are built-in Python special words that can’t
be used as variable names. If you try to use them, Python will give you an error message.
Rather than listing here the words that cannot be used as Python variable names, just
keep in mind that if you get a Python error when trying to assign a variable, it’s probably
because you’ve stumbled upon the relatively small number of names that are not permitted.

Finally, try to use descriptive variable names to help the reader understand your pro-
gram. For example, if a variable is going to store the area of a circle, calling that variable
area (or even areaOfCircle) is a much better choice than calling it something like z or
x42b or harriet.

2.3 More Data: From Numbers to Strings

One of our central themes for this book is data. In the previous section we worked with
one kind of data: numbers. That was all good, but numbers are not the only useful kind of
data. In the rest of this chapter we’ll introduce a few other types of data that are central
to solving problems in Python. Indeed, at the start of the chapter we noted that we’re
going to want to compare strings. In Python, a string is any sequence of symbols within
quotation marks. Python allows you to use either double quotes or single quotes around a
string. Here are some examples:

>>> name1 = 'Ben'
>>> name2 = 'Jerry '
>>> name1
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2.3. MORE DATA: FROM NUMBERS TO STRINGS

’Ben’

>>> name2

’Jerry’

Again, name1 and name2 are just variables that we’ve defined. There’s nothing particularly
special about those variable names.

While there are many things that we can do with strings, we want to show you just a
few of the most important things here. In the examples that follow, we assume that we’ve
defined the strings name1 and name2 as shown above.

2.3.1 A Short Note on Length

First, we can find the length of a string by using Python’s len function:

>>> len(name1)

3

>>> len('I love spam!')
12

In the first example, name1 is the string ’Ben’ and the length of that string is 3. In the
second example, the string contains two spaces (a space is a regular symbol so it gets counted
in the length) so the total length is 12.

2.3.2 Indexing

Another thing that we can do with strings is find the symbol at any given position or index .
In most computer languages, including Python, the first symbol in a string has index 0. So,

>>> name1 [0]

’B’

>>> name1 [1]

’e’

>>> name1 [2]

’n’

>>> name1 [3]

IndexError: string index out of range

Notice that although name1, which is ’Ben’, has length 3, the symbols are at indices 0,
1, and 2 according to the funny way that Python counts. There is no symbol at index 3,
which is why we got an error message.

2.3.3 Slicing

Python lets you find parts of a string using its special slicing notation. Let’s look at some
examples first:

>>> bestFood = 'spam burrito '
>>> bestFood [0:3]

’spa’

>>> bestFood [0:4]

’spam’
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CHAPTER 2. FUNCTIONAL PROGRAMMING

What’s going on here? First, we’ve defined a variable bestFood and given it the string
’spam burrito’ as its value. The notation bestFood[0:3] is telling Python to give us the
part—or “slice”—of that string beginning at index 0 and going up to, but not including,
index 3. So, we get the part of the string with symbols at indices 0, 1, and 2, which are

I don’t really
want a slice of

your spam
burrito.

the three letters s, p, a—resulting in the string spa. It may seem strange that the last
index is not used, so we don’t actually get the symbol at index 3 when we ask for the slice
mycity[0:3]. It turns out that there are some good reasons why the designers of Python
chose to do this, and we’ll see examples of that later.

By the way, we don’t have to start at index 0. For example:

>>> bestFood [2:6]

’am b’

This is giving us the slice of the string ’spam burrito’ from index 2 up to, but not
including, index 6. We can also do things like this:

>>> bestFood [1:]

’pam burrito’

When we leave out the number after the colon, Python assumes we mean “go until the
end.” So, this is just saying “give me the slice that begins at index 1 and goes to the end.”
Similarly,

>>> bestFood [:4]

’spam’

Because there was nothing before the colon, it assumes that we meant 0. So this is the
same as bestFood[0:4].

2.3.4 String Arithmetic

Strings can be “added” together. Adding two strings results in a new string that is simply
the first one followed by the second. This is called string concatenation. For example,

>>> 'yum' + 'my'
’yummy’

Once we can add, we can also multiply!

>>> 'yum' * 3

’yumyumyum’

In other words, ’yum’ * 3 really means ’yum’ + ’yum’ + ’yum’, which is ’yumyumyum’:
the concatenation of ’yum’ three times.

2.4 Lists

So far we’ve looked at two different types of data: numbers and strings. Sometimes it’s
convenient to “package” a bunch of numbers or strings together. Python has another type
of data called a list that allows us to do this. Here’s an example:
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>>> oddNumbers = [1, 3, 5, 7, 9, 11]

>>> friends = ['rachel ', 'monica ', 'phoebe ', 'joey', 'ross']

In the first case, oddNumbers is a variable and we’ve assigned that variable to be a list of
six odd numbers. In the second case, friends is a variable and we’ve given it a list of five
strings. If you type oddNumbers or friends, Python will show you what those values are
currently storing. Notice that a list starts with an open bracket [, ends with a close bracket
], and each item inside the list is separated from the next by a comma.

Check this out:

>>> stuff = [2, 'hello ', 2.718]

Notice that stuff is a variable that is assigned to be a list, and that list contains two
numbers and a string. Python has no objection to different kinds of things being inside the
same list! In fact, stuff could even have other lists in it, as in this example:

>>> stuff = [2, 'hello ', 2.718, [1, 2, 3]]

This ability to have multiple types of data living together in the same list is called poly-
morphism (meaning “many types”), which is a common feature in functional programming
languages.

2.4.1 Some Good News!

Here’s some good news: Almost everything that works on strings also works on lists. For
example, we can ask for the length of a list just as we ask for the length of a string:

>>> len(stuff)

4

Notice that the list stuff really only has 4 things in it: The number 2, the string hello,
the number 2.718, and the list [1, 2, 3].

Indexing and slicing also work on lists just as on strings:

>>> stuff [0]

2

>>> stuff [1]

’hello’

>>> stuff [2:4]

[2.718, [1, 2, 3]]

Just like strings, lists can be added and multiplied as well. Adding two lists together cre-
ates a new list that contains all of the elements in the first list followed by all of the elements
in the second. This is called list concatenation and is similar to string concatenation.

>>> mylist = [1, 2, 3]

>>> mylist + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

>>> mylist * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

Finally, it’s worth noting that doing something like:
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>>> mylist + [4, 5, 6]

doesn’t actually change mylist. Instead, it gives you a NEW list which is the result of
concatenating mylist and the list [4, 5, 6]. You can verify this by typing mylist at the
Python prompt and seeing that it wasn’t changed:

>>> mylist + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

>>> mylist

[1, 2, 3]

2.5 Function ing in Python

We’ve covered the basics of Python including how to represent and work with several types
of data including numbers, strings and lists! Next, we’re going to write actual programs.
Throughout this and the remaining sections, we will keep in mind the problem that is
motivating us in the first place—calculating edit distance—by looking at examples that
help us build toward a solution to that problem. However, we wouldn’t want you to get
bored by looking at just one single problem, so we’ll also throw in some other interesting
ones along the way.

Let’s begin with an analogy to something that you know and love: mathematical func-
tions. In math, a function can be thought of as a “box” that takes some data as input, or
argument , and returns some data as output, which call its result , return value, or simply
value. For example, the function f(x) = 2x has an argument called x, and for any value
that we “stick into” x we get back a value that is twice as large.

Python lets us define functions too, and as in math, these functions take some data as
arguments, process that data in some way, and then return some data as a result. Here’s aActually, we’ll learn later

that unlike in math,
Python functions do not
have to take arguments

or return results. But for
now we’ll focus on
functions that do.

Python function that we’ve named f, which takes an argument we are calling x and returns
a result that is two times x.

def f(x):

return 2 * x

In Python, the syntax for functions uses the special word def, which means: “I’m
defining a function.” Then comes the name that we’ve chosen for the function; in our case
we chose to call it f. Then come the arguments to the function in parentheses (just like
the definition of a function in math!), followed by a colon (“:”). Then, we start a new line,
indented a few spaces, and begin the function. In this case, our function computes 2*x and
then returns it. The word return tells Python to give us back that value as the function’s
result.

Don’t forget to indent the line (or lines) after the first line. Python absolutely demands
this. We’ll talk a bit more about indentation shortly.

We can now run the function in the Python interpreter like this:

>>> f(10)

20

>>> f(-1)

-2
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2.5. FUNCTION ING IN PYTHON

When we type f(10) we say that this is a function call because we are metaphorically
placing a telephone call to f with argument 10 and asking it to give us an answer. When
we call f, Python takes the value inside the parentheses and assigns it to the name x. Then
it executes the statement or statements inside the function in order until there are no more
statements to execute in the function. In this case, there is only a single statement inside
the function, which doubles the value of x and returns the result to where the function was
called.

The best way to define a function is to open up an editor and define the function there.
If you are using IDLE go to the File menu and select “New Window.” A new window will The Python IDLE

environment is named
after Eric Idle, one of the
members of the Monty
Python comedy group.

open up. Now you have two windows: the Python interpreter that you had originally and
a new editor window where you can type your function definitions. In the editor window,
you can edit comfortably, moving the cursor with the arrow keys and mouse. When you’ve
completed your function, use the “File” menu to “Save” the file. Then, you can click on
“Run” and the function will run in the original Python window. (If you are using some
other version of Python, your professor will need to provide you with instructions on how
to open a file for editing a function.)

As we noted, you can name a function more or less anything you want (as with variable
names, there are a few exceptions, but it’s not worth enumerating them). In this example, we
called the function f simply to make the analogy with the mathematical function f(x) = 2x
that we defined at the beginning. To be honest, it’s better to give functions descriptive
names, just as we’ve advocated doing for variables. So, calling the function something like
double would probably have been a better choice.

2.5.1 A Short Comment on Docstrings

A function is actually a computer program. We’ve just written our first program! Admit-
tedly, a program that doubles a number is probably not one that you would show off to
your friends and family. However, we’re getting closer to writing some amazing programs.

As our programs become more interesting, it will be important for their users to be able
to quickly understand what the program is for. To that end, every function that we write
from now on will begin with something called a docstring , which stands for “documentation
string”. Here’s our snazzy doubling function f with its docstring:

def f(x):

' ' ' Takes a number x as an argument and r e t u r n s 2∗ x . ' ' '
return 2 * x

The docstring is a string that begins and ends with three single quote marks. If you now
type help(f), the docstring will be displayed. You should always provide a docstring for
every function that you write.

2.5.2 An Equally Short Comment on Comments

Docstrings provide a way for users of your program to find out what the function is about.
In addition to docstrings, you should always leave yourself (the programmer) or other pro-
grammers little notes, called comments, which explain the internal details of your program.
Any text following a # is understood by Python to be a comment. The comment lasts until
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the end of that line. Python doesn’t try to read or understand the comment (though it
would be neat if it could!).

Just to be clear, the difference between a docstring and a comment is that a docstring
is intended for the user of the function. The user might not even understand Python. A
comment lets the programmer share details about how the program works with other people
who might want to understand or modify it.

2.5.3 Functions Can Have More Than One Line

The function above, f, had only one statement, which doubled its argument and returned
that value. However, in general functions are not limited to a single Python statement, but
rather may have as many statements as you choose. For example, we could have written
the exact same function from above as follows:

def f(x):

' ' ' Takes a number x as an argument and r e t u r n s 2∗ x . ' ' '
twoTimesX = 2 * x

return twoTimesX

Notice that when there is more than one statement in the function they must all be
indented to the same position. This is how Python knows which statements are inside the
function and which are not. We will say even more on indentation below.

Here, you might be wondering which definition for f is better: the one with one line
or the one with two. The answer is that both are equally valid and correct. Which you
prefer is really up to you, the programmer. Some people prefer the one-line implementation
because it’s more compact, while others prefer to the two-line implementation because they
prefer to store the values of intermediate calculations rather than immediately returning
them. There’s always more than one way to write a program!

2.5.4 Functions Can Have Multiple Arguments

Just as in math, functions can have more than one argument. For example here’s a function
that takes two arguments, x and y, and returns x2 + y2.

def sumOfSquares(x, y):

' ' ' Computes t h e sum o f s q u a r e s o f i t s two arguments . ' ' '
return x**2 + y**2 # Here ' s our f i r s t comment !

In fact, the arguments to a function need not be numbers. They can be strings, lists,
and a number of other things (more on this in the next chapter).

Here’s a mystery function. It takes two strings as arguments and returns another string.
What is it doing?

def mystery(first , second ):

' ' ' This f u n c t i o n i s m y s t e r i o u s ! ' ' '
mysteryString = first [1:] + second [1:]

return mysteryString
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2.5.5 Why Write Functions?

At this point you might be wondering why we write functions. If we wanted to calculate
twice the values of 10 and -1, wouldn’t it be easier to just type:

>>> 2 * 10

20

>>> 2 * -1

-2

instead of going through the hassle of defining f? In this case, perhaps direct (or even
mental!) calculation is simpler, but in general (and as we will shortly see), functions do
much more complicated calculations that would be a pain to have to type over and over.
Functions allow us to “package up” a bunch of calculations that we know we will want to
perform over and over.

Remember our spiel about abstraction in Chapter 1? Packaging a computation into a
function like this is a form of abstraction: we’re hiding the details (the precise calculations
in the body of the function) so that whoever calls the function can focus on its end result,
instead of exactly how that result is calculated.

2.6 Making Decisions

So far our programs have just made straightforward calculations. But sometimes we need
to write programs that make decisions, so that they perform different actions depending
on some condition. For example, to solve our edit-distance problem, we’ll need to com-
pare characters in our two strings and take different actions depending on whether those
characters are the same or different.

Before we get back to edit distance, let’s consider a famous problem in mathematics
called the “3n+ 1” problem. It goes like this. Consider a function that takes an integer n
as an argument. If the integer is odd, the function returns the value 3n+ 1. If the integer
is even, the function returns n/2. The problem, which is really a conjecture, states that if
we start with any positive integer n and repeatedly apply this function, eventually we will
produce the value 1. For example starting with n = 2, the function returns 1 because n is
even. Starting with n = 3, the first application of the function returns 10. Now applying
the function to 10 gives 5; applying it to 5 gives 16, which in turns gives 8, then 4, then 2,
and finally 1. Ta-dah!

This seemingly benign little problem also has many other names, including the “Collatz
problem”, the “Syracuse problem”, “Kakutani’s problem”, and “Ulam’s problem”. So far,

It seems like
too many big
names for just
one little
problem!

nobody has been able to prove that this conjecture with many names is true in general. In
fact, the famous mathematician Paul Erdös stated that “Mathematics is not yet ready for
such problems.”

Let’s write the function in Python and then you can experiment with it!

def collatz(n):

' ' ' Takes a s i n g l e number as an argument and
a p p l i e s t h e C o l l a t z f u n c t i o n t o i t . ' ' '

i f n % 2 == 0:

return 3*n + 1
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else :
return n/2

Before we look at this in detail, notice the expression n % 2 == 0. Recall that n % 2

is just the remainder when n is divided by 2. If n is even, its remainder when divided by 2
will be 0; if n is odd, the remainder will be 1.

OK, but how about the ==? You’ll recall that a single = sign is used in assignment

My guess is
that two equals

signs means
“very equal”.

statements to assign the value of an expression on the right-hand side of = to the variable
on the left-hand side. The syntax == is doing something quite different. It evaluates
the expressions on both sides of the == sign and determines whether or not they have
the same value. This kind of expression always evaluates to either True or False. You
might wish to pause here and try this in the Python interpreter. See what Python says to
42 % 2 == 0 or to 2 * 21 == 84/2 or to 42 % 2 == 41 % 2. The special values True

and False are called Boolean values. An expression that has a value of True or False is
called a Boolean expression.George Boole

(1815-1864) was an
English mathematician

and philosopher. His
work in logic forms part

of the foundation of
computer science and
electrical engineering.

By the way, the Booleans True or False should not be thought of as either numbers or
strings. They are special kinds of values that are intended for letting your function “reason”
logically.

Back to our collatz function. It begins with an if statement. Right after the Python
keyword if is the Boolean expression n % 2 == 0, followed by a colon. Python interprets
this conditional statement as follows: “If the expression that you gave me (in this case,
n % 2 == 0) is True then I will do all of the stuff that is indented on the following lines.”
In this case there is only one indented line, and that line says to return the value 3*n + 1.
On the other hand, if the Boolean expression that was tested had the value False, Python
would execute the indented lines that come after the else: line. You can think of that as
the “otherwise” option. In this case, the function returns n/2.

It turns out that else statements are not required by Python, and sometimes we can
do without them. For example, take a look at a slight modification of our collatz program
shown below.

def collatz(n):

' ' ' Takes a s i n g l e number as an argument and
a p p l i e s t h e C o l l a t z f u n c t i o n t o i t . ' ' '

i f n % 2 == 0:

return 3*n + 1

return n/2

If n is even, this function computes 3*n+1 and returns that value; returning that value
causes the function to end—which means that it stops evaluating any more statements.
This last sentence is important and often confusing so let’s highlight it again: Executing a
return statement always causes a function to end immediately. Thus, if x is even,
Python will never get to the line return n/2. However, if n is odd then the expression
n % 2 evaluates to False. In this case, Python drops down to the first line after the if

statement that is at the same level of indentation as the if; in this case this is the line
return n/2. So we see that this version of the function behaves just like the first version
with the else clause. But forty-one out of forty-two surveyed computer scientists advocate

How do you
humans know

about 42? Has
someone told
you that it’s

the answer to
the ultimate

question of life,
the universe,

and
everything!?

I’ll have to
Google 42 to

see what it
says.

using the else version simply because it is easier to read and understand.
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2.6.1 A second example

Now let’s consider a second example, more closely related to the edit-distance problem we
are building up to. Our next function will determine whether the first character in each of
two strings is the same or different. For example:

>>> matchFirst('spam', 'super ')
True

>>> matchFirst('AAGC', 'GAG')
False

Here’s one way to write the matchFirst function:

def matchFirst(s1, s2):

' ' ' Compare t h e f i r s t c h a r a c t e r s o f s1 and s2 and r e t u r n
True i f t h e y are t h e same , F a l s e i f no t . ' ' '

i f s1[0] == s2[0]:

return True

e l se :
return False

As always, there’s more than one way to write a program. Take a look at this shorter
(and seemingly stranger) version:

def matchFirst(s1, s2):

' ' ' Compare t h e f i r s t c h a r a c t e r s o f s1 and s2 and r e t u r n
True i f t h e y are t h e same , F a l s e i f no t . ' ' '

return s1[0] == s2[0]

What’s going on here!? Remember that our goal is to return a Boolean—a value that
is either True or False. The expression s1[0] == s2[0] is either True or False, and
whichever it is, that’s what we want to return. So the statement return s1[0] == s2[0]

will produce our desired answer.
However, both versions of our matchFirst function have a subtle problem: there are

some arguments on which the functions will fail to work. Take a moment to see if you can
identify a case where things will go awry before you read on.

Did you find the problem? When either (or both) of our arguments are the empty string,
Python will complain. Why? The empty string has no symbol at index 0—because it has
no symbols in it at all! (Remember, the symbol at index 0 actually refers the first symbol
in the string. When we index into strings, we are actually measuring the distance from the
beginning to the desired character, and the first symbol is at a distance of zero characters
from the start.)

Many computer
scientists
confuse
measuring with
counting and
also count from
zero!

We can fix this by using another if statement to check for the special case that one or
both of the arguments is the empty string. The built-in len function will tell us whether
the string has length 0. It’s a bit weird, but a string of length 0 has no symbols in it at all,
not even one at index 0.

def matchFirst(s1, s2):

' ' ' Compare t h e f i r s t c h a r a c t e r i n s1 and s2 and r e t u r n
True i f t h e y are t h e same , F a l s e i f no t . ' ' '

i f len(s1) == 0 or len(s2) == 0:
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return False

e l se :
return s1[0] == s2[0]

Now, if either string is empty the function will return False. Notice the use of the word or

in the if statement here. It’s saying “if the length of s1 is 0 or the length of s2 is 0 then
return False.”If both strings are empty,

the function returns
False. Do you think this

is the correct result?
How would you change it

to return True in that
case?

Python expects that the condition being tested in an if will have a Boolean value—that
is, its value is either True or False. In this case, len(s1) == 0 has a Boolean value; it’s
either True or False. Similarly, len(s2) == 0 is Boolean. The connector or is Boolean
“glue” much like addition is arithmetic glue. Just as the plus sign adds the two numbers
on its left and right and gives us back another number (the sum), the or sign looks at the
Booleans on its left and right and gives us back another Boolean—True if at least one of
the Booleans is True and otherwise it gives us back False.

By the way, Python also has another piece of Boolean glue called and. Not surprisingly,
it gives us back True if both of the Booleans on its left and right are True and gives us back
False otherwise. So, the statement:

len(s1) == 0 and len(s2) == 0

would be True if both strings are empty.
Finally, Python has something called not that “negates” a Boolean, flipping True to

False and False to True. For example,

not 1 == 2

will be True because 1 == 2 is False and its negation is therefore True. Incidentally, we
can mix and match our new friends or, and, and not. For example, the expression

1==2 or not 41 == 42

will evaluate to True because although 1 == 2$ is \verbFalse+, not 41 == 42 is True,
and the result of or-ing False and True is True.But later we’ll see a

better way to write not

41 == 42.
2.6.2 Indentation

We have noted that Python is persnickety about indentation. After the first line (the one
containing the def), Python expects all of the remainder of the function to be indented. As
we’ve seen above, indentation is also used in if and else statements. Immediately after an
if statement, we indent the line or lines that we want Python to execute if the expression
is True. Similarly, the line or lines that should be executed after the else are indented as
well.

For example, here is another way that we could have written our collatz function;
this one uses one line to compute the desired value and then returns it in a second. Most
programmers wouldn’t write the function this way because it’s more verbose than necessary,
but when programs get more involved and complicated it can be handy (and sometimes
necessary) to have multiple lines like this. And again, if you prefer to write it this way even
in this simple case, there’s nothing wrong with that!

def collatz(n):

' ' ' Takes a s i n g l e number as an argument and
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a p p l i e s t h e C o l l a t z f u n c t i o n t o i t . ' ' '
i f x % 2 == 0:

result = 3*n + 1 # Create a v a r i a b l e c a l l e d r e s u l t
return result # Now we r e t u r n t h e v a l u e o f r e s u l t

e l se :
result = n/2 # Create a v a r i a b l e c a l l e d r e s u l t
return result # Now we r e t u r n t h e v a l u e o f r e s u l t

2.6.3 Multiple Conditions

We noted that sometimes we use if without a matching else. On the flip side, sometimes
it’s useful to have more than one alternative to the condition tested in the if statement.

Consider again our edit-distance problem. While we’re not quite ready to solve the
whole thing yet, we can solve it for the case that one or both of the argument strings is
empty. In this case, the edit distance between the two strings is simply the length of the
non-empty one, because it necessarily will take that many insertions to the empty string
(or, conversely, deletions from the non-empty one) to make the two the same.

Here is a function that solves the edit distance problem only in this simple case:

def simpleDistance(s1 , s2):

' ' ' Takes two s t r i n g s as arguments and r e t u r n s t h e e d i t
d i s t a n c e be tween them i f one o f them i s empty .
O t h e r w i s e i t r e t u r n s an e r r o r s t r i n g . ' ' '

i f len(s1) == 0:

return len(s2)

e l i f len(s2) == 0:

return len(s1)

e l se :
return 'Help! We don't know what to do here!'

Let’s dissect this function. It starts by checking whether the string s1 is empty; if so

Dissection!? Is
this CS or
biology?

the function returns the length of s2. If s1 is not empty, then the function will use an
elif statement to see whether s2 is empty. If so, it will return the length of s1. Finally,
if neither s1 nor s2 is empty, it will return a string reporting that it does not know what
to do. (By the way, notice that if both strings are empty then we’ll return 0, which is the
correct answer. Do you see why 0 gets returned?)

The elif statements are pronounced “else if”. The elif in this function is only reached
if s1 was not empty. The elif is saying “else (otherwise), if the string s2 is empty, then
return the length of s1.” Although we only have one elif in this function, in general, after
an if we can have as many elif conditions as we wish. Then, at the end we can have zero
or one else statements, but not more than one! The final else statement specifies what
to do if all of the preceding conditions failed.

There’s nothing wrong with a function returning a string! Returning means we’re done—
the function is over and we get back the value in the return statement. Generally you would
not want your function to return a string in some cases and a number in others (like ours
currently does), but in this case we’re doing that just to make it clear what’s happening in
each case. Our final edit-distance function won’t have this “feature.”

Computer
scientists are
infamous for
claiming that
anything that
their software
does is a
“feature”—
making even
their mistakes
sound like they
were intentional
and useful!
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A Colorful Application of if, elif, and else

In 1852, Augustus DeMorgan revealed in a letter to fellow British mathematician William
Hamilton how he’d been stumped by one of his student’s questions:

A student of mine asked me today to give him a reason for a fact which I did
not know was a fact—and do not yet. He says that if a figure be anyhow divided
and the compartments differently coloured so that figures with any portion of
common boundary line are differently coloured—four colours may be wanted,
but not more. . .

DeMorgan had articulated the four-color problem: whether or not a flat map of regions
would ever need more than four colors to ensure that neighboring regions had different
colors. The problem haunted DeMorgan for the rest of his life, and he died before Alfred
Kempe published a proof that four colors suffice in 1879.

Kempe received great acclaim for his proof. He was elected a Fellow of the Royal Society
and served as its treasurer for many years; he was knighted for his accomplishments. He
also continued to investigate the four color theorem, publishing improved versions of his
proof and inspiring other mathematicians to do so.

However, in 1890 a colleague showed that Kempe’s proof (and its variants) were all
incorrect—and the mathematical community resumed its efforts. The four-color problem
stubbornly resisted proof until 1976, when it became the first major mathematical theorem
proved using a computer. Kenneth Appel and Wolfgang Haken of the University of Illinois
first established that every flat map must contain one of 1,936 particular sub-maps that
they defined. They next showed, using over 1200 hours of computer time, that each of
those 1,936 cases could not be part of a counterexample to the theorem. Four colors did,
in fact, suffice!

Their program essentially used a giant conditional statement with 1,936 occurrences of
if, elif, or else statements. Such case analyses are quite common in computational
problems (although 1,936 cases is admittedly more than we might usually encounter).

We suspect that DeMorgan would feel better knowing that the question he couldn’t
answer wouldn’t be answered at all for over a century.

2.7 Recursion!

So far we’ve built up some powerful programming tools that have allowed us to do some
interesting things, but we still can’t solve the edit-distance problem except for the very
special case that one of the strings is empty.

What about the cases we really care about, where neither string is empty? Imagine for
a moment that we know that both of our strings are exactly four characters long. In that
case, we don’t need any deletions or insertions to get from the first string to the second
string—we only need substitutions. For example, to get from ‘spam’ to ‘spim’ we just
substitute the ‘a’ with an ‘i’. For the case of two strings of length four, we could compute
the distance this way:

def distance(s1, s2):

' ' ' Return t h e d i s t a n c e be tween two s t r i n g s ,

32 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



2.7. RECURSION!

each o f which i s o f l e n g t h f o u r . ' ' '
editDist = 0

i f s1[0] != s2[0]:

editDist = editDist + 1

i f s1[1] != s2[1]:

editDist = editDist + 1

i f s1[2] != s2[2]:

editDist = editDist + 1

i f s1[3] == s2[3]:

editDist = editDist + 1

return editDist

The symbol !=, which is read as “not equals”, offers a much nicer notation that the clumsy
but equivalent not s1[0] == s2[0]. Notice that this function starts by setting a variable
named editDist to 0 and then adds 1 to that variable each time it finds a pair of cor-
responding symbols that don’t match and thus require a substitution. (By the way, also
notice that we used ifs and not elifs. Do you see why elifs would give us the wrong
answer here?)

While this program will work for four-letter words, it doesn’t help us if the words are
longer or shorter. Moreover, it can’t deal with insertions or deletions. We might be tempted
to add more ifs to handle longer strings, but how many would we add? No matter how
many we added, we would still run into trouble for sufficiently long strings.

To add both the ability to handle strings of arbitrary length and the ability to handle
insertions and deletions, we will need a beautiful and elegant new ingredient called recursion.

Before using recursion for the edit-distance problem, let’s take an excursion to visit a
A recursion
excursion!

group of aliens who have come to Earth from a distant planet for the debut of the seventeenth
Harry Potter movie. At the moment there are, let’s see, 42 aliens in line. One alien muses
to itself, “I wonder how many different ways I could arrange us 42 aliens?” You may know
the answer: it’s 42 × 41 × 40 × · · · × 3 × 2 × 1, also known as “42 factorial” and written
42!. (There are 42 choices for the alien that could be first in line, 41 who could get the next
spot, and so forth.)

The alien decides that it would like to write a Python program to compute the factorial
of any positive integer. Fortunately, the alien has done some shopping at the local mall,
where it purchased a laptop that runs Python. Unfortunately, the alien is vexed by how
to write such a program. Fortunately, we observe that 42! = 42 × 41! and in general,
n! = n(n− 1)!. That is, the factorial of n can be expressed as n times the result of solving
another smaller factorial problem. This is called a recursive definition: it expresses the
problem in terms of a smaller version of the same problem; the definition recurs in the
solution.

Unfortunately,
it’s not clear to
me how this
helps.

Before writing a program to compute the factorial, let’s just observe that this recursive
definition is indeed useful. Imagine that we want to compute 3!. According to the recursive
definition, that’s just 3×2!. So now we’re off to find 2!. Using the same definition again, we
see that 2! = 2×1!. If we can figure out what 1! is, we’ll be in good shape. According to the
definition, 1! is 1× 0!. According to the definition, 0! is 0× (−1)!. . . Uh oh, this is bad—the
process will never stop. Moreover, we are not really interested in 0! or the factorial of a
negative number.

To work around the difficulty, we should add a rule that tells us when to stop this
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recursive process. A reasonable stopping place is to say, “If you get to the point that you’re
trying to compute 1!, stop using the recursive rule and just report that the answer is 1.”
This is called the base case of the recursive definition. It tells us when to stop applying the
rule. Of course, we should always check the base case before deciding whether to continue
applying the recursive rule.

Coming back to the example of 3!, we get down to the case of 1! and the base case says
“Aha! Stop! That’s 1.” So, we have 1! = 1. Remember that it was 2! = 2× 1! that wanted
to know the value of 1!. So now we plug the 1 in for 1! and determine that 2! = 2× 1 = 2.
But 3! = 3 × 2! was the one that asked about 2! and is waiting patiently for the answer.
So, now 3! determines that its result is 3 × 2 = 6. That’s it, we’ve computed 3! using the
recursive definition.

Let’s try to capture the recursive definition as closely as we can in Python. This may
seem weird or even downright wrong at first, but let’s try. Here’s the program. (We
encourage you to type it in, run it, and try it out!)

def factorial(n):

' ' ' R e c u r s i v e f u n c t i o n f o r comput ing t h e f a c t o r i a l o f n . ' ' '

i f n == 1:

return 1

e l se :
result = n * factorial(n-1)

return result

Looking at this function, we see that it looks like a translation from math into Python.
Try running this function. The factorial of 5 is 120 and the factorial of 70 is larger than
the number of particles in the universe—but Python will gladly compute it.

The fact that this function correctly computes the factorial function might seem myste-
rious and magical. We will see shortly that there is no magic here and not even any mystery!
However, for just a moment, let’s take a leap of faith that Python will do what we intend
when we run this function (hopefully corroborated by your computational experiment that
the function seems to work on the arguments that you tried). In a moment we’ll come back
to convince ourselves that this recursion really must work.

A typical recursive function has two main parts:

1. A base case: This is the value that the function returns for the “simplest” argument.

2. A recursive step: This is the solution to a smaller version of the problem, computed by
calling the function with a smaller or simpler argument. This solution to the smaller
problem is then used in some way to solve the original problem.

In the factorial function, the base case is when n is 1. In this case, our function simply
returns 1, since 1! = 1, and we’re done. The recursive step, the part inside the else

statement, computes the factorial of n-1, multiplies the result by n, and returns this value.
Now let’s return to the edit-distance function. We’re still not ready to solve it in its

entirety, but we’re getting closer! Let’s now consider the situation where the two strings are
guaranteed to be of the same length (so that no insertions or deletions need to be used), but
their length could be anything—not just four! In this case, the edit distance is the number
of positions where the two strings differ.
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The base case now is when both strings are empty—that’s the simplest case in which
the two strings could have the same length. In that case, the edit distance is 0 and we’re
done.

If the base case does not apply—that is the strings are of some non-zero length—then
what happens next depends on whether or not the two strings match at position 0. If they
don’t match, that position contributes 1 to the edit distance. Now, we have to compare the
remainder of the two strings to one another to find the number of differences between them.
But that’s exactly the same problem, just for the two strings with their leading symbols
chopped off! So, if the characters at position 0 don’t match, the edit distance between s1

and s2 is 1 plus the edit distance between s1[1:] and s2[1:]. Remember, the notation
s1[1:] is a string just like s1 except with the symbols at position 0 chopped off.

On the other hand, if the two strings match on the first symbol then the edit distance
between s1 and s2 is just the edit distance between s1[1:] and s2[1:]. This results in
the function below.

def simpleDistance(s1 , s2):

' ' ' Takes two s t r i n g s o f t h e same l e n g t h and r e t u r n s t h e
number o f p o s i t i o n s i n which t h e y d i f f e r . ' ' '

i f len(s1) == 0: # l e n ( s2 ) i s a l s o 0 s i n c e s t r i n g s
# have t h e same l e n g t h

return 0 # b a s e c a s e
e l i f s1[0] != s2[0]: # r e c u r s i v e s t e p , c a s e 1

return 1 + simpleDistance(s1[1:], s2 [1:])

e l se : # r e c u r s i v e s t e p , c a s e 2 :
# s1 [ 0 ] == s2 [ 0 ]

return simpleDistance(s1[1:], s2 [1:])

Takeaway message: The secret to thinking about recursion is to ask yourself “would it
help if I had the answer to a slightly smaller version of the same problem?” If the answer is
“yes,” then you can write a recursive function that calls itself to get the answer to the slightly
smaller version of the problem and then use that result to solve your original problem.

And don’t
forget the base
case!

2.8 Recursion, Revealed

2.8.1 Functions that Call Functions

We promise that in this section we will reveal the “magic” behind recursion. But for right
now, we’ve consulted with our lawyers and they told us that first we could sneak in a
short section on a slight tangent. Actually, it’s not quite as much of a tangent as it may
seem at first. Did you know that the word tangent was evidently first used in 1583 by the
Danish mathematician Thomas Fincke? Speaking of Denmark, did you know that Legos
were invented there? We digress.

Take a look at the code in the example below. How did Python arrive at 42 when we
called demo with argument 13? Does Python get upset or confused by the fact that each of
the functions here has a variable named x and a variable named r? How does changing the
value of x in one function affect the value of x in another function?
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98

11

23

42

Figure 2.1: A stack of storage boxes. Only the box on top has its door accessible.

def demo(x):

r = f(x+6) + x

return r

def f(x):

r = g(x-1)

x = 1

return r + x

def g(x):

r = x + 10

return r

>>> demo (13)

42

The secret here has to do with the way that Python (and, indeed, any self-respecting
programming language) deals with variables. Python has a large supply of metaphorical
storage boxes that it can use to store “precious” commodities. These storage boxes have
the special feature that their doors are on top and they are stackable. Figure 2.1 shows an
artist’s rendition of a stack of boxes. The box on the top of the stack is the only one that
you can tinker with. You’ll have to remove that box before you can tinker with the contents
of the one below it. However, we’ve put little windows in all of the boxes just for the sake
of explanation—allowing you to peek at what’s in there.

And letting the
numbers get

some natural
light!

Storage boxes? Doors? Windows? Are you CS professors crazy? Perhaps, but that’s
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x = 13 x = 13

x = 19

x = 13

(a) (b) (c)

Figure 2.2: The use of the stack when demo(13) is evaluated. (a) demo places its value of
x on the stack. (b) f places its value of x in a box on the top of the stack. (c) The stack
after g is done and f has retrieved its value of x

not really relevant here. Let’s take a closer look at our program above. When the call
demo(13) is made, the value 13 is passed into the demo function’s argument named x. This
variable is owned by demo and cannot be seen by “anyone” outside of this function. Python,
like most programming languages, likes to enforce privacy.

The function demo needs to call f(x+6) since this is the first expression in the right-hand
side of the statement r = f(x+6) + x. However, demo wants to ensure that the “precious”
value of its variable x, currently, 13, is preserved. It rightfully worries that it might get
changed by the function f or perhaps one of f’s pernicious friends (like g). So, right before
the function call to f, Python automatically stores all of demo’s variables in a storage box
for safe-keeping. In this case, there is a variable called x and Python stores its value, 13.
This is shown in Figure 2.2(a).

When the function f is called, it gets the argument 13 + 6 = 19. The value 19 is going
into f’s argument x. Now x has the value 19. The function demo is not worried about this
change in the value of x because it has locked up its own value of x in its secure box. It will
retrieve that value when f is done and returns control to demo.

Next, f calls g(19-1). Again, before doing so, it saves its own value of x, 19, in its
own box for safe-keeping. This box is stacked on top of the previous box as shown in
Figure 2.2(b). Now function g gets 18 in its argument of x. It computes 10 + 18 = 28
and returns that value. When we return to function f, that function immediately finds
the storage box on the top of the stack, retrieves its value of x from the box, and then
removes that box from the stack. Now, f has restored its original value 19 for x. The
current situation is shown in Figure 2.2(c). Now x is changed to 1—though that’s kind of
silly since it’s about to be thrown away. Finally f returns 28 + 1 = 29 to the demo function.
At this point demo finds its box at the top of the stack, opens it, restores its original value
of x to 13, and tosses the box. This value is now used in the rest of computation, and the
demo returns the value 29 + 13 = 42. Whew!

In computer science, this pile of storage boxes is called the stack . In practice it is
implemented using the computer’s memory rather than storage boxes with cute doors and
windows, but we like the metaphor.

Where a variable’s value can be seen is called its scope. Our example demonstrates that
the scope of a variable is limited to the function in which it resides. That’s all cool, but
our lawyers have warned us that if we don’t talk about recursion now, you’ll have grounds
to sue us, so here we go!
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2.8.2 Recursion, Revealed, Really!

OK, now back to our first recursive function, factorial:

def factorial(n):

' ' ' R e c u r s i v e f u n c t i o n f o r comput ing f a c t o r i a l o f n . ' ' '

i f n == 1:

return 1

e l se :
result = n * factorial(n-1)

return result

Amazing! But even though it seems to run correctly and implements a recursive def-
inition that seems correct, the function still seems rather like magic. So let’s take a look

To me it still
seems

unseemly!

at what Python is doing when we run factorial(3). We’ll explain it step-by-step and
summarize the process in Figure 2.3.

The function begins with n equal to 3. Since n is not equal to 1, the condition in the if

statement is False and we continue down to the else part. At this point, we see that we
need to evaluate n * factorial(n-1) which requires calling the function factorial with
argument 2. Python doesn’t realize—or even care—that the function that is about to be
called is the very same function that we’re currently running. It simply uses the same policy
that we’ve seen before: “Aha! A function call is coming up. I’d better put my precious
belongings in a storage box on the stack for safekeeping so that I can retrieve them when
this function call returns.”

In this case, n, with value 3, is the only variable that factorial owns at the moment. So,
factorial(3) puts the value of n equal to 3 away in the box for later retrieval. Then, it calls
factorial(2). Now factorial(2) runs. Notice that n now has the value 2. Fortunately,
the original value of n has been locked away for safekeeping because we’ll need it later. For
now, though, factorial(2) again goes to the else part where it sees that it needs to call
factorial(1). Before doing so, factorial(2) puts its value of n, namely 2, in its own
storage box at the top of the stack. Then it calls factorial(1).

Finally, factorial(1) is executed. Notice that n is now 1, so the expression n == 1 eval-
uates to True and factorial(1) simply returns 1. But this 1 must be returned to the func-
tion that called it. That’s true anytime there is a function call! Recall that factorial(2)
made that call. At this point, control is returned to factorial(2), which immediately
goes to its storage box at the top of the stack, opens it, retrieves its value of n (which is 2),
and discards the box from the top of the stack. Now, factorial(2) resumes its work. It
computes 2 * 1, assigns that value (2) to the variable result, and returns that.

That value is returned to the place where factorial(2) was called. That was in
factorial(3), which now goes to the top of the stack, opens the storage box, retrieves
its value of n, and tosses the box. Now, n is 3 and factorial(3) computes 3*2, which is
6, and returns that value. The value is returned to us because we called factorial(3) at
the prompt and, voilá, we have our answer!

Remember that the test if n == 1, the base case, is critically important. WithoutThe base case in a
recursive function is

analogous to the base
case in a proof by

induction. In fact, you
may have noticed that

recursion and induction
are very similar in spirit.

it, the program has no way of knowing when to stop. In general, we advocate trying
to write the base case first because it gets an easy case out of the way and lets you
concentrate on the recursive part. Moreover, the base case needs to be the first thing that
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n=3

n=3

n=2

Places its value of n=3 
on the top of the stack and
then calls factorial(2)

factorial(3):  

Function call What happens here... What the stack looks like at this moment...

factorial(2):  Places its value of n=2 
on the top of the stack and
then calls factorial(1)

factorial(1):  

n=3

n=2
Returns the value 1 to the
place where it was called, 
namely factorial(2)

factorial(2):  Takes the value 1 returned
from factorial(1), finds its own value
of n=2 at the top of the stack, 
computes the product,  2*1, and
returns this value to the place where
it was called, namely factorial(3)

n=3

factorial(3):  Takes the value 2 returned
from factorial(2), finds its own value
of n=3  at the top of the stack, 
computes the product (3*2), and
returns this value, 6,  to the place where
it was called...

Figure 2.3: What happens when we invoke factorial(3).
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your recursive function tests, to make sure that it can eventually stop.
One way to help you think of what the base case should be is to ask yourself the question,

“What is the ‘easiest’ input that I might get for this problem?” In the case of factorial,
it seems that 1! is the easiest reasonable factorial problem you can imagine. (Although we
could have also defined 0! = 1 as the base case and this would have worked too. Indeed, a
mathematician could give us convincing arguments why we should allow for 0!.)

Takeaway message: Recursion is not magic! It is simply one function calling another,
but it just happens that the function that we’re calling has the same name as the function
that we’re in!

2.9 Building Recursion Muscles

Let’s do another example with recursion to flex our recursion muscles. Imagine that we
want to write a function that takes a string as an argument and returns the reversal of that
string—that is, the string in reverse order. So, if we give this function “spam”, it should
return the string “maps.” If we give it “alien”, it should return “neila”.

Did you know
that “Neila” is

a town in
Spain?

Population 235.

The secret to writing a recursive function is to try to identify how solving a “smaller”
version of the problem would allow us to get close to solving the original problem. In the
case of computing the factorial, we observed that computing the factorial of n is easy if we
know the factorial of n−1. Aha! Now we can use recursion to compute the factorial of n−1
and when we get that answer, we can multiply it by n and we’ve solved our problem. This
is what is sometimes called the recursive substructure property . That’s a fancy term that
really means that computing the factorial of a number can be viewed as first computing
a slightly simpler factorial problem and then doing just a bit of extra work (in this case,
multiplying by n at the end).

Similarly, we’d like to find the recursive substructure in reversing a string. If we want
to reverse a string like “spam”, we observe that if we chopped off the first letter, resulting
in “pam” and then reversed “pam”, we’d be nearly done. The reversal of “pam” is “map”.
Once we have “map”, we can add that chopped-off “s” to the end and we get “maps”.
Generalizing this, we can say that to reverse a string, we can chop off the first letter,
reverse the remainder, and then add that first letter to the end.

Using this rule, we see that to reverse “spam” we will first reverse “pam” (and then add
the “s” to the end). To reverse “pam”, we’ll first reverse “am” (and then add the “p” to the
end). To reverse “am”, we’ll first reverse “m” (and then add “a” to the end). To reverse
“m” what will we do? Well, continuing in this spirit, we’ll chop the “m” off and we’ll be left
with “”—a string with no symbols. This is called the empty string . It seems like a strange
and perhaps even invalid string, but one could say the same thing about the number zero
and yet we all agree that zero is a perfectly OK number.

You Earthlings
are geniuses for
inventing zero.

It’s like nothing
I’ve ever seen!

But now we have a problem. How do we reverse the empty string? Simple: this is
the base case of our recursion. If we’re asked to give the reversal of the empty string, it’s
clearly just the empty string itself! So, continuing with our example, when we reverse “”,
we return “”. Now, we concatenate the “m” to that and we return “m”. That’s the reversal
of “m”. Recall that it was the reversal of “am” that requested the reversal of “m”. Now
that we have that, the reversal of “am” is “m” with the “a” concatenated at the end, which
is “ma”. It was the reversal of “pam” that was waiting patiently for the reversal of “am”.
“Thank you,” it says. “I’ve been waiting for the answer, which I see now is ‘ma’ and I will
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concatenate my ‘p’ to the end of it and get ‘map’.” Finally, it was the reversal of “spam”
that requested the reversal of “pam”. It gets ”map”, concatenates the “s”, and returns
“maps”. Wow!

While it’s instructive to trace through this logic step by step to understand what’s
happening, it can be aggravating to do this every time you write a recursive function. So
now we’ll take a small leap of faith and try to write this recursive function in Python, based
on our observation of the recursive substructure.

We’ve agreed that if the string is empty, the problem is easy—we just return the empty
string and we’re done. That’s the base case and we take care of that first. If the string is
not empty, we’ll find the first symbol in the string and “store” it away for later. In other
words, we’ll have a variable that keeps that first symbol for later use. Then, we’ll slice off
the first symbol, reverse the remaining string, and add the first symbol to the end of the
resulting string. Remember that a string can be defined using either single quotes or double
quotes. We’ll use single quotes throughout, just for consistency.

def reverse(string ):

' ' ' Takes a s t r i n g as an argument and r e t u r n s
i t s r e v e r s a l . ' ' '

i f string == '': # I s t h e s t r i n g empty ?
return '' # I f so , r e v e r s i n g i t i s e a s y !

e l se :
firstSymbol = string [0] # Hold on t o t h e f i r s t symbo l
return reverse(string [1:]) + firstSymbol

At this point you might be starting to notice a pattern for writing recursive functions
with strings. The base case is (often) when the string(s) are empty, and the recursive call is
(often) made on the string without its first character. We’ll see this pattern come up again
and again. What differs from function to function is what happens with the result of the
recursive call, and what is returned in each case.

2.10 Use It Or Lose It

We’re almost ready to completely solve our edit distance problem. In fact, we have all
the programming tools we need to do so. However, the general edit distance problem is
a substantially more complicated problem than reversing a string, and we’re missing some
problem-solving tools that will help considerably. So in this section we’re going to introduce
a general approach to solving a large class of problems (including the edit distance problem),
which we call “Use It Or Lose It.”

Our alien has a predicament: it’s planning to return to its home planet soon (after the
Harry Potter 17 debut and a massive shopping spree at the local mall) and has acquired
way more stuff than will fit in its suitcase. The alien would therefore like to select a subset
of items whose total weight is as close as possible to the suitcase capacity, but without
exceeding it. (Greedy creature!)

For example, imagine that the suitcase capacity is 42 units and there are items with
weights 5, 10, 18, 23, 30, and 45. In this case, the best we can do is to choose the weights
18 and 23 for a total of 41. On the other hand, if an item with weight 2 is also available,
we can get exactly 42 by choosing the weights 2, 10, and 30.

41 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



CHAPTER 2. FUNCTIONAL PROGRAMMING

So, what we’d like is a function that takes two arguments: a number representing the
suitcase capacity and a list of positive numbers (in no particular order) representing the
weights of the items. The function should then return the largest total weight of items that
could be chosen without exceeding the suitcase capacity. We’ll call our function subset

and we can imagine using it (once it’s written!) this way:

>>> subset (42, [5, 10, 18, 23, 30, 45])

41

>>> subset (42, [2, 5, 10, 18, 23, 30, 45])

42

A slightly more ambitious task would be to actually report the set of items that gives us
this best solution, but let’s not worry about that for now.

We start by thinking about the base case. What are the “easy” cases where the subset

function needs to do almost no work? Clearly, if the capacity that we’re given is 0, we can’t
take any items, so we should return 0 to indicate “sorry, the maximum sum that you can
attain is 0.” So, we can start this way:

def subset(capacity , items):

' ' ' Given a s u i t c a s e c a p a c i t y and a l i s t o f i t e m s
c o n s i s t i n g o f p o s i t i v e numbers , r e t u r n s a number
i n d i c a t i n g t h e l a r g e s t sum t h a t can be made from a
s u b s e t o f t h e i t e m s w i t h o u t e x c e e d i n g t h e c a p a c i t y . ' ' '

i f capacity == 0:

return 0

Actually, we could also return zero if the capacity is less than zero; we’ll see that below.
But there’s another “easy” case that we haven’t handled. What if the list of items is empty?
In that case, we also can’t take any items. We could handle this with an elif after the if

statement:

e l i f items == []:

return 0

Alternatively, since we plan to return 0 if the capacity is less than or equal to 0 or the list
is empty, we could simply modify the if statement above to say:

i f capacity <= 0 or items == []:

return 0

Recall that we advocate taking care of the base cases first, since this takes care of the “easy”
situations. Notice that since there were two arguments to subset, we should expect that
there will be two base cases to handle: either of the arguments could be “easy” (capacity
is ≤ 0 or list of items is empty). Often, the number of base cases is equal to the number of
arguments to the function.

OK, now for the actual recursion! Somehow we need to find the recursive substructure in
this problem. Let’s take a look at the first item in the given list. That list isn’t necessarily
in any particular order, but it’s easy to pick on the first item so let’s start with it. (We could
have just as well looked at the last item or any other, but Python makes it particularly easy
to look at the first one, since it’s just items[0].)
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If that first item happens to be larger than the capacity of the suitcase, we have no
choice but to toss it out. In that case, we’re confronted with a simpler problem: Find the
best solution with the given capacity but with a list that has had the first item removed.
We’d like to call some function to help us find that solution. What function can do that?
Our own subset function! So, here’s what we have so far:

def subset(capacity , items):

' ' ' Given a s u i t c a s e c a p a c i t y and a l i s t o f i t e m s
c o n s i s t i n g o f p o s i t i v e numbers , r e t u r n s a number
i n d i c a t i n g t h e l a r g e s t sum t h a t can be made from a
s u b s e t o f t h e i t e m s w i t h o u t e x c e e d i n g t h e c a p a c i t y . ' ' '

i f capacity <= 0 or items == []:

return 0

e l i f items [0] > capacity:

return subset(capacity , items [1:])

Remember, there is no magic here! We’re simply going to call a function that happens to
be the same function as the one we are in.

Finally, if that first item, items[0], is not greater than the capacity, we might want
to use it, but not for sure. For example, if the capacity was 10 and the list of items was
[8, 4, 6] we could use the item with value 8, but if we do use it we can’t take any other
items (because the remaining items in the list will exceed the remaining capacity). A better
solution would be not to use it and take the items with values 4 and 6 to get a solution
with total value 10. So, the question here is should we “use it or lose it’?’ (The “it” here
being the item with value 8.)

We don’t yet know the answer to that question. However, we can make two recursive
calls, one that finds the best solution that “uses” the item with value 8 and one that finds
the best solution that “loses” the value 8. The better of these two solutions must be the
best solution overall. After all, with respect to that item with value 8, any solution must
either use it or lose it!

In this case, the
recursion is
trying to
“e-value-8” the
two options!

The case that we lose the first item in the list is easy. We just want to find the best
solution with the same capacity and the list items[1:]. If we choose to use that item,
we now get the value of that item in our solution, but our capacity is now reduced by the
weight of that item. So our complete function will look like this:

def subset(capacity , items):

' ' ' Given a s u i t c a s e c a p a c i t y and a l i s t o f i t e m s
c o n s i s t i n g o f p o s i t i v e numbers , r e t u r n s a number
i n d i c a t i n g t h e l a r g e s t sum t h a t can be made from a
s u b s e t o f t h e i t e m s w i t h o u t e x c e e d i n g t h e c a p a c i t y . ' ' '

i f capacity <= 0 or items == []:

return 0

e l i f items [0] > capacity:

return subset(capacity , items [1:])

e l se :
loseIt = subset(capacity , items [1:])
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useIt = items [0] + subset(capacity - items [0],

items [1:])

return max(loseIt , useIt)

By the way, the function max is built in to Python; it can take any number of arguments
and returns the maximum of all of them. In this case, we’re using max to return the better
of our two options: “use it” and “lose it.”

The “use it or lose it” paradigm is a powerful problem-solving strategy. It allows us to
exploit recursion to explore all possible ways to construct a solution. We’re now (finally)
ready to return to the problem that started off this chapter.

2.11 Edit distance!

Now that we’ve seen recursion and the “use it or lose it” strategy, we are ready to solve our
original problem: Finding the edit distance between two strings. Recall that the objective is
to find the least number of substitutions, insertions, and deletions required to get from one
string to another. As we noted at the beginning of the chapter, it doesn’t matter whether
we choose to change the first string into the second or vice versa, so we’ll choose to start
with the first string and try to transform it into the second string.

Just as a quick reminder, here’s an example of the full version of the problem: Consider
transforming the string “alien” into the string “sales.” We can begin by inserting an “s”
at the front of “alien” to make “salien”. Then we delete the “i” to make “salen.” Then we
replace the “n” with an “s” to make “sales.” That took three operations, and indeed it is
not possible to transform “alien” to “sales” with fewer than three operations.

Too bad! I love
sales.

Our objective is to write a function called distance that will take two strings as ar-
guments; we’ll call them first and second. Our solution will use recursion, so we’ll start
with the base case. Since there are two arguments, we should expect that there will be two
base cases and that they will be the “easy” or “extreme” cases.

One extreme is that one (or both) of the strings are empty. For example, imagine that
first is the empty string. For the moment, let’s assume that second is not empty—for
example it might be “spam”. Then the distance between the two strings must be the length
of second since we must insert that many letters into the empty string to get to second.
Similarly, if second is empty then the distance must be the length of first, since we must
delete that many symbols from first. So, let’s start our function accordingly:

def distance(first , second ):

' ' ' Returns t h e e d i t d i s t a n c e be tween f i r s t and second . ' ' '

i f first == '':
return len(second)

e l i f second == '':
return len(first)

We’re not done yet, but let’s pause here and ask ourselves what would happen in the case
that both strings were empty. In this case, the distance should be 0; notice that this is what
we’ll get since first is empty and we’ll get the length of second—which is 0. It’s always
good to check these kinds of special cases to make sure we haven’t missed anything.
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Now for the recursion. If first and second begin with the same symbol it’s pretty clear
that we should consider ourselves fortunate and not mess with those matching characters.
In this case, the distance between the two strings is just the distance between the two
strings with the first symbol of each sliced off. That is, we want the distance between
first[1:] and second[1:]. For example, when computing the distance between spam and
spim (notice that the distance is 1), the fact that they begin with the same letter lets us
conclude that the distance is going to be the same as the distance between pam and pim.
So, we can make a recursive call distance(first[1:], second[1:]).

On the other hand, if the two strings begin with different letters, the problem is more
interesting. Since the first letters don’t match, some sort of change will be required. We can
either change the first symbol of the first string to match the first symbol of the second (a
substitution), remove the first symbol of the first string (a deletion), or add a new symbol
at the very front of the first string (an insertion). We don’t know which of these is best, so
we’ll let recursion explore all three options for us. This is like the “use it or lose it” strategy
but now we have three choices to consider rather than two.

Let’s consider each of the three options. If we are going to perform a substitution, it’s
not hard to see that we should change the first letter in first to be the same as the first
letter in second. Now these letters will match and we can remove those two letters from
further consideration. Therefore, the best solution that begins with a substitution will have
cost 1 + distance(first[1:], second[1:]) because the number of operations will be 1
(the substitution) plus however many operations are required to get from the remaining
string first[1:] to the remaining string second[1:].

The second option is deleting the first symbol in first. That’s one operation, and now
we would need to find the distance from first[1:] to second. This option uses a number
of operations given by 1 + distance(first[1:], second).

Lastly, we need to consider inserting a new symbol to the front of first. It’s not
hard to see that the new symbol should match the first symbol in second. That will
require one operation, and then the remaining problem is to find the distance from first

to second[1:]. That’s because we haven’t yet used the first symbol in first, but we’ve
just matched the first symbol in second. So, the number of operations used by this option
is given by 1 + distance(first, second[1:]).

The best of these three options will be our best solution! Putting it all together, here’s
our function:

def distance(first , second ):

' ' ' Returns t h e e d i t d i s t a n c e be tween f i r s t and second . ' ' '

i f first == '':
return len(second)

e l i f second == '':
return len(first)

e l i f first [0] == second [0]:

return distance(first [1:], second [1:])

e l se :
substitution = 1 + distance(first [1:], second [1:])

deletion = 1 + distance(first [1:], second)

insertion = 1 + distance(first , second [1:])
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return min(substitution , deletion , insertion)

Like max, min is built in to Python and returns the minimum of all of its arguments.
Wow! That’s a remarkably short program that solves a challenging and important

computational problem. Here are a few examples of us using this function.

>>> distance('spam', 'poems ')
4

>>> distance('alien ', 'sales ')
3

We encourage you to try it for yourself!

2.12 Conclusion

This chapter has led us from the basics of Python to writing powerful recursive functions.
This style of programming—using functions and recursion—is called functional program-
ming .

Amazingly, what we’ve seen so far is enough to write any possible program. To be
a bit more precise, the Python features that we’ve seen here are sufficient to write any
program that can be written in any other language. You may wonder how we dare make
such a bold assertion. The answer is that there is a lovely part of computer science called
computability theory , which allows us to actually prove such statements. We’ll see some
aspects of computability theory in Chapter 7.

In spite of the fact that we are now functional (in both senses of the word) programmers,
there are some beautiful ideas that will allow us to write more efficient, succinct, and elegant
programs, and we’ll see some of these ideas in the next chapter. But before going there,
you’ll probably want to write some programs of your own to become comfortable with
recursion. In the meantime, we leave you with this quip from a former student of ours: “To

I tried Googling
“recursion”. It
came back and
said “Did you

mean:
recursion”

understand recursion, you must first understand recursion.”
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Chapter 3

Functional Programming, Part
Deux

Whoever said that pleasure wasn’t functional?
—Charles Eames

3.1 Cryptography and Prime Numbers

Imagine that our alien is sitting at a cafe, surfing the Internet, sipping a triple mochaccino,
and is now about to purchase the Harry Potter Complete DVD Collection (movies 1 through
17) from the massive online store, Nile.com. As it types in its credit card number to make
its purchase, it suddenly pauses to wonder how its financial details will be kept secure as
they are transmitted over the cafe’s Wi-Fi and then over the vast reaches of the Internet.
That’s a valid concern. The good news is that many online stores use cryptography to keep
such transactions secure.

I’m headed
home soon, but
there’s just a
bit more
shopping to be
done first!

One of the most famous and widely-used cryptography schemes is called RSA, after the
three computer scientists who invented it: Ron Rivest, Adi Shamir, and Leonard Adleman. Rivest, Shamir, and

Adleman received the
Turing Award—the
computer science
equivalent of the Noble
Prize.

Here’s how it works: The online store has its own mathematical function that all customers
use to encrypt their data before transmitting it over the network. This mathematical
function is made publicly available. The hope is that while anyone can easily use this
function to encrypt data, only the online store can “undo” (or, more technically, “invert”)
the function to decrypt the data and recover the original number.

For example, imagine that Nile.com tells customers to use the function f(x) = 2x. It’s
certainly easy to encrypt any number we wish to send—we simply double it. Unfortunately,
any first grader with a calculator can decrypt the message by simply dividing it by 2, so
that encryption function is not secure.

The RSA scheme uses a slightly more complicated function. If x is our credit-card num-
ber, we encrypt it using the function f(x) = xe modn, where e and n are carefully chosen
numbers. (Remember from the previous chapter that xe modn means the remainder when
xe is divided by n; it can be easily computed in Python using the expression (x**e) % n.)
It turns out that if e and n are chosen appropriately, the online store will be able to decrypt
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the number to retrieve the credit card number x but it will be nearly impossible for anyone
else to do so—even though everyone knows e and n.

That’s pretty interesting, but how do we choose e and n and how will the store later
decrypt the number that it receives? Well, we first choose two different large prime numbers
p and q at random. Next, n is just pq. Now, to get the number e, we have to perform two
steps: first we let m = (p − 1)(q − 1), and then we choose our exponent e to be a random
prime number less than m that is also not a divisor of m. That’s it!

Now, any number x less than n can be encrypted by computing xe modn. Once we
have selected e and n, we can share those values with anyone wishing to send us encrypted
information. In a typical Internet shopping transaction, your web browser would get the
publicly available values of e and n from the online store and use them to encrypt your
credit card number, x. Together, the values e and n are called the public key for this store.
(In cryptology, a public key is simply a key that can be safely published without giving
away the corresponding secret key .)

For example, let p = 3 and q = 5. They’re certainly prime (although they are way too
small to be secure in practice). Now, n = 3 × 5 = 15 and m = (3 − 1) × (5 − 1) = 8. For
our encryption exponent e, we could choose the prime number 3 because it’s less than 8
and also doesn’t divide 8. Now, we can encrypt any number less than n. Let’s encrypt
the number 13, for example. We can compute 133 mod 15 in Python as (13**3) % 15; the
result is 7. So 7 is our encrypted number, which we send over the Internet to the online
store.

How does the store decrypt that 7 and discover that the original number was actually
13? At the same time that the encryption exponent e was computed, we should have also
computed a decryption exponent d, which has two properties: it is between 1 and m − 1,
and edmodm = 1. It’s not hard to show that, because of the way e and m were chosen,
there is exactly one value that has these properties; we call d the multiplicative inverse of e
modulo m. In our example, e = 3 and m = 8, and d is also 3 (it’s a coincidence that e and
d are equal; that’s not normally the case—if it were, the decryption key wouldn’t exactly
be a secret!). Notice that edmod 8 = 9 mod 8 = 1. Now, the online store can decrypt
any number y that it receives by simply computing yd modn. In our case, we received the
encrypted number y = 7. We compute 73 mod 15 using Python ((7**3) % 15) and get the
answer 13. Indeed, that’s the value that we encrypted a moment ago! Keep in mind that
while the encryption key e and n are public, the online store must keep the decryption key
d private. Anyone with access to d can decrypt any message sent with the encryption key.

Exactly why this works is not too hard to show and is often taught in an introductory
discrete math or algorithms course. But you may be wondering why we are so confident that

I think the
mathematics of

cryptography
should be

called
“discreet”

math.

the scheme is secure. This, too, requires a bit more time to explain than we have here. We
will point out, however, that since the the values e and n are public, if a malicious person
could find the two primes p and q that we originally selected, then they could figure out
m and then d and they could crack the code. The good news is that “factoring” a number
n into its prime divisors is known to be a “computationally hard” problem—very hard.
(Computationally hard means a problem that takes a long time to compute the answer for.)
For example, the U.S. National Institutes of Standards and Technology estimates that if we
encrypt a message today using public keys that are about 600 digits long, it would take until
about the year 2030 to crack the code—even if a very large number of very fast computers
were used for the attack.

48 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



3.2. FIRST-CLASS FUNCTIONS

3.2 First-Class Functions

Recall that in the previous chapter we learned about Python functions and explored the
power of recursion. The style of programming that we examined—programs constructed
from functions that call one another (and possibly themselves)—is called functional pro-
gramming. Interestingly, in functional programming languages like Python, functions are
actually data just like numbers, lists, and strings. We say that functions are “first-class
citizens” of the language. In particular, we can write functions that take other functions as

I prefer to do
everything
first-class.

arguments and return other functions as results! In this chapter we’ll explore these ideas,
first using them to write a short program that efficiently generates long lists of primes, and
ultimately writing a function that generates both the encryption and decryption functions
for RSA cryptography. By the end of this chapter, we’ll have written Python programs that
will allow you to securely send data to your friends.

3.3 Generating Primes

Motivated by RSA cryptography, our first mission is to find a way to generate a list of
primes. One reasonable way to do this is to first write a function that determines whether
or not its argument is prime. Once we have such a function, we could use it to test a
sequence of consecutive numbers for primality, keeping those that are prime in a list.

But how do we test if a single positive integer n is prime? One idea is to simply test
whether any number between 2 and n − 1 divides it. If so, the number is not prime.
Otherwise the number is prime. (In fact, it suffices to test just the numbers between 2 and√
n, since if n is prime, at least one of its divisors must be less than or equal to

√
n. But

for now, let’s simply test all the possible divisors between 2 and n− 1.)
To that end, it would be useful to have a function divisors(n) that accepts our number

n (which we wish to test for primality) and returns True if n has any divisors (other than 1
and itself), and False otherwise. Actually, it will turn out to be handy if divisors accepts
two additional numbers, low and high, that give a range of divisors to test. That will let
us reduce the amount of work that has to be done.

For example, divisors(15, 2, 14) should return True because 15 has a divisor be-
tween 2 and 14 (and therefore is not prime), but divisors(11, 2, 10) should return
False because 11 has no divisors between 2 and 10 (and therefore is prime). Also, note
that divisors(35, 2, 4) should return False even though 35 is not prime.

We can write the divisors(n, low, high) function using recursion! To simplify mat-
ters, we’ll assume that the arguments are all positive integers. If low is higher than high,
then the answer is False because n cannot have any divisors in the specified range (since
there are no numbers in increasing order between low and high). So, if low > high we
must return False—which is a base case.

But what if low is less than or equal to high? In this case, we can test whether n has a
divisor between low and high like this: If n is divisible by low, then we’ve found a divisor in
that range and we must return True. Otherwise, the answer to the question: “Does n have
a divisor between low and high?” now becomes the same as the answer to the question
“Does n have a divisor between low+1 and high?” But that’s a version of the original
question, and thus one that we can solve recursively! Here’s our solution:

def divisors(n, low , high):
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' ' ' Returns True i f n has a d i v i s o r i n t h e range from
low t o h i g h . O t h e r w i s e r e t u r n s F a l s e . ' ' '

i f low > high:

return False

e l i f n % low == 0: # I s n d i v i s i b l e by low ?
return True

e l se :
return divisors(n, low + 1, high)

Now we can test if n is prime by checking whether it has any divisors between 2 and
n-1:

def isPrime(n):

' ' ' For any n g r e a t e r than or e q u a l t o 2 ,
Returns True i f n i s prime . F a l s e i f not . ' ' '

i f divisors(n, 2, n-1):

return False

e l se :
return True

We can do this even more elegantly this way:

def isPrime(n):

' ' ' For any n g r e a t e r than or e q u a l t o 2 ,
Returns True i f n i s prime . F a l s e i f not . ' ' '

return not divisors(n, 2, n-1)

Recall from Chapter 2, that not “negates” a Boolean, so if divisors(n, 2, n-1) is True

then not divisors(n, 2, n-1) is False, and if divisors(n, 2, n-1) is False then
not divisors(n, 2, n-1) is True.

Now we can use isPrime to generate lists of primes, again using recursion. Imagine
that we want to know all of the primes from 2 to some limit, for example 100. For each
number in that range, we could test if it’s prime and, if so, add it to our growing list of
primes. Before you look at the code below, see if you can determine the base case and the
recursive step for such a function.

Now, here is the Python implementation:

def listPrimes(n, limit ):

' ' ' Returns a l i s t o f prime numbers be tween n
and l i m i t . ' ' '

i f n == limit:

return []

e l i f isPrime(n):

return [n] + listPrimes(n+1, limit)

e l se :
return listPrimes(n+1, limit)

Notice that in the second return statement, we returned [n] + getPrimes(n+1, limit)

rather than n + getPrimes(n+1, limit). Why? Well, in this case the plus sign means
that two lists should be concatenated, so the expressions on its left and right have to be
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lists. Indeed, the result of calling getPrimes will be a list, since by definition a list is what
this function returns (and notice that in the base case it returns the empty list). However,
n is a number, not a list! To make it a list, we place it inside square brackets. That way,
we are concatenating two lists and life is good.

The above strategy for generating primes works, but it’s quite slow—particularly when
attempting to generate large primes. The problem is that it repeats a lot of work. For
example, if you call listPrimes(51, 2, 50) will test 2 as a divisor and fail—but it will
still insist on testing 4, 6, 8, . . . , 50 even though we’ve already proven that 51 isn’t even!

A much faster algorithm for generating primes is the so-called sieve of Eratosthenes. This
method is named after Eratosthenes, an ancient Greek mathematician who lived around
2200 years ago. Here’s the idea: To find all of the primes from 2 to 1000, for example, It’s not entirely clear

that Eratosthenes
actually discovered this
idea.

we first write down all of the integers in that range. Then we start with 2; it’s the first
prime. Now, we remove (or “sift”) all multiples of 2 from this list since they are definitely
not prime. When we’re done, we come back to the beginning of our remaining list. The
number 3 survived the sifting of numbers that was performed by 2, so 3 is prime. We now
cancel out all remaining numbers that are multiples of 3, since they too cannot be prime.
When we’re done, we look at the first number in the remaining list. It’s not 4 (it got sifted
out earlier when we looked at 2), but 5 is there. So 5 is prime and we let it sift all of its
multiples that remain in the list. We continue this process until every remaining number
has had a chance to sift the numbers above it.

I found a lovely
animation of
this algorithm
by Googling
“prime sieve.”
You humans
are clever!

Let’s implement Eratosthenes’ algorithm as a Python function called. . . primeSieve. It
will take a list of numbers 2, 3, . . . up to the largest number that we’re interested in, and
will return a list of all the primes in the original list. Fortunately, Python has a built-in
function that allows us to obtain the list of all integers from a starting point to an ending
point. It’s called range, and in Python 2 it works like this:

>>> range(0, 5)

[0, 1, 2, 3, 4]

>>> range(3, 7)

[3, 4, 5, 6]

In Python 3 range works almost the same, but it needs a little nudge to turn the result
into a list:

>>> list(range(0, 5))

[0, 1, 2, 3, 4]

>>> list(range(3, 7))

[3, 4, 5, 6]

Notice that the list that we get back from range seems to stop one number too soon. That
may seem weird, but as we’ll see later, it turns out to be useful.

So getting all the integers from 2 to 1000, for example, is easy: range(2, 1001). We
can then pass that list into the primeSieve function.

Before writing primeSieve let’s just do a small thought experiment to better understand
how it will work. Imagine that we start it with the list range(2, 11), which is:

[2, 3, 4, 5, 6, 7, 8, 9, 10]

Passing this list to primeSieve is basically saying “Could you please find me all of the
primes in this list?” To accommodate your polite request, the primeSieve function should
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grab the 2 and hold on to it because it’s a prime. It should then sift all of the multiples of
2 from this list, resulting in a new list:

[3, 5, 7, 9]

Now what? Well, primeSieve would like to do as little work as possible and instead
send that list to some function and ask it, “Could you please find me all of the primes in
this list?” Aha! We can send that list back to primeSieve because its job is to find the
primes in a given list. That’s just recursion!

So, continuing with our example, the first time we called primeSieve it found the 2,
sifted out the multiples of 2 to get the list [3, 5, 7, 9], and called primeSieve on that
list. Whatever comes back from the recursive call will be tacked on to the 2 that we’re
currently holding—and then we’ll have the whole list of primes from 2 to 10.

The recursive call to primeSieve with the argument list [3, 5, 7, 9] will similarly
grab the 3 from the front of that list, sift out all of the multiples of 3 to get list [5, 7], and
will ask for help finding the primes in that list. Whatever primes are returned will be tacked
on to the 3 that we’re holding, and that will be all of the primes in the list [3, 5, 7, 9].

In the next recursive call, we’ll grab 5 and recur on the list [7]. That recursive call will
grab the 7 and recur on the empty list. We see here that since the list is getting shorter
each time, the base case arises when we have an empty list. In that case, primeSieve must
report that “the list of all the primes in my argument is empty”—that is, it should return
the empty list.

We still need a function that will do the actual sifting. We can imagine a function called
sift that takes two arguments—a number toRemove and a list of numbers numList—and
returns all of the numbers in numList that are not multiples of toRemove. Let’s come back
to that in a moment, and write our primeSieve under the assumption that we have sift.
This approach for writing programs is called top-down design because we start at the “top”
(what we want) and then work our way down to the details that we need.

I think that
this approach

should be
called the

“wishful
thinking”

method
because we just

wish for a
helper function

whenever we
need one.

def primeSieve(numberList ):

' ' ' Returns t h e l i s t o f a l l pr imes i n numberLis t , u s i n g a
prime s i e v e a l g o r i t h m . ' ' '

i f numberList == []: # i f t h e l i s t i s empty ,
return [] # . . . we ' re done

e l se :
prime = numberList [0] # The f i r s t e l e m e n t i s prime !
return [prime] + primeSieve(

sift(prime , numberList [1:]))

Now, we need to sift. The next section will introduce a tool that will help us do exactly
that, so read on...

3.4 Filtering

Fortunately for us, Python (like most functional programming languages) has a built-in
function named filter that does (almost) exactly the sifting that we would like to do.

We’ll eventually get back to the problem of general list sifting that we started above,
but for the moment let’s just focus on the problem of sifting a list by removing num-
bers divisible by two. To demonstrate filter in action, let’s first define a function called
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isNotDivisibleBy2 that takes a number n as an argument and returns a Boolean value:
True if the number is not divisible by 2 (i.e., it is odd) and False otherwise (i.e. it is even).

def isNotDivisibleBy2(n):

' ' ' Returns True i f n i s not d i v i s i b l e by 2 ,
e l s e r e t u r n s F a l s e . ' ' '

return n % 2 != 0

Now back to filtering. Having isNotDivisibleBy2, here’s how we can use it with
Python’s filter function. In Python 2 it looks like this:

>>> filter(isNotDivisibleBy2 , range(3, 10))

[3, 5, 7, 9]

In Python 3, filter doesn’t eagerly produce a list, so we need to send its result to the
list function, as follows:

>>> list(filter(isNotDivisibleBy2 , range(3, 10)))

[3, 5, 7, 9]

You may have inferred what filter is doing: its first argument is a function and its

I couldn’t
function
without a filter
to remove the
noxious oxygen
from Earth’s
air!

second argument is a list. The function is a special one that takes a single argument and
returns a Boolean result. A function that returns a Boolean is called a predicate; you can
think of the predicate as telling us whether or not it “likes” its argument. Then, filter
gives us back all of the elements in the list that the predicate likes. In our example,
isNotDivisibleBy2 is a predicate that likes odd numbers. So we got back the list of all
the odd numbers in the original list.

A function that takes other functions as arguments?! Strange, but definitely allowed,
and even encouraged! This idea is central to functional programming: functions can be
passed into and returned from other functions just like any other kind of data. In fact,
Chapter 4 will explain why this idea is not so strange after all.

Lists of numbers are not all we can filter. Here’s another example of filter, this time
using lists of strings. In preparation for its next visit to Earth, our alien is attempting to
master English and a number of other languages. The alien has a list of words to learn, but
it’s particularly keen on learning the four-letter words first. For example, if it’s given the
list of words [’aardvark’, ’darn’, ’heck’, ’spam’, ’zyzzyva’] it would like to have
a way of filtering that list to just be the “bad” words [’darn’, ’heck’, ’spam’].

Four letr wrds
rock!

Again, we define a predicate function first: a function called isBad that takes a string
named word as an argument and returns a Boolean value: True if the word is of length four
and False otherwise.

def isBad(word):

' ' ' Returns True i f t h e l e n g t h o f ” word ” i s 4 , e l s e
r e t u r n s F a l s e . ' ' '

return len(word) == 4

Now that we have isBad, here’s how we can use it with Python’s filter function: Again, in Python 3, we
need to send the result
of filter to the list

function to actually get
the list, so the line would
begin list(filter(bad,

...)).

>>> filter(isBad , ['ugh', 'darn', 'heck', 'spam', 'zyzzyva '])
[’darn’, ’heck’, ’spam’]
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3.5 Lambda

Filter helps us sift lists of numbers, but so far all we’ve seen how to do is to sift them to
remove even numbers. If we wanted to remove multiples of 3 we would need another helper
function:

def isNotDivisibleBy3(n):

' ' ' Returns True i f n i s not d i v i s i b l e by 3 ,
e l s e r e t u r n s F a l s e . ' ' '

return n % 3 != 0

And then we’d need another to remove multiples of 5, and one for 7, and 11, and so on.
Obviously this is not going to work.

The idea behind our primeSieve function is that we want to change what we are filtering
for “on the fly,” depending on which number is currently first in the list. You might imagine
that we could add a second argument to our predicate function, as follows:

def isNotDivisibleBy(n, d):

' ' ' Returns True i f n i s not d i v i s i b l e by d ,
e l s e r e t u r n s F a l s e . ' ' '

return n % d != 0

Generally, this would solve the problem, but in this case we have a problem: filter

requires that the predicate function we pass it takes only one argument. So this new
definition will not work either.

What we really need is a sort of “disposable” function that we can define just when we
need it—using the number we currently care about sifting—and then immediately throw it
away after we are done using it. In fact, this function will be so temporary that we won’t

Is a disposable
function envi-

ronmentally
friendly?!

even bother to give it a name! Such a function is called an anonymous function.
Here’s what an anonymous function definition looks like for our isNotDivisibleBy2

example:

>>> filter(lambda n: n % 2 != 0, range(0, 1001))

The word “lambda” indicates that we are defining an anonymous function—a short-lived“Lambda” derives from a
branch of mathematics

called the lambda
calculus (see sidebar on

page 62), which
influenced the first

functional language,
LISP.

function that we need right here and nowhere else. Then comes the names of the arguments
to the function (in this case, one argument named n), then a colon, and then the value
that this function should return. So, this anonymous function lambda n: n % 2 != 0 is
exactly equivalent to our isNotDivisibleBy2 function above.

The anonymous function syntax in Python is odd; in particular, we don’t put parentheses
around the function’s arguments, and there is no return statement. Instead, anonymous
functions in Python implicitly return whatever value comes after the colon.

Just to make the point that anonymous functions really are full-fledged functions, take
a look at this:

>>> double = lambda x: 2 * x

>>> double (21)

42
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Whoa—that’s really weird! In the first line, we’re defining a variable named double and
giving it the value lambda x: 2 * x. But in a functional programming language functions
are truly first-class citizens; they are data just like numbers, strings, and lists. So double

is a function with one argument, and if we want to use it we need to pass it a value. In
the second line, that’s exactly what we’re doing. In fact, when we define a function in the
“normal” way, that is by starting with the line def double(n), we are really just saying
“double is a variable whose value is the function that I’m going to define in the lines
following the def statement.”

Finally, we can use anonymous functions to finish writing sift, as follows: If using Python 3,
remember that we need
to place the filter call
inside list(...)

def sift(toRemove , numList ):

' ' ' Takes a number , toRemove , and a l i s t o f numbers ,
numList . Returns t h e l i s t o f t h o s e numbers i n numList
t h a t are not m u l t i p l e s o f toRemove . ' ' '

return filter(lambda x: x % toRemove != 0, numList)

The anonymous function we pass into filter uses toRemove in its body without having to
pass it in as an argument. It can do this because this function is defined in an environment
where toRemove already exists and has a value.

Of course we could also write sift using the list-comprehension syntax (see the sidebar
on pages 59–60); then it would look like this:

def sift(toRemove , numList ):

return [x for x in numList i f x % toRemove != 0]

Finally, as a reminder, here is our primeSieve function again, using sift:

def primeSieve(numberList ):

' ' ' Returns t h e l i s t o f a l l pr imes i n numberLis t u s i n g a
prime s i e v e a l g o r i t h m . ' ' '

i f numberList == []: # i f t h e l i s t i s empty ,
return [] # . . . we ' re done

e l se :
prime = numberList [0] # The f i r s t e l e m e n t i s prime !
return [prime] + primeSieve(

sift(prime , numberList [1:]))

It’s surprising how much entertainment value there is in running primeSieve to generate
long lists of primes. However, Python got angry with us when we tried something like this:

>>> primeSieve(range(2, 10000))
If using Python 3, this
will be
primeSieve(list(range(

2, 10000))).

We got a long and unfriendly error message. The reason is that this created a lot of recursion,
and Python is trained to believe that if there is a lot of recursion going on, there must be an
error in your program (usually because you forgot to put in a base case). Exactly how much
recursion Python thinks is too much depends on the Python version and your computer’s
operating system. However, you can ask Python to allow you more recursion by including
the following two lines at the top of your file:

import sys

sys.setrecursionlimit (20000) # Al low 20000 l e v e l s o f r e c u r s i o n
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We asked for 20, 000 levels of recursion here. Some operating systems may allow you more
or less than this. (Most modern machines will allow much, much more.)

This brings us to one last point: while the prime sieve is quite efficient, most good
implementations of the RSA scheme use even more efficient methods to generate large
prime numbers. In practice, the primes used by RSA when encoding Internet transactions
are generally a few hundred digits long! A CS course on algorithms or cryptography may
well show you some of the more sophisticated and efficient algorithms for generating primes.

Shameless sales
pitch!

3.6 Putting Google on the Map!

In the rest of this chapter we will continue to build on the idea of functions as first-class
citizens that can be passed into or returned from other functions. We’ll look at two more
examples: Google’s MapReduce approach to processing data, and taking derivatives of
functions.

Imagine that you work for Nile.com. Your company maintains a list of product prices,
and periodically the prices are systematically increased. Your boss comes into your office
one morning and asks you to write a function called increment that takes a list of numbers
as an argument and returns a new list in which each number is replaced by a value one
greater. So, with the argument [10, 20, 30], the result should be [11, 21, 31].

No problem! We can write increment recursively. For the base case, if the argument
is an empty list, we’ll also return an empty list. (Remember, the result is always a list of
the same length as the argument, so returning anything other than the empty list in this
case would be violating our contract!) For the recursive case, we observe that we can easily
increment the first number in the list: We simply find that element and add one to it.
We can then slice that first element off the list and increment the remainder. The phrase
“increment the remainder” is essentially saying “use recursion on the remaining list.” In
other words, increment([10, 20, 30]) will first find the 10, add one to make it 11, and
then recursively call increment([20, 30]) to get the result [21, 31]. Once we have that,
we just concatenate the 11 to the front of that list, resulting in [11, 21, 31]. Here’s the
Python program:

def incrementList(numberList ):

' ' ' Takes a l i s t o f numbers as an argument and r e t u r n s
a new l i s t w i t h each number i n c r e m e n t e d by one . ' ' '

i f numberList == []:

return []

e l se :
newFirst = numberList [0] + 1 # i n c r e m e n t 1 s t e l e m e n t
# Next , i n c r e m e n t t h e remain ing l i s t
incrementedList = incrementList(numberList [1:])

# Now r e t u r n t h e new f i r s t e l e m e n t and t h e
# i n c r e m e n t e d remain ing l i s t
return [newFirst] + incrementedList
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3.6.1 Map

Your boss is pleased, but now tells you “I need a very similar function that takes a list as an
argument and adds 2 to each element in that list.” Obviously, we could modify increment

very slightly to do this. Then your boss tells you, “I need yet another function that takes a
list as an argument and triples each element.” We can do that too, but this is getting old.

This boss is
straight out of
Dilbert!

We see that your boss frequently needs us to write functions that take a list of numbers as
an argument and return a new list in which some function is applied to every element in
that list.

An important principle in computer science is “if you are building lots of very similar
things, try instead to build one thing that can do it all.” We’ve seen this principle before This is known more

succinctly as the
principle of
generalization. We’re
trying to make our
function more general
and less specific.

when we started writing functions, but here we’ll take it one step further. The “do it all”
thing in this case is a function called map, which is built in to Python and many other
functional programming languages. We’ll show it to you and then explain. But first, it
will be handy to have two simple functions to help with our example. One function, called
increment, takes a number as an argument and returns that number plus 1. The second,
called triple, takes a number as an argument and returns three times that number:

def increment(x):

' ' ' Takes a number x as an argument and r e t u r n s x + 1 . ' ' '
return x+1

def triple(x):

' ' ' Takes a number x as an argument and r e t u r n s 3 ∗ x . ' ' '
return 3 * x

If you’re using Python 2, you can now do the following:

>>> map(increment , [10, 20, 30])

[11, 21, 31]

>>> map(triple , [1, 2, 3, 4])

[3, 6, 9, 12]

If you’re using Python 3, map is a bit lazy and requires some cajoling to produce the list,
just like filter did. The magic incantation required in Python 3 looks like this:

>>> list(map(increment , [10, 20, 30]))

[11, 21, 31]

>>> list(map(triple , [1, 2, 3, 4]))

[3, 6, 9, 12]

This is passing the result of map to a built-in function called list, which forces Python 3
to actually produce the list.

Notice that map takes two arguments. The first is a function; the second is a list. The
function that is given to map (e.g., increment and triple in our examples) must be a
function that takes one argument and produces a single result. Then, map applies that
function one-by-one to each element in the list to build a new list of elements.

Sometimes, we don’t need to create our own functions to give to map. For example, take
a look at this example:

>>> map(len , ['I', 'like', 'spam'])
[1, 4, 4]
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In Python 3, this would be

>>> list(map(len , ['I', 'like', 'spam']))
[1, 4, 4]

In this case, the built-in function len is applied to each of the strings in the given list.
First, len is applied to the string ’I’. The length of the string is 1 and that’s the first thing
to go in the result list. Then the len function is applied to the string ’like’; the result is
4, which is the next thing to go in the result. Finally, the length of ’spam’ is 4, which is
the last value placed in the result list.

Notice how our abstraction theme comes into play with map. The details of how the
function we pass to map is applied to the list are hidden away. We no longer have to worry
specifically about how to step through the list to modify each element: map does this for
us.

3.6.2 Reduce

Our alien has just learned about map and is quite excited. During its visit to Earth, the
alien purchased a number of items and it plans to request reimbursement from its employer.

Ten
mochaccinos, a

laptop, the
Harry Potter

DVD
collection, . . .

For example, here is a list of the costs, in U.S. dollars, of several items purchased by the
alien: [14, 10, 12, 5]. The alien would like to convert these costs to its own currency
and then add up the total. The exchange rate is 1 U.S. dollar equals 3 alien dollars. So,
the values of the four items in alien dollars are [42, 30, 36, 15] and the total request for
reimbursement in alien dollars will be 42 + 30 + 36 + 15 = 123.

Converting a list from U.S. dollars to alien dollars is no problem—we did that above
using map and our triple function. Now, though, we want to add up the elements in the
resulting list. We could write a recursive function for that task. However, it turns out that
there are many very similar tasks that the alien needs to perform as well.

Here’s one: Imagine that the alien converted between a variety of currencies while
shopping on Earth. For example, the alien first got some dollars, then changed dollars into
Euros, then changed Euros into rubles, and then rubles into yen. If the alien started with 1
U.S. dollar, how many yen is that? This is a matter of computing the products of exchange
rates. If one dollar is 0.7 Euros, one Euro is 42 rubles, and one ruble is 3 yen, then one
dollar is 0.7 × 42 × 3 = 88.2 yen. So now the alien needs to compute the product of a list
of numbers.

Again, rather than writing a separate function to add up the numbers in a list and
another to multiply the numbers in a list (and possibly others to do other things to elements
in a list), Python provides a general-purpose function called reduce that reduces all of the
elements in a list to a single element (e.g., their sum or product or something else).

Let’s first define a function called add that takes two arguments and returns their sum,
and another called multiply that takes two arguments and returns their product.

def add(x, y):

' ' ' Returns t h e sum o f t h e two arguments . ' ' '
return x + y

def multiply(x, y):

' ' ' Takes two numbers and r e t u r n s t h e i r p r o d u c t . ' ' '
return x * y
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List Comprehensions

The map, reduce, and filter functions, and the lambda notation for anonymous functions,
are not unique to Python; they are found in most functional programming languages. How-
ever, Python offers an alternative syntax to map and filter called list comprehensions,
which allow us to avoid using lambda. Sometimes that’s both conceptually easier and faster
to type!

Let’s start with the example from Section 3.6.1, where we wanted to increment every
element in the list [10, 20, 30]. Whereas earlier we used map and an increment function
to do this, the list comprehension syntax looks like this:

>>> [x + 1 for x in [10, 20, 30]]

[11, 21, 31]

Similarly, we can triple every element in the list [1, 2, 3, 4] using the syntax:

>>> [3 * x for x in [1, 2, 3, 4]]

[3, 6, 9, 12]

In general, the syntax is:

[f(x) for x in L]

. . . where f is some function and L is some list. Notice that this is really just like map in
that we are mapping the function f to every element x in the list L. By the way, there’s
nothing special about the name x for the variable; we could use a different variable name
as in:

>>> [len(myString) for myString in ['I', 'like', 'spam']]
[1, 4, 4]

A very similar syntax can be used to do the job of filter. Rather than using filter to
obtain the four-letter words in a list as we saw earlier, we can use list comprehensions this
way:

>>> words = ['aardvark ', 'darn', 'heck', 'spam', 'zyzzyva ']
>>> [x for x in words i f len(x) == 4]

[’darn’, ’heck’, ’spam’]

In this case, we defined the list words before using the list comprehension, just to make the
point that we can do that. Of course, we could have also done this as:

>>> [x for x in ['aardvark ', 'darn', 'heck', 'spam', 'zyzzyva ']
... i f len(x) == 4]

Similarly, we could get the multiples of 42 between 0 and 1 million (another example where
we used filter) this way:

>>> [x for x in range(0, 10000001) i f x % 42 == 0]

In general, the format for using list comprehensions to filter looks like this:
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[x for x in L i f ...]

. . . where L is a list and the . . . represents some Boolean expression; that is, an expression
that evaluates to either True or False. We get back the list of all values of x in the list L for
which that Boolean expression (recall that it’s called a predicate) is True. That is, we get
all of the values of x that the predicate “likes.” Finally, we can write list comprehensions
that combine both map and filter into one. Here’s an example where we produce the
square of every even number between 0 and 10:

>>> [x**2 for x in range(0, 11) i f x % 2 == 0]

[0, 4, 16, 36, 64, 100]

This list comprehension is mapping the function f(x) = x2 to every value of x in the list of
integers from 0 to 10 subject to filtering that list through a predicate that only likes even
numbers. Thus, we get the squares of even numbers. In general, the syntax is:

[f(x) for x in L i f ...]

where f is a function, L is a list, and what comes after the . . . is a predicate. We get back
the list of f(x) values for those values of x for which the predicate is True.

By the way, this syntax works just the same in Python 2 and 3. Python 3 doesn’t require
any special prodding to produce a list when list comprehensions are used.

Now, here’s reduce in action:

>>> reduce(add , [1, 2, 3, 4])

10

>>> reduce(multiply , [1, 2, 3, 4])

24

In the first case reduce reduced our list to the sum of its elements, and in the second
case to the product of its elements. Notice that the first argument to reduce is a function
and the second is a list. A subtle point here is that the function that we give as an argument
to reduce must take two arguments and return a single result. Then, reduce takes the first
two elements from the list and applies the given function to reduce them to one element,
takes that result and the next element from the list and applies the function to them, and
repeats that process until all of the elements are reduced to a single value..While reduce is built in

to Python 2, in Python 3
you’ll need to include the

line from functools

import * before using
reduce. You can include
that line at the Python
prompt or at the top of

any file that uses reduce

3.6.3 Composition and MapReduce

Finally, imagine that we plan to frequently take a list, map some function (e.g., triple) to
each element in that list to produce a new list (e.g., the list of 3 times each element), and
then apply some other function to reduce that new list to a single value (e.g., using add to
get the sum of these values). This is a combination of map and reduce, or more accurately
the composition of map and reduce. Let’s write such a function and call it mapReduce. It
will take two functions and a list as arguments—the first function for map and the second
for reduce:Remember that in

Python 3 you’ll need to
include the line from

functools import *

since we’re using reduce

here.

def mapReduce(mapFunction , reduceFunction , myList ):
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' ' ' A p p l i e s mapFunction t o myList t o c o n s t r u c t a new l i s t
and t h e n a p p l i e s r e d u c e F u n c t i o n t o t h e new l i s t
and r e t u r n s r e d u c e F u n c t i o n ' s r e s u l t . ' ' '

newList = map(mapFunction , myList)

value = reduce(reduceFunction , newList)

return value

Alternatively, this can be done more succinctly in one line as follows:

def mapReduce(mapFunction , reduceFunction , myList ):

' ' ' A p p l i e s mapFunction t o myLis t t o c o n s t r u c t a new l i s t
and t h e n a p p l i e s r e d u c e F u n c t i o n t o t h e new l i s t
and r e t u r n s t h a t v a l u e . ' ' '

return reduce(reduceFunction , map(mapFunction , myList ))

Now, for example, we can use mapReduce to convert prices from U.S. dollars to alien dollars
and add up the total, like this:

>>> mapReduce(triple , add , [14, 10, 12, 5])

123

The second version of mapReduce above is particularly elegant in the way that map and
reduce are composed or “glued” in one line. Notice that in order for Python to evaluate the
expression reduce(reduceFunction, map(mapFunction, myList)) it must first evaluate
map(mapFunction, myList), since that is one of the arguments to reduce. So, the map

function is applied to mapFunction and list myList to get the resulting list. Now, reduce
has both the function and the list that it needs to do its thing.

The mapReduce function is so broadly useful that it inspired a major part of Google’s
internal software design! To read more about it, you can (of course) just Google “mapRe-
duce.”

3.7 Functions as Results

If functions can be the arguments to other functions, it must also be possible for them to
be the results of functions, right?. Take a look at this scale function and try to figure out
what it does:

def scale(n):

return lambda x: n * x

Imagine that we now do this:

>>> f = scale (42)

The scale function takes the number 42 as an argument and returns a function (the lambda
indicates that we’re giving back a function) that we are then assigning to the variable f.
So f is a function, but what does that function do? Well, for any argument x it returns
42 * x—as we see here:

61 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



CHAPTER 3. FUNCTIONAL PROGRAMMING, PART DEUX

Functional Programming Meets Psychotherapy

The ideas behind functional programming actually predate the computer. A mathematical
framework called the lambda calculus was developed by the logician Alonzo Church in the
1930’s to examine the limits of what is theoretically computable. (We address some of
these issues in Chapter 7.) The lambda calculus served as the basis of actual programming
languages, such as the early language LISP developed at MIT in the 1950’s. The “lambda”
in lambda calculus is the reason for its appearance in Python’s anonymous functions.

LISP and related functional programming languages have been of particular interest to
researchers in Artificial Intelligence (AI) because they are well suited for analyzing text.
We can take a human’s typed input and write functions that process the words as strings
and sentences as lists of strings. This is called natural language processing . (The “natural”
here refers to human languages in contrast to programming languages.)

One of the early and controversial examples of natural language processing and artificial
intelligence was the ELIZA program, first written by Professor Joseph Weizenbaum at MIT
in the mid-1960’s. Eliza impersonated a psychologist and allowed the human user to enter
text that ELIZA would process and return a simple response that—while not actually
aware of the user’s emotions—seemed generally appropriate. Eliza was first written by
Weizenbaum in a language called SLIP, but was later reprogrammed in LISP.

Here’s the beginning of an actual transcript of an interaction with ELIZA from an online
version of the program (available at http://www-ai.ijs.si/eliza/eliza.html)

Eliza: Hello. I am ELIZA. How can I help you?

You: I am learning about functional programming.

Eliza: How long have you been learning about functional programming?

You: I guess it has been a few weeks now.

Eliza: Can you elaborate on that?

Responses such as “Can you elaborate on that?” or even “Tell me about your mother” are
commonly used and quickly reveal that ELIZA is actually rather clueless. While Weizen-
baum evidently only intended ELIZA to serve as a demonstration of the power of natural
language processing, some people actually took an interest in using ELIZA as their thera-
pist! A book and a documentary have been made about Weizenbaum and ELIZA, and a
number of free and commercial versions of the program are available, including some that
have a very bad attitude and deliberately berate their “patient.”

>>> f(2)

84

>>> f(10)

420

There’s something odd here! In the definition of the scale function, the line:
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return lambda x: n * x

makes it look like the function that we’re returning has two variables, n and x, whereas the
lambda x indicates that this a function of just one variable, x. Indeed, in the examples
above, we defined f = scale(42) and then we gave f just one argument as in f(2) and
f(10).

When we said f = scale(42), the 42 was passed into scale’s argument n, and n was
replaced with 42. Therefore, scale(42) actually returned

lambda x: 42 * x

That’s clearly a function of just one variable and that is the function that we then assigned
to our variable f.

Although the scale function is admittedly not super-useful, the amazing thing here is
that we wrote a program that can write other programs—a powerful concept that is widely
used by computer scientists. Indeed, many complex programs are, at least in part, written

Maybe I can
write a
program that
will write all
my future CS
programming
assignments for
me!

by other programs.
By the way, rather than using an anonymous function inside our scale function, we

could have given the function a name and returned that function. We do this as follows:

def scale(n):

def multiply(x): # Here we are d e f i n i n g a new f u n c t i o n ,
return n * x # b u t i t ' s INSIDE s c a l e !

return multiply # Here we are r e t u r n i n g t h a t f u n c t i o n

Notice that the indented def multiply(x) indicates that multiply is being defined inside
scale, so this is defining multiply to be one of scale’s own variables, just like defining
any variable within a function. The only difference is that multiply is a function rather
than a number, list, or string. Then, once we’ve defined that variable, we return it. Now,
calling scale(42), for example, gives us back a function and we can do exactly what we
did a moment ago with the first version of scale:

>>> f = scale (42)

>>> f(2)

84

>>> f(10)

420

Functions that take other functions as arguments or return a function as a result are
called higher-order functions.

3.7.1 Python Does Calculus!

In addition to learning English and other languages, our alien has been advised to study
calculus before returning to Earth, so that it can better impersonate a college student.

I’d rather
impersonate
them and
alienate them!

You probably recall the idea of taking the derivative of a function. For example, the
derivative of f(x) = x2 is a new function f ′(x) = 2x. For our purposes, the key observation
is that the derivative of a function is another function. You may also recall that there are
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many rules for computing derivatives, and yet some functions are very hard to differentiate
and others are downright impossible. So in some cases we may want to approximate the
derivative—and we can do this computationally! In fact, let’s write a Python function that
differentiates any function (approximately).

We looked back at our own calculus notes and found that the derivative of a function
f(x) is a function f ′(x) defined as follows:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

The derivative is defined as “the limit as h goes to zero.” However, for small positive
values of h, like h = 0.0001, we get a good approximation of the limit. We can make the
approximation as good as we want by making h as small as we want. Our objective, then, is
to write a function called derivative that takes a function and a value of h as an argument,
and returns another function that is the approximation of the derivative for that value of
h. Here we go:

def derivative(f, h):

' ' ' Returns a new f u n c t i o n t h a t i s t h e a p p r o x i m a t i o n o f
t h e d e r i v a t i v e o f f w i t h r e s p e c t t o h . ' ' '

return lambda x: (f(x+h) - f(x)) / h

Notice that we’re returning a function, as we’re supposed to. That function takes an
argument x and returns the approximate value of the derivative at that value x for the
given h.

Wait a second! It seems that the function that we’re returning is using a function f and
two numeric variables, x and h—so why do we see just the variable x after the lambda?
This is the same issue that we saw earlier with the scale function. Remember that when
we call the derivative function, we pass it both a function f and a number h. Then, that
function and that number are “plugged in” wherever we see a f and a h in the program.
In the expression lambda x: (f(x+h) - f(x)) / h, both the f and the h are no longer
variables—they are actual values (albeit the f is a value that happens to be a function).
So, the lambda anonymous function truly only has one argument, and that’s x.

Let’s try it out. First, let’s define a function x2 and name it square.

def square(x):

return x**2

Now, let’s use our derivative function:

>>> g = derivative(square , 0.0001)

>>> g(10)

20.000099999890608

The actual derivative of x2 is 2x, so the derivative at x = 10 is actually 20. We’re getting
a pretty good approximation. That’s good, but here’s something better: if we now want to
find the second derivative of x2, we can differentiate our first derivative. The actual second
second derivative of x2 is simply 2 (for all values of x). Let’s see what our derivative

function says.

The second
derivative is

“accelerated”
material!
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>>> h = derivative(g, 0.0001)

>>> h(10)

2.0000015865662135

3.7.2 Higher Derivatives

Speaking of second derivatives, it sure would be handy to have a more general function
that could find us the first, second, third, or generally, the kth derivative of a function.
Let’s write a function called kthDerivative(f, h, k) to do this. It will take arguments
that include a function f, a small number h, and a positive integer k and will return an
approximation of the kth derivative of f . We could do this “from scratch”, not relying on
the existing derivative function that we just wrote, but since we have it already let’s use
derivative.

What’s the base case? The simplest case appears to be when k = 1, in which case we just
return the derivative of the given function. (Although it would be equally defensible to have
a base case at k = 0, in which case we would just return f itself.) Otherwise, k > 1 and we
need to find the recursive substructure. Well, the kth derivative of f is, by definition, just
the derivative of the (k − 1)st derivative of f . So we can ask the kthDerivative function
to find the (k − 1)st derivative of f and then apply our derivative function to it. This
should be fun and easy.

def kthDerivative(f, h, k):

' ' ' Returns a new f u n c t i o n t h a t i s t h e a p p r o x i m a t i o n o f
t h e k t h d e r i v a t i v e o f f w i t h r e s p e c t t o h . ' ' '

i f k == 1:

return derivative(f, h)

e l se :
return derivative(kthDerivative(f, h, k-1), h)

Let’s take this out for a spin by defining the “quartic” function x4 and then taking the third
derivative, which we know to be 24x.

A function of
degree 4 is
“quartic”, one
of degree 9 is
“nonic”.
Believe it or
not, one of
degree 100 is
called “hectic.”

def quartic(x):

' ' ' Returns x ∗∗4 . ' ' '

return x**4

>>> g = kthDerivative(quartic , 0.0001 , 3)

>>> g(10)

241.9255906715989

The actual answer should have been 240; we got an approximation due to the value we used
for h.

That was a high-velocity discussion of derivatives, but it demonstrated some of the
integral features of functional programming.

Please! Let’s
not go any
further down
the slippery
slope of bad
math puns.
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3.8 RSA Cryptography Revisited

We began this chapter with a discussion of RSA cryptography. Recall that if Alice wants
to be able to receive secure messages, then she can use the RSA algorithm to generate a
public and a private key. The public key is entirely public—anyone can use it to encrypt
a message to Alice. The private key, however, belongs exclusively to her; she uses it to
decrypt messages encrypted using her public key. Of course, if Alice’s friend, Bob, wants
to receive encrypted messages too, he can use RSA to generate his own public and private
keys. He then shares his public key and keeps his private key secure. When you want to
send an encrypted message to Alice, you use her public key to encrypt the message. When
you want to send a message to Bob, you use his public key.

Our objective is to write a function called makeEncoderDecoder(), which takes no
arguments, constructs the RSA encryption and decryption keys, and returns two functions:
The first encrypts data using the encryption key (which is built into the function, so we
don’t need to keep track of it—convenient when a key is hundreds of digits long!) The
second function decrypts encrypted data using the decryption key (again built-in). Alice,
Bob, you, and your friends will all be able to use the makeEncoderDecoder() function
to construct encryption and decryption functions; each encryption function will be made
public and each decryption function will be kept by its owner. Here’s an example of Alice
using makeEncoderDecoder.

>>> AliceEncrypt , AliceDecrypt = makeEncoderDecoder ()

Maximum number that can be encrypted i s 34

>>> AliceEncrypt (5)

10

>>> AliceDecrypt (10)

5

>>> AliceEncrypt (31)

26

>>> AliceDecrypt (26)

31

Notice here that makeEncoderDecoder returned two functions (we’ll see in a moment how
we can return two things), which we’ve named AliceEncrypt and AliceDecrypt. Then,
we tested those two functions by encrypting them using Alice’s encryption function (which
contains the encryption key inside of it) and then decrypting them with Alice’s decryption
function (which incorporates the decryption key).

Let’s first remind ourselves how the RSA scheme works. We begin by choosing two
different random prime numbers p and q (preferably large, but we’ll be able to decide how
large later). We compute n = pq and m = (p − 1)(q − 1). We then choose the public
encryption key e to be a random prime number between 2 and m− 1 such that e does not
divide m. Next, we construct the decryption key d to be the multiplicative inverse of e
modulo m—that is, the unique number d such that d ≤ m − 1 and edmodm == 1. Now,
we can encrypt a number x between 1 and n− 1 by computing y = xe modn. The value y
is the encrypted message. We can decrypt y by computing yd modn.

We’ve already written functions that produce lists of prime numbers. We’ll use our
efficient primeSieve function for that purpose. Recall that this function takes a list of
consecutive integers from 2 to some largest value and returns the list of all primes in that
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range. Our first task will be to call the primeSieve function and choose two different prime
numbers from that list. For now, let’s restrict the range of the prime numbers to be between
2 and 10. This will be useful for testing purposes, and later you can change the maximum
value from 10 to something much larger.

To choose items at random, we can use Python’s random package. We tell Python that
we want to use that package by including the line import random at the top of the file.
Now, we have access to a variety of functions in that package. You can find out what’s in
the package by looking at the Python documentation Web site http://docs.python.org/

library/random.html or by typing import random at the Python prompt and then typing
help(random), which will describe all of the functions in that package.

One of the most useful functions in the random package is random.choice. It takes a
list as an argument and returns a randomly selected element of that list. Here’s an example
of that function in action:

>>> import random

>>> random.choice ([1, 2, 3, 4])

3

>>> random.choice ([1, 2, 3, 4])

2

We need to choose two different prime numbers in the range from 2 to 10. We could use
random.choice twice, one to choose each of the two prime numbers, but there is a chance
that we’ll get the same prime number twice, which doesn’t work for RSA. So, we can use
another function in the random package, random.sample. It takes two arguments: a list and
the number of items that we want to choose randomly—but uniquely—from that list. The
function returns a list of the randomly selected items. Here’s an example of random.sample
in action:

>>> import random

>>> random.sample ([1, 2, 3, 4], 2) # Pick 2 i t e m s a t random
[4, 3]

>>> random.sample(range(2, 100), 3) # Pick 3 d i f f e r e n t i t e m s
[17, 42, 23]

When a function returns a list of several items and we know how many items will be in
that list, we can give names to those items like this:

>>> import random

>>> a, b = random.sample ([1, 2, 3, 4], 2)

>>> a

4

>>> b

3

In this case, we knew that the random.sample function was going to return a list of two
items (since we asked it to!) and we assigned the first of those items to the variable a and
the second to b. This technique is called multiple assignment .

Now let’s assume that we’ve already written a function called inverse(e, m) that
returns the multiplicative inverse of e modulo m—that is, the unique number d < m such
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that edmodm = 1. We’ll write that function in a moment, but assuming it exists, we have
the ingredients for the makeEncoderDecoder function:

def makeEncoderDecoder ():

' ' ' Returns two f u n c t i o n s : An RSA e n c r y p t i o n f u n c t i o n
and an RSA d e c r y p t i o n f u n c t i o n . ' ' '

#
# Choose 2 pr imes :
#
p, q = random.sample(primeSieve(range(2, 10)), 2)

n = p*q # compute n
m = (p -1)*(q-1) # compute m
print "Maximum number that can be encrypted is ", n-1

#
# Choose a random prime f o r e :
#
e = random.choice(primeSieve(range(2, m)))

i f m % e == 0: # I f e d i v i d e s m, i t won ' t work !
print "Please try again"

return
e l se :

d = inverse(e, m) # compute d
encoder = lambda x: (x**e) % n # e n c r y p t i o n f u n c t i o n
decoder = lambda y: (y**d) % n # d e c r y p t i o n f u n c t i o n
return [encoder , decoder]

The one thing that we haven’t seen before is the print function. This simply prints a
message on the screen. In this case, we print the largest number that can be encrypted by
RSA given the values of p and q that were chosen at random.In Python 3, we would

put parentheses around
the arguments after the

word print so that it
would be

print("Maximum number

that can be encrypted

is ", n-1)

Notice that this function is returning a list of two functions: the encryption and decryp-
tion functions! The encryption and decryption keys e and d are actual numbers that are
embedded in those two functions, but x and y are the names of variables—the arguments
that the user will ask to have encrypted or decrypted.

Finally, we need the inverse(e, m) function. We can implement it very simply by
using filter, which we saw in Section 3.4. We’re looking for the single number d such that
d < m and edmodm = 1. So we can generate all of the integers between 1 and m−1 (which
is done with range(1, m)) and then filter all of the values d such that edmodm == 1.
Mathematicians tell us that there will be exactly one value of those. The filter function
returns a list, so we use a sneaky Python trick and treat the call as if it were itself a list:
we put [0] after it to pull out the first element and return it.

def inverse(e, m):

' ' ' Returns t h e i n v e r s e o f e mod m ' ' '
return filter(lambda d: e*d % m == 1, range(1, m))[0]

You have to admit that this is amazing! However, we must admit that there are a few
places where this function could be improved and extended. First, the prime numbers that
we’re choosing from for p and q are in the range from 2 to 10. We could easily change
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the 10 to something much larger, but we almost certainly don’t want primes as small as
2. On the other hand, the primeSieve function expects to get a list of numbers that
begins with 2 (do you see why?). To limit it to large prime numbers, we’d first need to
generate primes beginning from 2 and then slice off the small ones. In addition, currently
the makeEncoderDecoder might choose an encryption key e that is a divisor of m. In this
case, we’re told to try running the function again. That’s not a very nice solution. You
might try to think of ways to fix this so that makeEncoderDecoder would keep choosing
values of e until it finds one that is not a divisor of m. You can do this with recursion, or
you can do it with something called a while loop which we’ll see in Chapter 5.

You might also rightfully object that encrypting numbers is not as interesting as en-
crypting strings (i.e., text). We’d agree. The good news is that strings can be converted
into numbers and vice versa, as we’ll see in the next chapter. Thus, it would not be difficult
to encrypt strings by first converting them to numbers and then encrypting those numbers
as we’ve done here. Decryption would first decrypt the number and then convert that back
into the original string. In fact, that’s exactly how real encryption programs work!

3.9 Conclusion

In this chapter we’ve seen a beautiful idea: Functions are “first-class citizens” of the lan-
guage, allowing us to treat them just like any other kind of data. In particular, functions can
be the arguments and results of other functions. As a result, it’s possible to have general-
purpose higher-order functions like map, reduce, and filter that can be used in many
different ways by simply providing them with appropriate functions of their own. More-
over, we can write other higher-order functions that produce functions as results, allowing
us to easily write programs that write other programs.

Now that we have explored the foundations of programming, we will turn our attention
to a new question: “How exactly does a computer actually manage to do all of this amazing
stuff?” To answer that question, in the next chapter we’re going to open the hood of a

I’ve been
wondering
what’s going on
inside my
laptop.

computer and see just how it works.
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Chapter 4

Computer Organization

Computers are useless. They can only give you answers. —Pablo Picasso

4.1 Introduction to Computer Organization

When we run a Python program, what’s actually going on inside the computer? While we
hope that recursion is feeling less like magic to you now, the fact that an electronic device
can actually interpret and execute something as complicated as a recursive program may
seem—what’s the right word here?—alien. The goal of this chapter is to metaphorically Hey!

pry the lid off a computer and peer inside to understand what’s really going on there.

As you can imagine, a computer is a complicated thing. A modern computer has on
the order of billions of transistors. It would be impossible to keep track of how all of those
components interact. Consequently, computer scientists and engineers design and think
about computers using what are called multiple levels of abstraction. At the lowest level, are
components like transistors—the fundamental building blocks of modern electronic devices.
Using transistors, we can build higher level devices called logic gates—they are the next
level of abstraction. From logic gates we can build electronic devices that add, multiply,
and do other basic operations—that’s yet another level of abstraction. We keep moving up
levels of abstraction, building more complex devices from more basic ones.

As a result, a computer can be designed by multiple people, each thinking about their
specific level of abstraction. One type of expert might work on designing smaller, faster,
and more efficient transistors. Another might work on using those transistors—never mind
precisely how they work—to design better components that are based on transistors. Yet
another expert will work on deciding how to organize these components into even more
complex units that perform key computational functions. Each expert is grateful to be
standing (metaphorically) on the shoulders of another person’s work at the next lower level
of abstraction.

By analogy, a builder thinks about building walls out of wood, nails, and sheet rock. An
architect designs houses using walls without worrying too much about how they are built.
A city planner thinks about designing cities out of houses, without thinking too much how
they are built, and so forth. This idea is called “abstraction” because it allows us to think
about a particular level of design using the lower level ideas abstractly; that is, without
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Figure 4.1: A three-way light bulb.

having to keep in mind all of the specific details of what happens at that lower level.
This seemingly simple idea of abstraction is one of the most important ideas in computer

science. Not only are computers designed this way, but software is as well. Once we have
basic workhorse functions like map, reduce, and others, we can use those to build more
complex functions. We can use those more complex functions in many places to build even
more complex software. In essence, we modularize so we that we can reuse good things to
build bigger good things.

In this spirit, we’ll start by looking at how data is represented in a computer. Next, we’ll
move up the levels of abstraction from transistors all the way up to a full-blown computer.
We’ll program that computer in its own “native language” and talk about how your Python
program ultimately gets translated to that language. By the end of this chapter, we’ll have
a view of what happens when we run a program on our computer.

4.2 Representing Information

At the most fundamental level, a computer doesn’t really know math or have any notion of
what it means to compute. Even when a machine adds 1 + 1 to get 2, it isn’t really dealing
with numbers. Instead, it’s manipulating electricity according to specific rules.

To make those rules produce something that is useful to us, we need to associate the
electrical signals inside the machine with the numbers and symbols that we, as humans, like
to use.

4.2.1 Integers

The obvious way to relate electricity to numbers would be to assign a direct correspondence
between voltage (or current) and numbers. For example, we could let zero volts represent
the number 0, 1 volt be 1, 10 volts be 10, and so forth. There was a time when things
were done this way, in so-called analog computers. But there are several problems with this
approach, not the least of which would be the need to have a million-volt computer!

That’s a
shocking idea!

Here’s another approach. Imagine that we use a light bulb to represent numbers. If the
bulb is off, the number is 0. If the bulb is on, the number is 1. That’s fine, but it only
allows us to represent two numbers.

Whose bright
idea was this?

All right then, let’s upgrade to a “three-way” lamp. A three-way lamp really has four
switch positions: off, and three increasing brightness levels. Internally, a three-way bulb has
two filaments (Figure 4.1), one dim and one bright. For example, one might be 50 watts,
and the other 100. By choosing neither of them, one, the other, or both, we can get 0, 50,
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100, or 150 watts’ worth of light. We could use that bulb to represent the numbers 0, 50,
100, and 150 or we could decide that the four levels represent the numbers 0, 1, 2, and 3.

Internally, a computer uses this same idea to represent integers. Instead of using 50,
100, and 200, as in our illuminating example above, computers use combinations of numbers
that are powers of 2. Let’s imagine that we have a bulb with a 20-watt filament, a 21-watt
filament, and a 22-watt filament. Then we could make 0 watts by turning none of the
filaments on, we could make 1 watt by turning on only the 20-watt filament, we could make
2 watts by turning on the 21-watt filament, and so forth, up to 20 + 21 + 22 = 7 watts using
all three filaments.

Imagine now that we had the following four consecutive powers of 2 available to u:
20, 21, 22, 23. Take a moment to try to write the numbers 0, 1, 2, and so forth as high as
you can go by using zero or one of each of these powers of 2. Stop reading. We’ll wait while
you try this.

If all went well, you discovered that you could make all of the integers from 0 to 15 using
0 or 1 of each of these four powers of 2. For example, 13 can be represented as 20 + 22 + 23.
Written another way, this is:

13 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Notice that we’ve written the larger powers of 2 on the left and the smaller powers of two
on the right. This convention is useful, as we’ll see shortly. The 0’s and 1’s in the equation
above—the coefficients on the powers of 2—indicate whether or not the particular power
of 2 is being used. These 0 and 1 coefficients are called bits, which stands for binary digits.

There are 10
kinds of people
in this world:
Those who
understand
binary and
those who
don’t.

Binary means “using two values”—here, the 0 and the 1 are the two values.
It’s convenient to use the sequence of bits to represent a number, without explicitly

showing the powers of two. For example, we would use the bit sequence 1101 to represent the
number 13 since that is the order in which the bits appear in the equation above. Similarly
0011 represents the number 3. We often leave off the leading (that is, the leftmost) 0’s, so
we might just write this as 11 instead.

The representation that we’ve been using here is called base 2 because it is built on
powers of 2. Are other bases possible? Sure! You use base 10 every day. In base 10,
numbers are made out of powers of 10 and rather than just using 0 and 1 as the coefficients,
we use 0 through 9. For example, the sequence 603 really means

6 · 102 + 0 · 101 + 3 · 100

Other bases are also useful. For example, the Yuki Native American tribe, who lived in
Northern California, used base 8. In base 8 we use powers of 8 and the coefficients that we
use are 0 through 7. So, for example, the sequence 207 in base 8 means

2 · 82 + 0 · 81 + 7 · 80

which is 135 (in base 10). It is believed that the Yukis used base 8 because they counted
using the eight slots between their fingers. In Star Wars, the Hutts

have 8 fingers and
therefore also count in
base 8.

Notice that when we choose some base b (where b is some integer greater than or equal
to 2), the digits that we use as coefficients are 0 through b − 1. Why? It’s not hard to
prove mathematically that when we use this convention, every positive integer between 0
and bd − 1 can be represented using d digits. Moreover, every integer in this range has
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a unique representation, which is handy since it avoids the headache of having multiple
representations of the same number. For example, just as 42 has no other representation in
base 10, the number 1101 in base 2 (which we saw a moment ago is 13 in base 10) has no
other representation in base 2.

Many older or smaller computers use 32 bits to represent a number in base 2; sensibly
enough, we call them “32-bit computers.” Therefore, we can uniquely represent all of the
positive integers between 0 and 232 − 1, or 4, 294, 967, 295. A powerful modern computer
that uses 64 bits to represent each number can represent integers up to 264 − 1, which is
roughly 18 quadrillion.

4.2.2 Arithmetic

Arithmetic in base 2, base 8, or base 42 is analogous to arithmetic in base 10. For example,
let’s consider addition. In base 10, we simply start at the rightmost column, where we add

We’ll have sum
fun with
addition.

those digits and “carry” to the next column if necessary. For example, when adding 17+25,
5 + 7 = 12 so we write down a 2 in the leftmost position and carry the 1. That 1 represents
a 10 and is therefore propagated, or carried, to the next column, which represents the “10’s
place.”

Addition in base 2 is nearly identical. Let’s add 111 (which, you’ll recall is 7 in base 10)
and 110 (which is 6 in base 10). We start at the rightmost (or “least significant”) column
and add 1 to 0, giving 1. Now we move to the next column, which is the 21 position or
“2’s place”. Each of our two numbers has a 1 in this position. 1 + 1 = 2 but we only use
0’s and 1’s in base 2, so in base 2 we would have 1 + 1 = 10. This is analogous to adding
7 + 3 in base 10: rather than writing 10, we write a 0 and carry the 1 to the next column.
Similarly, in base 2, for 1 + 1 we write 0 and carry the 1 to the next column. Do you see
why this works? Having a 2 in the “2’s place” is the same thing as having a 1 in the “4’s
place”. In general, having a 2 in the column corresponding to 2i is the same as having a 1
in the next column, the one corresponding to 2i+1 since 2 · 2i = 2i+1.We’ll try not to get

carried away with these
examples, but you

should try adding a few
numbers in base 2 to

make sure that it makes
sense to you.

Takeaway message: Addition, subtraction, multiplication, and division in your fa-
vorite base are all analogous to those operations in base 10!

4.2.3 Letters and Strings

As you know, computers don’t only manipulate numbers; they also work with symbols,
words, and documents. Now that we have ways to represent numbers as bits, we can use
those numbers to represent other symbols.

It’s fairly easy to represent the alphabet numerically; we just need to come to an agree-
ment, or “convention,” on the encoding. For example, we might decide that 1 should mean
“A”, 2 should mean “B”, and so forth. Or we could represent “A” with 42 and “B” with
97; as long as we are working entirely within our own computer system it doesn’t really
matter.

But if we want to send a document to a friend, it helps to have an agreement with
more than just ourselves. Long ago, the American National Standards Institute (ANSI)

Although I find
coming to

agreement with
myself to be

easier in
general.

published such an agreement, called ASCII (the American Standard Code for Information
Interchange). It defined encodings for the upper- and lower-case letters, the numbers, and
a selected set of special characters—which, not coincidentally, happen to be precisely theIn ASCII, the number 42

represents the asterisk
(*).

symbols printed on the keys of a standard U.S. keyboard.
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Negative Thinking

We’ve successfully represented numbers in base 2 and done arithmetic with them. But
all of our numbers were positive. How about representing negative numbers? And what
about fractions?

Let’s start with negative numbers. One fairly obvious approach is to reserve one bit
to indicate whether the number is positive or negative; for example, in a 32-bit computer
we might use the leftmost bit for this purpose: Setting that bit to 0 could mean that the
number represented by the remaining 31 bits is positive. If that leftmost bit is a 1 then
the remaining number would be considered to be negative. This is called a sign-magnitude
representation. The price we pay is that we lose half of our range (since we now have only
31 bits, in our example, to represent the magnitude of the number). While we don’t mean
to be too negative here, a bigger problem is that it’s tricky to build computer circuits to
manipulate sign-magnitude numbers. Instead, we use a system called two’s complement .

The idea behind two’s complement is this: It would be very convenient if the represen-
tation of a number plus the representation of its negation added up to 0. For example,
since 3 added to −3 is 0, it would be nice if the binary representation of 3 plus the binary
representation of −3 added up to 0. We already know what the binary representation of 3 is
11. Let’s imagine that we have an 8-bit computer (rather than 32- or 64-bit), just to make
this example easier. Then, including the leading 0’s, 3 would be represented as 00000011.
Now, how could we represent −3 so that its representation added to 00000011 would be 0,
that is 00000000?

Notice that if we “flip” all of the bits in the representation of 3, we get 11111100.
Moreover, 00000011 + 11111100 = 11111111. If we add one more to this we get
11111111 + 00000001 and when we do the addition with carries we get 10000000; a 1
followed by eight 0’s. If the computer is only using eight bits to represent each number then
that leftmost ninth bit will not be recorded! So, what will be saved is just the lower eight
bits, 00000000—which is 0. So, to represent −3, we can simply take the representation of
3, flip the bits, and then add 1 to that. (Try it out to make sure that you see how this
works.) In general, the representation of a negative number in the two’s complement system
involves flipping the bits of the positive number and then adding 1.

You can look up the ASCII encoding on the web. Alternatively, you can use the Python
function ord to find the numerical representation of any symbol. For example: “ord” stands for

“ordinal”. You can think
of this as asking for the
“ordering number” of
the symbol

>>> ord(’*’)

42

>>> ord(’9’)

57

Why is the ordinal value of ’9’ reported as 57? Keep in mind that the 9, in quotes, is just a
character like the asterisk, a letter, or a punctuation symbol. It appears as character 57 in
the ASCII convention. Incidentally, the inverse of ord is chr. Typing chr(42) will return
an asterisk symbol and chr(57) will return the symbol ’9’.

Each character in ASCII can be represented by 8 bits, a chunk commonly referred to as
a “byte.” Unfortunately, with only 8 bits ASCII can only represent 256 different symbols.

4 bits are
sometimes
called a
“nybble”; we
take no
responsibility
for this
pathetically
nerdy pun.

(You might find it entertaining to pause here and write a short program that counts from 0
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Piecing It Together

How about representing fractions? One approach (often used in video and music players) is
to establish a convention that everything is measured in units of some convenient fraction
(just as our three-way bulb works in units of 50 watts). For example, we might decide
that everything is in units of 0.01, so that the number 100111010 doesn’t represent 314 but
rather represents 3.14.

However, scientific computation often requires both more precision and a wider range of
numbers than this strategy affords. For example, chemists often work with values as on the
order of 1023 or more (Avogadro’s number is approximately 6.02 × 1023.), while a nuclear
physicist might use values as small as 10−12 or even smaller.

Imagine that we are operating in base 10 and we have only eight digits to represent our
numbers. We might use the first six digits to represent a number, with the convention
that there is an implicit 0 followed by a decimal point, just before the first digit. For
example, the six digits 123456 would represent the number 0.123456. Then, the last two
digits could be used to represent the exponent on the power of 10. So, 12345678 would
represent 0.123456 · 1078. Computers use a similar idea to represent fractional numbers,
except that base 2 is used instead of base 10.

to 255 and, for each of these numbers, prints out the ASCII symbol corresponding to that
number. You’ll find that some of the symbols printed are “weird” or even invisible. Snoop
on the Web to learn more about why this is so.)

It may seem that 256 symbols is a lot, but it doesn’t provide for accented characters
used in languages like French (Français), let alone the Cyrillic or Sanskrit alphabets or the
many thousands of symbols used in Chinese and Japanese.

To address that oversight, the International Standards Organization (ISO) eventually
devised a system called Unicode, which can represent every character in every known lan-
guage, with room for future growth. Because Unicode is somewhat wasteful of space for

There are even
unofficial
Unicode

symbols for
Klingon!

English documents, ISO also defined several “Unicode Transformation Formats” (UTF ),
the most popular of which is UTF-8 . You may already be using UTF-8 on your computer,
but we won’t go into the gory details here.

Of course, individual letters aren’t very interesting. Humans normally like to string
letters together, and we’ve seen that Python uses a data type called “strings” to do this.
It’s easy to do that with a sequence of numbers; for example, in ASCII the sequence 99,
104, 111, 99, 111, 108, 97, 116, 101 translates to “chocolate”. The only detail missing is
that when you are given a long string of numbers, you have to know when to stop; the
usual convention is to include a “length field” at the very beginning of the sequence. This
number tells us how many characters are in the string. (Python uses a length field, but
hides it from us to keep the string from appearing cluttered.)

4.2.4 Structured Information

Using the same concepts, we can represent almost any information as a sequence of numbers.
For example, a picture is just a sequence of colored dots, arranged in rows. Each colored dot
(also known as a “picture element” or pixel) can be represented as three numbers giving
the amount of red, green, and blue at that pixel. Similarly, a sound is a time sequence
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of “sound pressure levels” in the air. A movie is a more complex time sequence of single
pictures, usually 24 or 30 per second, along with a matching sound sequence.

That’s the level of abstraction thing again! Bits make up numbers, number make up
pixels, pixels make up pictures, pictures make up movies. A two-hour movie can require
several billion bits, but nobody who is making or watching a movie wants to think about
all of those bits!

That would be
more than a bit
annoying!

4.3 Logic Circuitry

Now that we have adopted some conventions on the representation of data it’s time to
build devices that manipulate data. We’ll start at a low level of abstraction of transistors
and move up the metaphorical “food chain” to more complex devices, then units that can
perform addition and other basic operations, and finally to a full-blown computer.

My favorite
food chain sells
donuts.

4.3.1 Boolean Algebra

In Chapter 2 we talked about Boolean variables—variables that take the value True or
False. It turns out that Booleans are at the very heart of how a computer works.

As we noted in the last section, it’s convenient to represent our data in base 2, also
known as binary. The binary system has two digits, 0 and 1 just as Boolean variables have
two values, False and True. In fact, we can think of 0 as corresponding to False and 1
as True as corresponding to True. The truth is, that Python thinks about it this way too.
One funny way to see this is as follows:

>>> False + 42

42

>>> True + 2

3

Weird—but there it is: in Python False is really 0 and True is really 1. By the way, in
many programming languages this is not the case. In fact, programming language designers
have interesting debates about whether it’s a good idea or not to have False and True be
so directly associated with the numbers 0 and 1. On the one hand, that’s how we often
think about False and True. On the other hand, it can result in confusing expressions like
False + 42 which are hard to read and prone to introducing programmer errors.

With the Booleans True and False we saw that we could use the operations and, or,
and not to build up more interesting Boolean expressions. For example, True and True

is the same as True while True or False is False and not True is False. Of course,
we can now emulate these three operations for 0 and 1. 1 AND 1 = 1, 1 OR 0 = 1, and
NOT 1 = 0.

Although your intuition of AND, OR, and NOT is probably fine, we can be very precise We are writing these in
upper-case letters to to
indicate that we are
talking about operations
on bits—0’s and
1’s—rather than
Python’s build in and,
or, and not

about these three operations by defining them with a truth table: a listing of all possible
combinations of values of the input variables, together with the result produced by the
function. For example, the truth table for AND is:

77 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



CHAPTER 4. COMPUTER ORGANIZATION

x y x AND y
0 0 0
0 1 0
1 0 0
1 1 1

In Boolean notation, AND is normally represented as multiplication; an examination of
the above table shows that as long as x and y are either 0 or 1, x AND y is in fact identical
to multiplication. Therefore, we will often write xy to represent x AND y.

Takeaway message: AND is 1 if and only if both of its arguments are 1. If either
argument is 0, AND is 0. If x is 0, the result of AND is 0. If x is 1, the result of AND is
y. The same is true for y.

OR is a two-argument function that is 1 if either of its arguments are 1. The truth table
for OR is:

x y x OR y
0 0 0
0 1 1
1 0 1
1 1 1

OR is normally written using the plus sign; the first three lines of the above table are
indeed identical to addition, but note that the fourth is different.

Takeaway message: OR is true if either of its arguments is 1. It is 0 if and only if
both arguments are 0. If x is 0, the result of OR is y. If x is 1, the result of OR is 1. The
same is true for y.

Finally, NOT is a one-argument function that produces the opposite of its argument.
The truth table is:

x NOT x
0 1
1 0

NOT is normally written using an overbar, e.g. x̄.

4.3.2 Making Other Boolean Functions

Amazingly, any function of Boolean variables, no matter how complex, can be expressed
in terms of AND, OR, and NOT. No other operations are required because, as we’ll see,
any other operation could be made out of AND, OR, and NOTs. In this section we’ll show
how to do that. This fundamental result will allow us to build circuits to do things like
arithmetic and, ultimately, a computer.

For example, consider a function described by the truth table below. This function is
known as “implication” and is written x⇒ y.

x y x⇒ y
0 0 1
0 1 1
1 0 0
1 1 1
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This function can be expressed as x̄ + xy. To see why, try building the truth table for
x̄+ xy. That is, for each of the four possible combinations of x and y, evaluate x̄+ xy. For
example, when x = 0 and y = 0, notice that x̄ is 1. Since the OR of 1 and anything else is
always 1, we see that x̄+xy evaluates to 1 in this case. Aha! This is exactly the value that
we got in the truth table above for x = 0 and y = 0. If you continue doing this for the next
three rows, you’ll see that values of x⇒ y and x̄+ xy always match. In other words, they
are identical. This method of enumerating the output for each possible input is a fool-proof
way of proving that two functions are identical, even if it is a bit laborious.

For simple Boolean functions, it’s often possible to invent an expression for the function
by just inspecting the truth table. However, it’s not always so easy to do this—particularly
when we have Boolean functions with more than two inputs. So, it would be nice to have
a systematic approach for building expressions from truth tables. The minterm expansion
principle provides us with just such an approach.

We’ll see how the minterm expansion principle works through an example. Specifically,
let’s try it out for the truth table for the implication function above. Notice that when the
inputs are x = 1 and y = 0, the truth table tells us that the output is 0. However, for all
three of the other rows (that is pairs of inputs), the output is more “interesting”—it’s 1.
We’ll build a custom-made logical expression for each of these rows with a 1 as the output.
First, consider the row x = 0, y = 0. Note that the expression x̄ȳ evaluates to 1 for this
particular pair of inputs because the NOT of 0 is 1 and the AND of 1 and 1 is 1. Moreover,
notice that for every other possible pair of values for x and y this term x̄ȳ evaluates to 0.
Do you see why? The only way that x̄ȳ can evaluate to 1 is for x̄ to be 1 (and thus for x
to be 0) and for ȳ to be 1 (since we are computing the AND here and AND only outputs 1
if both of its inputs are 1). The term x̄ȳ is called a minterm. You can think of it as being
custom-made to make the inputs x = 0, y = 0 “happy” (evaluate to 1) and does nothing for

Perhaps
“minterms”
should be
called
“happyterms”.

every other pair of inputs.
We’re not done yet! We now want a minterm that is custom-made to evaluate to 1 for

the input x = 0, y = 1 and evaluates to 0 for every other pair of input values. Take a
moment to try to write such a minterm. It’s x̄y. This term evaluates to 1 if and only if
x = 0 and y = 1. Similarly, a minterm for x = 1, y = 1 is xy. Now that we have these
minterms, one for each row in the truth table that contains a 1 as output, what do we
do next? Notice that in our example, our function should output a 1 if the first minterm
evaluates to 1 or the second minterm evaluates to 1 or the third minterm evaluates to 1.
Also notice the words “or” in that sentence. We want to OR the values of these three
minterms together. This gives us the expression x̄ȳ+ x̄y+xy. This expression evaluates to
1 for the first, second, and fourth rows of the truth table as it should. How about the third
row, the “uninteresting” case where x = 1, y = 0 should output 0. Recall that each of the
minterms in our expression was custom-made to make exactly one pattern “happy”. So,
none of these terms will make the x = 1, y = 0 “happy” and thus, for that pair of inputs,
our newly minted expression outputs a 0 as it should!

It’s not hard to see that this minterm expansion principle works for every truth table.
Here is the precise description of the process:

1. Write down the truth table for the Boolean function that you are considering.

2. Delete all rows from the truth table where the value of the function is 0.

3. For each each remaining row we will create something called a “minterm” as follos:
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(a) For each variable that has a 1 in that row, write the name of the variable. If
the input variable is 0 in that row, write the variable with a negation symbol to
NOT it. Now AND all of these variables together.

4. Combine all of the minterms for the rows using OR.

You might have noticed that this general algorithm for converting truth tables to logic
expressions only uses AND, OR, and NOT operations. It uses NOTs and ANDs to construct
each minterm and then it uses OR to “glue” these minterms together. This effectively proves
that AND, OR, and NOT suffice to represent any Boolean function!

The minterm expansion principle is a recipe—it’s an algorithm. In fact, it can be imple-
mented on a computer to automatically construct a logical expression for any truth table.
In practice, this process is generally done by computers. Notice, however, that this algo-

That means
that computers

are helping
design other
computers!
That seems
profoundly

amazing to me.

rithm doesn’t necessarily give us the simplest expression possible. For example, for the
implication function, we saw that the expression x̄ + xy is correct. However, the minterm
expansion principle produced the expression x̄ȳ + x̄y + xy. These expressions are logically
equivalent, but the first one is undeniably shorter. Regrettably, the so-called “minimum
equivalent expressions” problem of finding the shortest expression for a Boolean function is
very hard. In fact, A Harvey Mudd College graduate, David Buchfuhrer, recently showed
that the minimum equivalent expressions problem is provably as hard as some of the hardest
(unsolved) problems in mathematics and computer science. Amazing but true!

4.3.3 Logic Using Electrical Circuits

Next, we’d like to be able to perform Boolean functions in hardware. Let’s imagine that
our basic “building block” is an electromagnetic switch as shown in Figure 4.2. There is
always power supplied to the switch (as shown in the upper left) and there is a spring that
holds a movable “arm” in the up position. So, normally, there is no power going to the
wire labelled “output”. The “user’s” input is indicated by the wire labelled “input.” When
the input is low, the electromagnet is not activated and the movable arm remains up, and
output is 0. When the input is high, the electromagnet is activated, causing the movable
arm to swing downwards and power to flow to the output wire.

Let’s agree that a “low” electrical signal corresponds to the numbered 0 and a “high”
electrical signal corresponds to the number 1. Now, let’s build a device for computing the
AND function using switches. We can do this as shown in Figure 4.3 where there are two
switches in series. In this figure, we use a simple representation of the switch without
the power or the ground. The inputs are x and y, so when x is 1, the arm of the first
switch swings down and closes the switch, allowing power to flow from the left to the right.
Similarly, when y is 1, that arm of the second switch swings down, allowing power to flow
from left to right. Notice that when either the inputs x or y or both are 0, at least one
switch remains open and there is no electrical signal flowing from the power source to the
output. However, when both x and y are 1 both switches close and there is a signal, that is
a 1, flowing to the output. This is a device for computing x AND y. We call this an AND
gate.

Similarly, the circuit in Figure 4.4 computes x OR y and is called an OR gate. The
function NOT x can be implemented by constructing a switch that conducts if and only x
is 0.
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Figure 4.2: An electromagnetic switch.
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Figure 4.3: An AND gate constructed with switches.
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Figure 4.4: An OR gate constructed with switches.
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AND OR NOT

Figure 4.5: Symbols used for AND, OR, and NOT gates.

x y

x=>y

Figure 4.6: A circuit for the implication function.

While computers based on electromechanical switches were state-of-the-art in the 1930’s,
computers today are built with transistorized switches that use the same principles but are
considerably smaller, more reliable, and more efficient. Since the details of the switches
aren’t terribly important at this level of abstraction, we represent, or “abstract”, the gates
using symbols as shown in Figure 4.5.

Those gate
shapes are

weird. I’m on
the fence about

whether I like
them or not.

We can now build circuits for any Boolean function! Starting with the truth table, we
use the minterm expansion principle to find an expression for the function. For example,
we used the minterm expansion principle to construct the expression x̄ȳ + x̄y + xy for the
implication function. We can convert this into a circuit using AND, OR, and NOT gates
as shown in Figure 4.6.

4.3.4 Computing With Logic

Now that we know how to implement functions of Boolean variables, let’s move up one more
level of abstraction and try to build some units that do arithmetic.
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In binary, the numbers from 0 to 3 are represented as 00, 01, 10, and 11. We can use a
simple truth table to describe how to add two two-bit numbers to get a three-bit result:

x y x+ y
00 00 000
00 01 001
00 10 010

...
...

01 10 011
01 11 100

...
...

11 11 110

In all, this truth table contains sixteen rows. But how can we apply the minterm
expansion principle to it? The trick is to view it as three tables, one for each bit of the
output. We can write down the table for the rightmost output bit separately, and then
create a circuit to compute that output bit. Next, we can repeat this process for the middle
output bit. Finally, we can do this one more time for the leftmost output bit. While this
works, it is much more complicated than we would like! If we use this technique to add two
16-bit numbers, there will be 232 rows in our truth table resulting in several billion gates. Ouch!

Fortunately, there is a much better way of doing business. Remember that two numbers
are added (in any base) by first adding the digits in the rightmost column. Then, we add
the digits in the next column and so forth, proceeding from one column to the next, until
we’re done. Of course, we may also need to carry a digit from one column to the next as
we add.

We can exploit this addition algorithm by building a relatively simple circuit that does
just one column of addition. Such a device is called a full adder , (admittedly a funny
name given that it’s only doing one column of addition!). Then we can “chain” 16 full
adders together to add two 16-bit numbers or chain 64 copies of this device together if we
want to add two 64-bit numbers. The resulting circuit, called a ripple-carry adder , will be
much simpler and smaller than the first approach that we suggested above. This modular
approach allows us to first design a component of intermediate complexity (e.g. the full
adder) and use that design to design a more complex device (e.g. a 16-bit adder). Aha!
Abstraction again!

The full adder takes three inputs: The two digits being added in this column (we’ll call
them x and y) and the “carry in” value that was propagated from the previous column
(we’ll call that cin). There will be two outputs: The sum (we’ll call that s) and the “carry
out” to be propagated to the next column (we’ll call that cout). We suggest that you pause
here and build the truth table for this function. Since there are three inputs, there will be
23 = 8 rows in the truth table. There will be two columns of output. Now, treat each of
these two output columns as a separate function. Starting with the first column of output,
the sum s, use the minterm expansion principle to write a logic expression for s. Then,
convert this expression into a circuit using AND, OR, and NOT gates. Then, repeat this
process for the second column of output, cout. Now you have a full adder! Count the gates
in this adder—it’s not a very big number.

Finally, we can represent this full adder abstractly with a box that has the three inputs
on top and the two outputs on the bottom. We now chain these together to build our
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Figure 4.7: A 2-bit ripple-carry adder. Each box labeled “FA” is a full adder that accepts
two input bits plus a carry, and produces a single output bit along with a carry into the
next FA.

ripple-carry adder. A 2-bit ripple-carry adder is shown in Figure 4.7. How many gates
would be used in total for a 16-bit ripple-carry adder? It’s in the hundreds rather than the
billions required in our first approach!

Now that we’ve built a ripple-carry adder, it’s not a big stretch to build up many of the
other kinds of basic features of a computer. For example, consider building a multiplication
circuit. We can observe that multiplication involves a number of addition steps. Now that
we have an addition module, that is an abstraction that we can use to build a multiplier!

Takeaway message: Using the the minterm expansion principle and modular design,we
can now build virtually of the major parts of a computer.

4.3.5 Memory

There is one important aspect of a computer that we haven’t seen how to design: memory!

I’m glad that
you didn’t

forget this part!

A computer can store data and then fetch those data for later use.(“Data” is the plural of
“datum”. Therefore, we say “those data” rather than “that data”.) In this section we’ll
see how to build a circuit that stores a single bit (a 0 or 1). This device is called a latch
because it allows us to “lock” a bit and retrieve it later. Once we’ve built a latch, we can
abstract that into a “black box” and use the principle of modular design to assemble many
latches into a device that stores a lot of data.

A latch can be created from two interconnected NOR gates: NOR is just OR followed
by NOT. That is, it’s truth table is exactly the opposite of the truth table for OR as shown
below.

x y x NOR y
0 0 1
0 1 0
1 0 0
1 1 0

A NOR gate is represented symbolically as an OR gate with a little circle at its output
(representing negation).
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R

S

Q

Q

Figure 4.8: A latch built from two NOR gates.

Now, a latch can be constructed from two NOR gates as shown in Figure 4.8. The input
S is known as “set” while the input R is known as “reset”. The appropriateness of these
names will become evident in a moment.

What in the world is going on in this circuit!? To begin with, suppose that all of R, S,
and Q are 0. Since both Q and S are 0, the output of the bottom NOR gate, Q̄, is 1. But
since Q̄ is 1, the top NOR gate is forced to produce a 0. Thus, the latch is in a stable state:
the fact that Q̄ is 1 holds Q at 0.

Now, consider what happens if we change S (remember, it’s called “set”) to 1, while
holding R at 0. This change forces Q̄ to 0; for a moment, both Q and Q̄ are zero. But the
fact that Q̄ is zero means that both inputs to the top NOR gate are zero, so its output, Q,
must become 1. After that happens, we can return S to 0, and the latch will remain stable.
We can think of the effect of changing S to 1 for a moment as “setting” the latch to store
the value 1. The value is stored at Q. (Q̄ is just used to make this circuit do its job, but
it’s the value of Q that we will be interested in.)

An identical argument will show that R (remember, it’s called “reset”) will cause Q to
return to zero, and thus Q̄ will become 1 again. That is, the value of Q is reset to 0! This
circuit is commonly called the S-R latch.

What happens if both S and R become 1 at the same time? Try this out through a
thought experiment. We’ll pause here and wait for you.

Did you notice how this latch will misbehave? When S and R are both set to 1 (this is
trying to set and reset the circuit simultaneously—very naughty) both Q and Q̄ will become
0. Now, if we let S and R return back to 0, the inputs to both NOR gates are 0 and their
outputs both become 1. Now each NOR gate gets a 1 back as input and its output becomes
0. In other words, the NOR gates are rapidly “flickering” between 0 and 1 and not storing
anything! In fact, other weird and unpredictable things can happen if the two NOR gates
compute their outputs at slightly different speeds. Circuit designers have found ways to
avoid this problem by building some “protective” circuitry that ensures that S and R can
never be simultaneously set to 1.

So, a latch is a one-bit memory. If you want to remember a 1, turn S to 1 for a moment;
if you want to remember a 0, turn R to 1 for a moment. If you aggregate 8 latches together,
you can remember an 8-bit byte. If you aggregate millions of bits, organized in groups of
8, you have the Random Access Memory (RAM) that forms the memory of a computer.

I’m sheepish
about sharing
my RAM puns
because you’ve
probably herd
them already.
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4.4 Building a Complete Computer

Imagine that you’ve been elected treasurer of your school’s unicycling club and its time to
do the books and balance the budget. You have a large notebook with all of the club’s“Balancing” the club’s

budget?! We promise
that wheel have no more

unicycle jokes!

finances. As you work, you copy a few numbers from the binder onto a scratch sheet, do
some computations using a calculator, and jot those results down on your scratch sheet.
Occasionally, you might copy some of those results back into the big notebook to save for
the future and then jot some more numbers from the notebook onto your scratch sheet.

A modern computer operates on the same principle. Your calculator and the scratch
sheet correspond to the central processing unit (CPU) of the computer. The CPU is where
computation is performed but there’s not enough memory there to store all of the data that
you will need. The big notebook corresponds to the computer’s memory. These two parts
of the computer are physically separate components that are connected by wires on your
computer’s circuit board.We spoke too soon about

no more unicycle jokes. What’s in the CPU? There are devices like ripple-carry adders, multipliers, and their ilk
for doing arithmetic. These devices can all be built using the concepts that we saw earlier in
this chapter, namely the minterm expansion principle and modular design. The CPU also
has a small amount of memory, corresponding to the scratch sheet. This memory comprises
a small number of registers where we can store data. These registers could be built out of
latches or other related devices. Computers typically have on the order of 16 to 32 of these
registers, each of which can store 32 or 64 bits. All of the CPU’s arithmetic is done using
values in the registers. That is, the adders, multipliers, and so forth expect to get their
inputs from registers and to save the results to a register, just as you would expect to use
your scratch pad for the input and output of your computations.See! We didn’t tire you

with any more unicycle
puns.

The memory, corresponding to the big notebook, can store a lot of data—probably
billions of bits! When the CPU needs data that is not currently stored in a register (scratch
pad), it requests that data from memory. Similarly, when the CPU needs to store the
contents of a register (perhaps because it needs to use that register to store some other
values), it can ship it off to be stored in memory.

What’s the point of having separate registers and memory? Why not just have all the
memory in the CPU? The answer is multifaceted, but here is part of it: The CPU needs
to be small in order to be fast. Transmitting a bit of data along a millimeter of wire slows
the computer down considerably! On the other hand, the memory needs to be large in
order to store lots of data. Putting a large memory in the CPU would make the CPU slow.Memory is slow. If the

CPU can read from or
write to a register in one
unit of time, it will take
approximately 100 units
of time to read from or

write to memory!

In addition, there are other considerations that necessitate separating the CPU from the
memory. For example, CPUs are built using different (and generally much more expensive)
manufacturing processes than memories.

Now, let’s complicate the picture slightly. Imagine that the process of balancing the
unicycle club’s budget is complicated. The steps required to do the finances involve making
decisions along the way (e.g. “If we spent more than $500 on unicycle seats this year, we are
eligible for a rebate.”) and other complications. So, there is a long sequence of instructions
that is written in the first few pages of our club notebook. This set of instructions is a
program! Since the program is too long and complicated for you to remember, you copy
the instructions one-by-one from the notebook onto your scratch sheet. You follow that
instruction, which might tell you, for example, to add some numbers and store them some
place. Then, you fetch the next instruction from the notebook.

How do you remember which instruction to fetch next and how do you remember the

86 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



4.4. BUILDING A COMPLETE COMPUTER

John von Neumann (1903–1957)

One of the great pioneers of computing was John von Neumann (pronounced “NOY-mahn”),
a Hungarian-born mathematician who contributed to fields as diverse as set theory and
nuclear physics. He invented the Monte Carlo method (which we used to calculate π in
Section 1.1.2), cellular automata, the merge sort method for sorting, and of course the von
Neumann architecture for computers.

Although von Neumann was famous for wearing a three-piece suit everywhere—including
on a mule trip in the Grand Canyon and even on the tennis court—he was not a boring
person. His parties were always popular (although he sometimes sneaked away from his
guests to work) and he loved to quote from his voluminous memory of off-color limericks.
Despite his brilliance, he was a notoriously bad driver, which might explain why he bought
a new car every year.

Von Neumann died of cancer, perhaps caused by radiation from atomic-bomb tests. But
his legacy lives on in every computer built today.

instruction itself? The CPU of a computer has two special registers just for this purpose.
A register called the program counter keeps track of the location in memory where it will
find the next instruction. That instruction is then fetched from memory and stored in a
special register called the instruction register . The computer examines the contents of the
instruction register, executes that instruction, and then increments the program counter so
that it will now fetch the next instruction.

This way of organizing computation was invented by the famous mathematician and
physicist, Dr. John von Neumann and is known as the von Neumann architecture. While One of von Neumann’s

colleagues was
Dr. Claude
Shannon—inventor of
the minterm expansion
principle. Shannon, it
turns out, was also a
very good unicyclist.

computers differ in all kinds of ways, they all use this fundamental principle. In the next
subsection we’ll look more closely at how this principle is used in a real computer.

4.4.1 The von Neumann Architecture

We mentioned that the computer’s memory stores both instructions and data. We know
that data can be encoded as numbers and numbers can be encoded in binary. But what
about the instructions? Good news! Instructions too can be stored as numbers by simply
adopting some convention that maps instructions to numbers.

For example, let’s assume that our computer is based on 8-bit numbers and let’s assume
that our computer only has four instructions: add, subtract, multiply, and divide. (That’s
very few instructions, but let’s start there for now and then expand later). Each of these
instructions will need a number, called an operation code (or opcode), to represent it. Since
there are four opcodes, we’ll need four numbers, which means two bits per number. For
example, we might choose the following opcodes for our instructions:

Operation Meaning
00 Add
01 Subtract
10 Multiply
11 Divide

Next, let’s assume that our computer has four registers number 0 through 3. Imagine Computer scientists
often start counting from
0.
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CHAPTER 4. COMPUTER ORGANIZATION

that we want to add two numbers. We must specify the two registers whose values we wish
to add and the register where we wish to store the result. If we want to add the contents of
register 2 with the contents of register 0 and store the result in register 2, we could adopt
the convention that we’ll write “add 2, 0, 2”. The first two numbers are the registers where
we’ll get our input and the third number is the register where we’ll store our result. In
binary, “add 2, 0, 2” would be represented as “00 10 00 10”. We’ve added the spaces to
help you see the numbers 00 (indicating “add”), 10 (indicating register 2 as the first register
that we will add), 00 (indicating register 0 as the second register that we will add), and 10
(indicating register 2 as the destination where we will store the result).

In general, we can establish the convention that an instruction will be encoded using
8 bits as follows: The first two bits (which we’ll call I0 and I1) represent the instruction,
the next two bits (S0 and S1) will encode the register containing the first input to our
instruction, the next two bits (T0 and T1) will encode the register containing the second
input to our instruction, and the last two bits (D0 and D1) will encode the destination
register where we will save the result of our instruction. This representation is shown
below.

I0 I1 S0 S1 T0 T1 D0 D1

Recall that we assume that our computer is based on 8-bit numbers. That is, each
register stores 8-bits and each number in memory is 8-bits long. Figure 4.9 shows what our
computer might look like. Notice the program counter at the top of the CPU. Recall that
this register contains a number that tells us where in memory to fetch the next instruction.
At the moment, this program counter is 00000000, indicating address 0 in memory.

The computer begins by going to this memory location and fetching the data that resides
there. Now look at the memory, shown on the left side of the figure. The memory addresses

So a computer
is kind of like a

dog?

are given both in binary (base 2) and in base 10. Memory location 0 contains the data
00100010. This 8-bit sequence is now brought into the CPU and stored in the instruction
register. The CPU’s logic gates decode this instruction. The leading 00 indicates its an
addition instruction. the following 10 and 00 indicate that we need to get the data stored in
registers 2 and 0, respectively. These values are then sent to the CPU’s ripple-carry adder
where they are added. The final 10 in the instruction register indicate that the result of
the addition should be stored in register 2. Since registers 0 and 2 contain 00000101 and
00001010, respectively, before the operation, after the operation register 2 will contain the
value 00001111.

In general, our computer operates by repeatedly performing the following procedure:

1. Send the address in the program counter (commonly called the PC ) to the memory,
asking it to read that location.

2. Load the value from memory into the instruction register.

3. Decode the instruction register to determine what instruction to execute and which
registers to use.

4. Execute the requested instruction. This step often involves reading operands from reg-
isters, performing arithmetic, and sending the results back to the destination register.
Doing so usually involves several sub-steps.

88 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



4.5. HMMM. . .

Program Counter 00000000

Instruction Register 00000000

Register 0 00000101

Register 1 00000000

Register 2 00001010

Register 3 00000000

Location Contents
(Binary) (Base 10)

00000000 0 00100010

00000001 1 00011010

00000010 2 10001100

00000011 3
. . .

11111111 255

Central Processing Unit (CPU) Memory

Figure 4.9: A computer with instructions stored in memory. The program counter tells the
calculator where to get the next instruction.

5. Increment the PC so that it contains the address of the next instruction in memory.
(It is this step that gives the PC its name, because it counts its way through the
addresses in the program.)

“Wait!” we hear you scream. “The memory is storing both instructions and data! How
can it tell which is which?!” That’s a great question and we’re glad you asked. The truth is
that the computer can’t tell which is which. If we’re not careful, the computer might fetch
something from memory into its instruction register and try to execute it when, in fact,
that 8-bit number represents the number of pizzas that the unicycle club purchased and
not an instruction! One way to deal with this is to have an additional special instruction
called “halt” that tells the computer to stop fetching instructions. In the next subsections
we’ll expand our computer to have more instructions (including “halt”) and more registers
and we’ll write some real programs in the language of the computer.

Takeaway message: A computer uses a simple process of repeatedly fetching its next
instruction from memory, decoding that instruction, executing that instruction, and incre-
menting the program counter. All of these steps are implemented with digital circuits that,
ultimately, can be built using the processes that we’ve described earlier in this chapter.

4.5 Hmmm. . .

The computer we discussed in Section 4.4 is simple to understand, but its simplicity means
it’s not very useful. In particular, a real computer also needs (at a minimum) ways to:

• Move information between the registers and a large memory,

• Get data from the outside world,

• Print results, and

• Make decisions.
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CHAPTER 4. COMPUTER ORGANIZATION

To illustrate how these features can be included, we have designed the Harvey Mudd Minia-
ture Machine, or Hmmm. Just like our earlier 4-instruction computer, Hmmm has a program
counter, an instruction register, a set of data registers, and a memory. These are organized

Hmmm is music
to my ears!

as follows:

• While our simple computer used 8-bit instructions, in Hmmm, both instructions and
data are 16 bits wide. That allows us to represent a reasonable range of numbers, andDifferent computers have

different word sizes.
Most machines sold

today use 64-bit words;
older ones use 32 bits.
16-bit, 8-bit, and even

4-bit computers are still
used for special

applications. Your
digital watch probably

contains a 4-bit
computer.

lets the instructions be more complicated.

• In addition to the program counter and instruction register, Hmmm has 16 registers,
named R0 through R15. R0 is special: it always contains zero, and anything you try
to store there is thrown away.

• Hmmm’s memory contains 256 locations. Although the memory can be used for either
instructions or data, programs are prevented from reading or writing the instruction
section of memory. (Some modern computers offer a similar feature.)

Since the Hmmm instruction format has quite a few instructions, it’s inconvenient to tryHmmm’s instruction set
is large, but not

hmmmungous.
to program Hmmm by writing down the bits corresponding to the instructions. Instead, we
will use assembly language, which is a programming language where each machine instruc-
tion receives a friendlier symbolic representation. For example, to compute R3 = R1 + R2,
we would write:

add r3, r1, r2

A very simple process is used to convert this mnemonic assembly language into the 0’s andIs there a good
mnemonic for

remembering how to
spell “mnemonic”?

1’s—the “machine language”—that the computer can execute.
A complete list of Hmmm instructions, including their binary encoding, is given in

Figure 4.10 on page 102.

4.5.1 A Simple Hmmm Program

To begin with, let’s look at a program that will calculate the approximate area of a triangle.
It’s admittedly mundane, but it will illustrate several important features of Hmmm. (WeNot the least of which is

that writing even a short
program in assembly

language can be a
hmmmbling experience!

suggest that you follow along by downloading Hmmm from http://www.cs.hmc.edu/hmmm

and trying these examples out with us.)
Let’s begin by using our favorite editor to create a file named triangle1.hmmm with the

following contents:

#

# Calculate the approximate area of a triangle.

#

# First input: base

# Second input: height

# Output: area

#

0 read r1 # Get base

1 read r2 # Get height
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2 mul r1 r1 r2 # b times h into r1

3 loadn r2 2

4 div r1 r1 r2 # Divide by 2

5 write r1

6 halt

How Does It Work?

What does all of this mean? First, anything starting with a pound sign (“#”) is a comment;
Hmmm ignores it. Second, you’ll note that each line is numbered, starting with zero. This
number indicates the memory location where the instruction will be stored.

You may have also noticed that this program doesn’t use any commas, unlike the example
add instruction on page 90. Hmmm is very lenient about notation; all of the following
instructions mean exactly the same thing:

add r1,r2,r3

ADD R1 R2 R3

ADD R1,r2, R3

aDd R1,,R2, ,R3

Needless to say, we don’t recommend the last two options!
So what do all of these lines actually do? The first two (0 and 1) read in the base and

height of the triangle. When Hmmm executes a read instruction, it pauses and prompts
the user to enter a number, converts the user’s number into binary, and stores it into the
named register. So the first-typed number will go into register R1, and the second into R2.

The MULtiply instruction then finds b×h by calculating R1 = R1 × R2. This instruction
illustrates three important principles of Hmmm programming:

1. Most arithmetic instructions accept three registers: two sources and a destination.

2. The destination register is always listed first, so that the instruction can be read
somewhat like a Python assignment statement.

3. The source and destination can be the same.

After multiplying, we need to divide b× h by 2. But where can we get the constant 2?
One option would be to ask the user to provide it via a read instruction, but that seems
clumsy. Instead, a special instruction, loadn (load number), lets us insert a small constant
into a register. (“Load” usually means “grab something and put it in a register”; the
converse is to “store” the contents of a register into memory.) As with mul, the destination
is given first; this is equivalent to the Python statement R2 = 2.

The DIVide instruction finishes the calculation, and write displays the result on the
screen. There is one thing left to do, though: after the write is finished, the computer will
happily try to execute the instruction at the following memory location. Since there isn’t a
valid instruction there, the computer will fetch a collection of bits there that are likely to
be invalid as an instruction, causing the computer to crash. So we need to tell it to halt

after it’s done with its work.
That’s it! But will our program work correctly? It would be hmmmurous

if we got this wrong.
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Trying It Out

We can assemble the program by running hmmmAssembler.py from the command line:1

User-typed input is shown in blue and the prompt is shown using the symbol %. The
prompt on your computer may look different.

% ./hmmmAssembler.py

Enter input file name: triangle1.hmmm

Enter output file name: triangle1.hb

----------------------

| ASSEMBLY SUCCESSFUL |

----------------------

0 : 0000 0001 0000 0001 0 read r1 # Get base

1 : 0000 0010 0000 0001 1 read r2 # Get height

2 : 1000 0001 0001 0010 2 mul r1 r1 r2 # b times h into r1

3 : 0001 0010 0000 0010 3 loadn r2 2

4 : 1001 0001 0001 0010 4 div r1 r1 r2 # Divide by 2

5 : 0000 0001 0000 0010 5 write r1

6 : 0000 0000 0000 0000 6 halt

If you have errors in the program, hmmmAssembler.py will tell you; otherwise it will
produce the output file triangle1.hb (“hb” stands for “Hmmm binary”). We can then test
our program by running the Hmmm simulator:

% ./hmmmSimulator.py

Enter binary input file name: triangle1.hb

Enter debugging mode? n

Enter number: 4

Enter number: 5

10

% ./hmmmSimulator.py

Enter binary input file name: triangle1.hb

Enter debugging mode? n

Enter number: 5

Enter number: 5

12

We can see that the program produced the correct answer for the first test case, but not
for the second. That’s because Hmmm only works with integers; division rounds fractional
values down to the next smaller integer just as it does in Python.

4.5.2 Looping

If you want to calculate the areas of a lot of triangles, it’s a nuisance to have to run the
program over and over. Hmmm offers a solution in the unconditional jump instruction,

1On Windows, you can navigate to the command line from the Start menu. On a Macintosh, bring
up the Terminal application, which lives in Applications/Utilities. On Linux, most GUIs offer a similar
terminal application in their main menu. The example above was run on Linux.
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which says “instead of executing the next sequential instruction, start reading instructions
beginning at address n.” If we simply replace the halt with a jump:

#

# Calculate the approximate areas of many triangles.

#

# First input: base

# Second input: height

# Output: area

#

0 read r1 # Get base

1 read r2 # Get height

2 mul r1 r1 r2 # b times h into r1

3 loadn r2 2

4 div r1 r1 r2 # Divide by 2

5 write r1

6 jump 0

then our program will calculate triangle areas forever.
What’s that jump 0 instruction doing? The short explanation is that it’s telling the

computer to jump back to location 0 and continue executing the program there. The better
explanation is that this instruction simply puts the number 0 in the program counter.
Remember, the computer mindlessly checks its program counter to determine where to
fetch its next instruction from memory. By placing a 0 in the program counter, we are
ensuring that the next time the computer goes to fetch an instruction it will fetch it from
memory location 0.

Since there will come a time when we want to stop, we can force the program to end by
holding down the Ctrl (“Control”) key and typing C (this is commonly written “Ctrl-C” or
just “^C”):

% ./hmmmSimulator.py

Enter binary input file name: triangle2.hb

Enter debugging mode? n

Enter number: 4

Enter number: 5

10

Enter number: 5

Enter number: 5

12

Enter number: ^C

Interrupted by user, halting program execution...

That works, but it produces a somewhat ugly message at the end. A nicer approach
might be to automatically halt if the user inputs a zero for either the base or the height. We
can do that with a conditional jump instruction, which works like jump if some condition is
true, and otherwise does nothing.
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There are several varieties of conditional jump statements and the one we’ll use here
is called jeqz which is pronounced “jump if equal to zero”. This conditional jump takes
a register and a number as input. If the specified register contains the value zero then we

I believe that I
learned that

when someone
jeqz’s I should

say
“gesundheit”.

will jump to the instruction specified by the number in the second argument. That is, if
the register contains zero then we will place the number in the second argument in the
program counter so that the computer will continue computing using that number as its
next instruction.

#

# Calculate the approximate areas of many triangles.

# Stop when a base or height of zero is given.

#

# First input: base

# Second input: height

# Output: area

#

0 read r1 # Get base

1 jeqz r1 9 # Jump to halt if base is zero

2 read r2 # Get height

3 jeqz r2 9 # Jump to halt if height is zero

4 mul r1 r1 r2 # b times h into r1

5 loadn r2 2

6 div r1 r1 r2 # Divide by 2

7 write r1

8 jump 0

9 halt

Now, our program behaves politely:

% ./hmmmSimulator.py

Enter binary input file name: triangle3.hb

Enter debugging mode? n

Enter number: 4

Enter number: 5

10

Enter number: 5

Enter number: 5

12

Enter number: 0

The nice thing about conditional jumps is that you aren’t limited to just terminating
loops; you can also use them to make decisions. For example, you should now be able to
write a Hmmm program that prints the absolute value of a number. The other conditional
jump statements in Hmmm are included in the listing of all Hmmm instructions at the end
of this chapter.
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4.5.3 Functions

Here is a program that computes factorials:

#

# Calculate N factorial.

#

# Input: N

# Output: N!

#

# Register usage:

#

# r1 N

# r2 Running product

#

0 read r1 # Get N

1 loadn r2,1

2 jeqz r1,6 # Quit if N has reached zero

3 mul r2,r1,r2 # Update product

4 addn r1,-1 # Decrement N

5 jump 2 # Back for more

6 write r2

7 halt

(If you give this program a negative number, it will crash unpleasantly; how could you
fix that problem?) The addn instruction at line 4 simply adds a constant to a register,
replacing its contents with the result. We could achieve the same effect by using loadn and
a normal add, but computer programs add constants so frequently that Hmmm provides a
special instruction to make the job easier.

But suppose you need to write a program that computes (nk ) = n!
k!(n−k)! . (If you haven’t

seen this formula before, it counts the number of different ways to choose k items from a
set of n distinct items and it’s pronounced “n choose k”.) Since we need to compute three

I wouldn’t
choose to write
that program.

different factorials, we would like to avoid having to copy the above loop three different
times. Instead, we’d prefer to have a function that computes factorials, just like Python
has.

Creating a function is just a bit tricky. It can’t read its input from the user, and it must
return the value that it computed to whatever code called that function.

It’s convenient to adopt a few simple conventions to make this all work smoothly. One
such convention is to decide on special registers to be used for parameter passing , i.e.,
getting information into and out of a function. For example, we could decide that r1 will
contain n when the factorial function starts, and r2 will contain the result. (As we’ll see
later, this approach is problematic in the general case, but it’s adequate for now.)

Our new program, with the factorial function built in, is:

#

# Calculate C(n,k) = n!/k!(n-k)!.
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#

# First input: N

# Second input: K

# Output: C(N,K)

#

# Register usage:

#

# r1 Input to factorial function

# r2 r1 factorial

# r3 N

# r4 K

# r5 C(N,K)

#

# Factorial function starts at address 15

#

0 read r3 # Get N

1 read r4 # Get K

2 mov r1,r3 # Calculate N!

3 call r14,15 # ...

4 mov r5,r2 # Save N! as C(N,K)

5 mov r1,r4 # Calculate K!

6 call r14,15 # ...

7 div r5,r5,r2 # N!/K!

8 sub r1,r3,r4 # Calculate (N-K)!

9 call r14,15 # ...

10 div r5,r5,r2 # C(N,K)

11 write r5 # Write answer

12 halt

13 nop # Waste some space

14 nop

# Factorial function. N is in R1.

# Return address is in R14.

15 loadn r2,1 # Initial product

16 jeqz r1,20 # Quit if N has reached zero

17 mul r2,r1,r2 # Update product

18 addn r1,-1 # Decrement N

19 jump 16 # Back for more

20 jumpi r14 # Done; return to caller
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As you can see, the program introduces a number of new instructions. The simplest is nop,
the no-operation instruction, at lines 13 and 14. When executed, it does absolutely nothing.

Why would we want such an instruction? If you’ve already written some small Hmmm
programs, you’ve probably discovered the inconvenience of renumbering lines. By including One of the hmmmdingers

of programming in
assembly language!

a few nops as padding, we make it easy to insert a new instruction in the sequence from
0-15 without having to change where the factorial function begins.

Far more interesting is the call instruction, which appears at lines 3, 6, and 9. Call

partly works just like jump: it causes Hmmm to start executing instructions at a given
address, in this case 15. But if we had just used a jump, after the factorial function calculated
its result, it wouldn’t know whether to jump back to line 4, line 7, or line 10! To solve the
problem, the call uses register R14 to save the address of the instruction immediately
following the call.2

We’re not done, though: the factorial function itself faces the other end of the same
dilemma. R14 contains 4, 7, or 10, but it would be clumsy to write code equivalent to “If
R14 is 4, jump to 4; otherwise if R14 is 7, jump to 7; . . . ” Instead, the jumpi (jump indirect)
instruction solves the problem neatly, if somewhat confusingly. Rather than jumping to a
fixed address given in the instruction (as is done in line 19), jumpi goes to a variable address
taken from a register. In other words, if R14 is 4, jumpi will jump to address 4; if it’s 7 it
will jump to 7, and so forth.

4.5.4 Recursion

In Chapter 2 we learned to appreciate the power and elegance of recursion. But how can
you do recursion in Hmmm assembly language? There must be a way; after all, Python
implements recursion as a series of machine instructions on your computer. To understand
the secret, we need to about the stack .

Stacks

You may recall that in Chapter 2 we talked about stacks (remember those stacks of storage
boxes)? Now we’re going to see precisely how they work.

A stack is something we are all familiar with in the physical world: it’s just a pile where
you can only get at the top thing. Make a tall stack of books; you can only see the cover
of the top one, you can’t remove books from the middle (at least not without risking a
collapse!), and you can’t add books anywhere except at the top.

The reason a stack is useful is because it remembers things and gives them back to you
in reverse order. Suppose you’re reading Gone With the Wind and you start wondering
whether it presents the Civil War fairly. You might put GWTW on a stack, pick up a

The sheer
weight of that
book could
crush your
stack!

history book, and start researching. As you’re reading the history book, you run into an
unfamiliar word. You place the history book on the stack and pick up a dictionary. When
you’re done with the dictionary, you return it to the shelf, and the top of the stack has the
history book, right where you left off. After you finish your research, you put that book
aside, and voilá! GWTW is waiting for you.

This technique of putting things aside and then returning to them is precisely what we
need for recursion. To calculate 5!, you need to find 4! for which you need 3! and so forth.

2We could have chosen any register except R0 for this purpose, but by convention Hmmm programs use
R14.

97 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



CHAPTER 4. COMPUTER ORGANIZATION

A stack can remember where we were in the calculation of 4! and help us to return to it
later.

To implement a stack on a computer, we need a stack pointer , which is a register that
holds the memory address of the top item on the stack. Traditionally, the stack pointer isAgain, this is just a

convention. kept in the highest-numbered register, so on Hmmm we use R15.
Suppose R15 currently contains 102,3 and the stack contains 42 (on top), 56, and 12.

Then we would draw the stack like this:

Address Contents
R15 → 102 42

101 56
100 12

To push a value, say 23, onto the stack, we must increment R15 to contain the address
of a new location (103) and then store 23 into that spot in memory. The stack will now
look like:

Address Contents
R15 → 103 23

102 42
101 56
100 12

Later, to pop the top value off, we must ask R15 where the top is4 (103) and recover
the value in that location. Then we decrement R15 so that it points to the new stack top,
location 102. Everything is now back where we started.

The code to push something, say the contents of R4, on the stack looks like this:

addn r15,1 # Point to a new location

storei r4,r15 # Store r4 on the stack

The storei (store indirect) instruction stores the contents of R4 into the memory loca-
tion addressed by register 15. In other words, if R15 contains 103, the value in R4 will be
copied into memory location 103.

Just as storei can put things onto the stack, loadi will recover them:

loadi r3,r15 # Load r3 from the stack

addn r15,-1 # Point to new top of stack

Important note: in the first example above, the stack pointer is incremented before
the storei; in the second, it is decremented after the loadi. This ordering is necessary
to make the stack work properly; you should be sure you understand it before proceeding
further.

Saving Precious Possessions

When we wrote the (nk ) program in Section 4.5.3, we took advantage of our knowledge of
how the factorial function on line 15 worked. In particular, we knew that it only modified

3We say that R15 points to location 102.
4We say we follow the pointer in R15.
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registers R1, R2, and R14, so that we could use R3 and R4 for our own purposes. In more
complex programs, however, it may not be possible to partition the registers so neatly.
This is especially true in recursive functions, which by their nature tend to re-use the same
registers that their callers use.

The only to be sure that a called function won’t clobber your data is to save it somewhere,
and the stack is a perfect place to use for that purpose. When writing a Hmmm program,
the convention is that you must save all of your “precious possessions” before calling a
function, and restore them afterwards. Because of how a stack works, you have to restore
things in reverse order.

But what’s a precious possession? The quick answer is that it’s any register that you
plan to use, except R0 and R15. In particular, if you are calling a function from inside
another function, R14 is a precious possession.

Many newcomers to Hmmm try to take shortcuts with stack saving and restoring. The
common mistake is to reason, “I know that I’m calling two functions in a row, so it’s silly It’s a common mistake,

but to err is hmmman.to restore my precious possessions and save them again right away.” Although you can get
away with that trick in certain situations, it’s very difficult to get it right, and you are much
more likely to cause yourself trouble by trying to save time. We strongly suggest that you
follow the suggested stack discipline rigorously to avoid problems.

Let’s look at a Hmmm program that uses the stack. We’ll use the recursive algorithm
to calculate factorials:

# Calculate N factorial, recursively

#

# Input: N

# Output: N!

#

# Register usage:

#

# r1 N! (returned by called function

# r2 N

0 loadn r15,100 # Initialize stack pointer

1 read r2 # Get N

2 call r14,5 # Recursive function finds N!

3 write r1 # Write result

4 halt

# Function to compute N factorial recursively

#

# Inputs:

#

# r2 N

#

# Outputs:

#

# r1 N!

#
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# Register usage:

#

# r1 N! (from recursive call)

# r2 N (for multiplication)

5 jeqz r2,18 # Test for base case (0!)

6 addn r15,1 # Save precious possessions

7 storei r2,r15 # ...

8 addn r15,1 # ...

9 storei r14,r15 # ...

10 addn r2,-1 # Calculate N-1

11 call r14,5 # Call ourselves recursively to get (N-1)!

12 loadi r14,r15 # Recover precious possessions

13 addn r15,-1 # ...

14 loadi r2,r15 # ...

15 addn r15,-1 # ...

16 mul r1,r1,r2 # (N-1)! times N

17 jumpi r14 # Return to caller

# Base case: 0! is always 1

18 loadn r1,1

19 jumpi r14 # Return to caller

The main program is quite simple (lines 0–4): we read a number from the user, call the
recursive factorial function, and write the answer to halt.

The factorial function is only a bit more complex. After testing for the base case of
0!, we save our “precious possessions” in preparation for the recursive call (lines 6–9). But
what is precious to us? The function uses registers R1, R2, R14, and R15. We don’t need
to save R15 because it’s the stack pointer, and R1 doesn’t yet have anything valuable in
it. So we only have to save R2 and R14. We follow the stack discipline, placing R2 on the
stack (line 7) and then R14 (line 9).

After saving our precious possessions, we call ourselves recursively to calculate (N − 1)!
(lines 10–11) and then recover registers R14 (line 12) and R2 (line 14) in reverse order,
again following the stack discipline. Then we multiply (N − 1)! by N , and we’re done.

It is worth spending a bit of time studying this example to be sure that you understand
how it operates. Draw the stack on a piece of paper, and work out how values get pushed
onto the stack and popped back off when the program calculates 3!.

4.5.5 The Complete Hmmm Instruction Set

This finishes our discussion of Hmmm. We have covered all of the instructions except sub,
mod, jnez, jgtz, and jltz; we trust that those don’t need separate explanations. ForNote that sub can be

combined with jltz to
evaluate expressions like
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convenience, Figure 4.10 summarizes the entire instruction set, and also gives the binary
encoding of each instruction.

As a final note, you may find it instructive to compare the encodings of certain pairs of
instructions. In particular, what is the difference between add, mov, and nop? How does
call relate to jump? We will leave you with these puzzles as we move on to imperative
programming.

4.5.6 A Few Last Words

What actually happens when we run a program that we’ve written in a language such as
Python? In some systems, the entire program is first automatically translated or compiled
into machine language (the binary equivalent of assembly language) using another program
called a compiler . The resulting compiled program looks like the Hmmm code that we’ve
written and is executed on the computer. Another approach is to use a program called an
interpreter that translates the instructions one line at a time into something that can be
executed by the computer’s hardware.

It’s important to keep in mind that exactly when and how the program gets translated—
all at once as in the case of a compiler or one line at a time in the case of an interpreter—is
an issue separate from the language itself. In fact, some languages have both compilers and
interpreters, so that we can use one or the other.

Why would someone even care whether their program was compiled or interpreted? In
the compiled approach, the entire program is converted into machine language before it is
executed. The program runs very fast but if there is an error when the program runs, we
probably won’t get very much information from the computer other than seeing that the
program “crashed”. In the interpreted version, the interpreter serves as a sort of “middle-
man” between our program and the computer. The interpreter can examine our instruction
before translating it into machine language. Many bugs can be detected and reported
by the interpreter before the instruction is ever actually executed by the computer. The
“middle-man” slows down the execution of the program but provides an opportunity to
detect potential problems. In any case, ultimately every program that we write is executed
as code in machine language. This machine language code is decoded by digital circuits
that execute the code on other circuits.

4.6 Conclusion

Aye caramba! That was a lot. We’ve climbed the levels of abstraction from transistors, to
logic gates, to a ripple-carry adder, and ultimately saw the general idea of a how a computer
works. Finally, we’ve programmed that computer in its native language.

Now that we’ve seen the foundations of how a computer works, we’re going back to
programming and problem-solving. In the next couple of chapters, some of the programming
concepts that we’ll see will be directly tied to the issues that we examined in this chapter.
We hope that the understanding that you have for the internal workings of a computer will
help the concepts that we’re about to see be even more meaningful than they would be
otherwise.

I think a
mochaccino
and a donut
would be quite
meaningful
right about
now.
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Assembly Format Opcode X Y Z Description

halt B 0000 0000 0000 0000 Halt program
read rX B 0000 xxxx 0000 0001 Read user input into reg-

ister rX
write rX B 0000 xxxx 0000 0010 Print the contents of reg-

ister rX on the screen
loadn rX, n B 0001 xxxx nnnn nnnn Load the small signed con-

stant n into register rX
load rX, n B 0010 xxxx nnnn nnnn Load register rX with

memory word at address n
store rX, n B 0011 xxxx nnnn nnnn Store contents of register

rX into memory word at
address n

loadi rX, rY A 0100 xxxx yyyy 0000 Load register rX from
memory word addressed
by rY: rX = memory[rY]

storei rX, rY A 0100 xxxx yyyy 0001 Store contents of regis-
ter rX into memory word
addressed by rY: mem-
ory[rY] = rX

addn rX, n B 0101 xxxx nnnn nnnn Add the small signed con-
stant n to register rX

add rX, rY, rZ A 0110 xxxx yyyy zzzz Set rX = rY + rZ
mov rX, rY A 0110 xxxx yyyy 0000 Set rX = rY
nop A 0110 0000 0000 0000 Do nothing
sub rX, rY, rZ A 0111 xxxx yyyy zzzz Set rX = rY − rZ
mul rX, rY, rZ A 1000 xxxx yyyy zzzz Set rX = rY * rZ
div rX, rY, rZ A 1001 xxxx yyyy zzzz Set rX = rY / rZ
mod rX, rY, rZ A 1010 xxxx yyyy zzzz Set rX = rY % rZ
jump n B 1011 0000 nnnn nnnn Set program counter to

address n
jumpi rX B 0000 xxxx 0000 0011 Set program counter to

address in rX
call rX, n B 1011 xxxx nnnn nnnn Set rX to (next) program

counter, then set program
counter to address n

jeqz rX, n B 1100 xxxx nnnn nnnn If rX = 0 then set program
counter to address n

jnez rX, n B 1101 xxxx nnnn nnnn If rX 6= 0 then set program
counter to address n

jgtz rX, n B 1110 xxxx nnnn nnnn If rX> 0 then set program
counter to address n

jltz rX, n B 1111 xxxx nnnn nnnn If rX< 0 then set program
counter to address n

Figure 4.10: The Hmmm instruction set.
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Chapter 5

Imperative Programming

The imperative is to define what is right and do it. – Barbara Jordan

5.1 A Computer that Knows You
(Better than You Know Yourself?)

These days it seems that just about every website out there is trying to recommend some-
thing. Websites recommend books, movies, music, and activities. Some even recommend
friends!

How does Netflix know what movies we’re likely to enjoy watching or Amazon know
what we’ll like to read? The answer to this question lies in a broad and important subfield

Netflix
recommended
the
movie“Alien”
to me.

of study in computer science: data mining . Data mining is an area of computer science
that focuses on extracting useful information from very large quantities of data.

In this chapter we will examine a simplified version of a fundamental data mining al-
gorithm called collaborative filtering (CF). Collaborative filtering is widely used in many
successful recommendation systems, as well as many other application areas where there’s
a lot of data to be studied (e.g., financial markets, geological data, biological data, web
pages, etc.). Our goal in this chapter is to build a music recommender system that uses a
basic version of the CF approach.

Of course, our recommender system and our CF approach will necessarily be simplified.
To build an industrial-strength recommender system is quite complicated. The system that
won the Netflix prize1 consists of several different sophisticated algorithms. 2

To motivate the idea behind collaborative filtering, let’s go back to the dark ages before
the World Wide Web became pervasive. In those ancient times – perhaps before you were
born – people discovered movies, books, restaurants, and music by asking people they knew
what they trusted to have tastes similar to their own. Collaborative filtering systems work
on this same fundamental principle–they find people who generally like the same things you

1The Netflix prize was a $1 million dollar prize awarded in 2009 for improving the Netflix recommendation
system by at least 10%. See http://www.netflixprize.com for more details.

2See the paper “The BellKor Solution to the Netflix Grand Prize” by Yehuda Koren at http://www.

netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
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CHAPTER 5. IMPERATIVE PROGRAMMING

do, and then recommend the things that they like that you might not have discovered yet.
Actually, this is only one type of collaborative filtering called user-based CF .3

Let’s consider a simple example in which a system is trying to recommend music you
might like. First, the system needs to know something about your tastes, so you have to
give it some information about what you like. Let’s say you tell the system you like Lady
Gaga, Katy Perry, Justin Bieber and Maroon 5. The system knows about the following

I talked to your
roommate and

learned that
those are your

favorite groups,
so don’t try to

deny it!

additional five “stored” users (users for which we’ve already stored some data):

• April likes Maroon 5, The Rolling Stones and The Beatles

• Ben likes Lady Gaga, Adele, Kelly Clarkson, The Dixie Chicks and Lady Antebellum

• Cory likes Kelly Clarkson, Lady Gaga, Katy Perry, Justin Bieber and Lady Antebel-
lum

• Dave likes The Beatles, Maroon 5, Eli Young Band and Scotty McCreery

• Edgar likes Adele, Maroon 5, Katy Perry, and Bruno Mars.

Determining a recommendation for you involves two steps:

1. Determine which user (or users) have tastes most similar to yours.

2. Choose and rank artists that the similar user likes. These are your recommendations.

Of course, there are many algorithms for performing each of the above steps, and many
interesting problems that can arise in performing them, but again we will keep things
relatively simple here. Our system will use the following simple CF algorithm:

1. For each user, count the number of matching artists between your profile and the
profile of that user.

2. Choose the user with the highest number of matches.

3. Recommend the artists who appear on their list and not on yours.

So in the above example, the system determines that Cory has the greatest overlap
with you: He likes three of the same artists you like (Lady Gaga, Katy Perry and Justin
Bieber) whereas none of the others have more than two groups in common with you. So, the
recommendation system chooses Cory as the person whose tastes are most similar to yours.
It also sees that Cory likes Lady Antebellum and Kelly Clarkson and therefore recommends
that you check out these additional artists.

This is an admittedly simplified example and you can probably come up with a number
of good questions about this approach. For example:

• What if I already know that I don’t like Kelly Clarkson? How could the system use
this information?

• What if there are multiple people who tie for the best match with my tastes? Con-
versely, what if no one matches my tastes?

3If you’re dying to learn more about different types of CF, good! Keep taking CS courses. Or for a
more immediate gratification, read the Wikipedia page: http://en.wikipedia.org/wiki/Collaborative_

filtering
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• In a real system, there are millions of users. How can the system efficiently find the
best match?

Most of these answers are beyond the scope of this chapter, but we encourage you to think
about how you might answer these questions as you read through the rest of this chapter.
If you’re intrigued, great! This is exactly the kind of stuff you’ll learn as you continue your
CS studies. But for now, back to the foundations for our music recommendation system.

5.1.1 Our Goal: A Music Recommender System

In the rest of this chapter we will build a music recommender system that implements
the basic collaborative filtering algorithm described above. The transcript below shows an
example of an interaction with the system.

Welcome to the music recommender system!

What is your name? Christine

Welcome Christine. Since you are a new user, I will need to gather

some information about your music preferences.

Please enter an artist or band that you like: Maroon 5

Please enter another artist or band that you like,

or just press enter to see your recommendations: Lady Gaga

Please enter another artist or band that you like,

or just press enter to see your recommendations: Katy Perry

Please enter another artist or band that you like,

or just press enter to see your recommendations: Justin Bieber

Please enter another artist or band that you like,

or just press enter to see your recommendations:

Christine, based on the users I currently know about,

I believe you might like:

Lady Antebellum

Kelly Clarkson

I hope you enjoy them! I will save your preferred artists

and will have new recommendations for you in the future.

The system keeps track of users and their preferences. As more users rate more songs,
the system can generate additional recommendations, both for new and existing users. So,
the next time Christine uses the system, she’s likely to get some new recommendations.

Before we introduce the techniques that we’ll use to implement the recommendation
system, take a few moments to think about the steps involved in the program demonstrated
above. What data do you need to gather and store? How do you need to process the data?
What do you need to produce as output?
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CHAPTER 5. IMPERATIVE PROGRAMMING

Although there are many ways to actually write the program, the underlying components
are the following:

• The ability to gather input from the user;

• The ability to repeat a task (e.g., asking for the user’s preferred artists, comparing
against stored users’ preferences) many times;

• The ability to store and manipulate data in different ways (e.g., storing the user’s
responses, manipulating the stored users’ preferences); and

• The ability to save data between program runs, and to load saved data (e.g., loading
the stored users’ preferences from a file, saving the current user’s preferences to a file).

Throughout the rest of this chapter we will learn ways to perform each of the above tasks,
ultimately resulting in a fully-functional music recommender system.

5.2 Getting Input from the User

The first task that we have listed above is to get input from the user. Fortunately, this is a
simple task thanks to Python’s built-in raw_input function. (This function is called input

in Python 3.) Here’s an example of some code that uses the raw_input function:

def greeting ():

name = raw_input('What is your name? ')
print 'Nice to meet you ,', name

And here’s how that code looks when it is run:

>>> greeting ()

What is your name? Christine

Nice to meet you Christine

The function raw_input takes one argument: a string that will be printed when the
raw_input function is run (e.g., the string ’What is your name?’ in the example above).
When Python sees the raw_input command, it prints that string and then waits for the user
to type in her own string. The user types in a string and presses Return (or Enter). At
that point, Python assigns the user’s input string to the variable appearing on the left-hand
side of the = sign. In the example above, the string that the user typed in will be assigned
to the variable name.

Python’s raw_input function will always return a string. If you want that string to be
converted into something else, like an integer or a floating point number (a number with
decimal a decimal point – also known as a “float”), that can be done using Python’s data
conversion functions. In the example below, we take the user’s input string and convert it
into a floating point number.

def plus42 ():

number = float(raw_input('Enter a number '))
nPlus42 = number + 42

print number , '+ 42 =', nPlus42
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>>> plus42 ()

Enter a number 15

15 + 42 = 57.0

Note that converting data from one type to another (e.g., from strings to floats) can be
“risky.” In the example above, we converted the user’s input string “15” into the floating
point number 15.0. However, had the user entered the string “watermelon’,’ Python’s
attempt to convert that to a floating point number would have failed and resulted in an
error message.

Proving that
watermelons
don’t float!

5.3 Repeated Tasks: Loops

The next feature that our program needs is to perform some set of actions multiple times.
For example, the recommender system needs to ask the user to enter a number of artists
that they like. For the moment, let’s change the system slightly so that instead of allowing
the user to enter as many artists as she likes, the system asks the user to enter exactly four
artists. The algorithm that performs this data-collection looks something like:

• Repeat the following four times:

– Display a prompt to the user;

– Obtain the user’s input; and

– Record the user’s answer.

Imagine that we have a few lines of Python code that gather and store input from the
user. Since we want to do this four times, we could just make four copies of that code, one
for each time that we want to ask the user for an artist. For only four preferences, this
wouldn’t be so bad. But imagine that we wanted to ask the user for 10 preferences? Or 42?
The code would quickly become long and cumbersome. Furthermore, if we decided that we
wanted to make a small change to the way that we ask the user for input, we’d have to
make that change in 4, 10, or 42 places in our program. This would be very annoying for
the programmer! Moreover, ultimately we might want to let the user herself specify how
many artists she wants to enter, instead of fixing that value before the program runs. In
that case, we simply wouldn’t know in advance how many copies of the code to place in our
program.

Actually, 42
times is just the
right number of
times for me!

We have already seen one way to perform repeated tasks in Chapter 2: recursion. In
fact, we’ve also seen a second: list comprehensions. This chapter presents another way to
perform these same repeated tasks: iteration or loops.

Just as recursion allows a programmer to express self-similarity in a natural way, loops
naturally express sequential repetition. It turns out that recursion and loops are often
equally good choices for doing something repeatedly, but in many cases it’s much easier and
more natural to use one rather than the other. More on that shortly!

5.3.1 Recursion vs. Iteration at the Low Level

If you skipped
Chapter 4, no
worries—you
might jump to
Section 5.3.2.

To illustrate the difference between iteration and recursion, let’s travel backwards in time
and revisit the factorial programs that we wrote in Chapters 2 and 4. Here was our recursive
factorial function:
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def factorial(n):

i f n == 0:

return 1

e l se
answer = factorial(n - 1)

return n * answer

In Chapter 4, we implemented this function in Hmmm and saw that, at the machine level,
the recursion uses a stack to keep track of the function calls and the values of the variables in
each function call. In that chapter, we also looked at another very different implementation
of the factorial function that was considerably simpler and did not use a stack. Here it is:

00 read r1 # read n from t h e u s e r
01 loadn r13 1 # l o a d 1 i n t o t h e r e t u r n r e g i s t e r

# ( b a s e c a s e r e t u r n v a l u e )
02 jeqz r1 06 # i f we are a t t h e b a s e case , jump t o t h e

# end
03 mul r13 r13 r1 # e l s e m u l t i p l y t h e answer by n
04 addn r1 -1 # and decrement n
05 jump 02 # go back t o l i n e 2 and t e s t f o r b a s e c a s e

# a g a i n
06 write r13 # we ' re done so p r i n t t h e answer
07 halt # and h a l t

In contrast to the recursive version, this implementation uses a variable (r13 in this example)
to gradually “accumulate” the answer. Initially, r13 is set to 1. In lines 3–5, we multiply
r13 by the current value of n (stored in register r1), decrement n by 1, and jumps back to
line 2 to test if we should do this again. We repeat this loop until the value of n reaches 0.
At that point, r13 contains the product n× (n− 1)× . . .× 1 and we’re done.

In some sense, this iterative approach is simpler than recursion because it just loops
“round and round”, updating the value of a variable until it’s done. There’s no need to
keep track (on the stack) of what “things were like” before the recursive call and reinstate
those “things” (from the stack) when the recursion returns. Let’s now see how this works
in Python.

5.3.2 Definite Iteration: for loops

In many cases, we want to repeat a certain computation a specific number of times. Python’s
for loop expresses this idea. Let’s take a look at how we can use a for loop to implement
the iteration in the recommendation program to collect a fixed number of artists that the
user likes.

To begin, assume the user will enter three artists.

1 artists = []

2
3 for i in [0, 1, 2]:

4 next_artist = raw_input('Enter an artist that you like:')
5 artists.append(next_artist)

6
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7 print 'Thank you! We'll work on your recommendations now.'

(Use input instead of raw_input in Python 3, and remember that print is a function in
Python 3, so you need to put the string to print in parentheses.)

This for loop will repeat its “body”, lines 4–5, exactly 3 times. Let’s look closely at
how this works. Line 3 above is the header of the loop, with five required parts:

1. The keyword for;

2. The name of a variable that will control the loop. In our case that variable is named
i. It’s safest to use a new variable name, created just for this for loop, or one whose
old value is no longer needed;

3. The keyword in;

4. A sequence such as a list or a string. In our case it is the list [0, 1, 2]; and

5. A colon. This is the end of the header and the start of the for loop body.

As we noted, lines 4–5 are called the body of the loop. The instructions in the loop body
must be indented consistently within the loop header, just as statements within functions
are. Note that line 7 above is not part of the loop body because it is not indented.

So what exactly is going on in this for loop? Our variable i will initially take the first
value in the list, which is 0. It will then perform the lines of code that are indented below
the for loop. In our case, those are lines 4 and 5. Line 4 uses Python’s raw_input function
(or input in Python 3) which prints the string

Enter an artist that you like:

and then pauses to let the user type in a response. Once the user has typed a response
and pressed the Enter (or Return) key, that response is placed in the variable named
next_artist. So, next_artist will be a string that is the name of an artist. Line 5 uses
Python’s append function to add that string to the list artists.

Python recognizes that this is the end of the body of the for loop because line 7 is not
indented – that is, it’s at the same level of indentation as line 3. So, Python now goes back
to line 3 and this time sets i to be 1. Now, lines 4 and 5 are performed again, resulting in
the user being asked for another string and that string being appended to the end of the
artists list.

Again, Python goes back up to line 3 and this time i takes the value 2. Once again,
Python executes lines 4 and 5 and we get another artist and add it to the artists list.

Finally, i has no more values to take since we told it to take values from the list
[0, 1, 2]. So now the loop is done and Python continues computing at line 7.

How could we ask the user to respond to four examples instead of three? Easy! We Four fors!

could modify the loop header to be:

for i in [0, 1, 2, 3]:

What about 25 iterations? Well, we could replace the list [0, 1, 2, 3] with the list [0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] but who wants to type all that? (We
certainly didn’t find it very much fun!) Instead, we can use the built-in range function
(that we saw in Chapter 3) to automatically generate that list:
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for i in range (25):
Remember that

range(25) does indeed
generate that 25-element

list from 0 to 24. Does the control variable have to be named i? No – any valid variable name can be
used here. For clarity and to avoid confusion, you should generally avoid using a name that
you have already used earlier in your function, although we often reuse variable names in
loops.

Finally, a word on style: In general, variable names like i are not very descriptive.
However, a variable used in a loop is a very temporary variable – it serves the purpose of
allowing us to loop and then once the loop is over we’re done with it. Therefore, it’s quite
common to use short variable names in for loops and the names i, j, and k are particularly
popular.

5.3.3 How Is the Control Variable Used?

In the example above, the control variable took on a new value at every iteration through
the loop, but we never explicitly used the value of variable inside the body of the loop.
Therefore, it didn’t matter what the list of elements in our for loop header was—these
elements were ignored. We could have accomplished the same thing with any three-element
list header:

for i in ['I', 'love', 'Spam']:

or

for i in [42, 42, 42]:

In both cases, we would have gone through the loop three times.
Sometimes the value of the control variable is important to the computation inside the

for loop. For example, consider this iterative version of the factorial function. Here we’ve
named the control variable factor to suggest its role:

def factorial(n):

answerSoFar = 1

for factor in range(1, n+1):

answerSoFar = answerSoFar * factor

return answerSoFar

When we call factorial(4), the loop becomes:

for factor in range(1, 5):

answerSoFar = answerSoFar * factor

What happens here?

• After the first time through the loop answerSoFar holds the result of its previous
value (1) times the value of factor (1). When the loop completes its first iteration
answerSoFar will be 1 (i.e., 1*1).

• In the second iteration through the loop answerSoFar will again be assigned to hold
the product of the previous value of answerSoFar times factor. Since factor’s value
is now 2, answerSoFar will equal 1*2, or 2, when this second loop iteration ends.
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• After the third time through the loop, answerSoFar will be 2*3 or 6, and the fourth
time through answerSoFar will become 6*4, or 24.

The loop repeats exactly 4 times because range(1, 5) has four elements: [1, 2, 3, 4].
Let’s now “unroll” this four-iteration loop to see what it does at each iteration. Calling

factorial(4) becomes

# f a c t o r i a l f u n c t i o n b e g i n s
answerSoFar = 1

# l o o p i t e r a t i o n 1
factor = 1

answerSoFar = answerSoFar * factor # answerSoFar becomes 1
# i t e r a t i o n 2
factor = 2

answerSoFar = answerSoFar * factor # answerSoFar becomes 2
# i t e r a t i o n 3
factor = 3

answerSoFar = answerSoFar * factor # answerSoFar becomes 6
# i t e r a t i o n 4
factor = 4

answerSoFar = answerSoFar * factor # answerSoFar becomes 24

# l o o p ends , 24 i s r e t u r n e d

5.3.4 Accumulating Answers

Consider what happened to answerSoFar throughout the iterations above. It started with a
value and it changed that value each time through the loop, so that when the loop completed
the returned answerSoFar was the final answer. This technique of accumulation is very
common, and the variable that “accumulates” the desired result is called an accumulator .

Let’s look at another example. The listDoubler function below returns a new list in
which each element is double the value of its corresponding element in the input list, aList.
Which variable is the accumulator here?

def listDoubler(aList ):

doubledList = []

for elem in aList:

# append t h e v a l u e 2∗ elem t o d o u b l e d L i s t
doubledList.append (2* elem)

return doubledList

>>> listDoubler ([20, 21, 22])

[40, 42, 44]

In this case, the accumulator is the list doubledList rather than a number. It’s growing
in length one element at a time instead of one factor at a time as in factorial.

Let’s consider one more example where the loop control variable’s value is important
to the functionality of a loop. Returning to our recommender program, let’s write a loop
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that calculates the number of matches between two lists. This function will be useful when
we’re comparing the current user’s preferences to the stored preferences of other users to
determine which stored user most closely matches the current user’s preferences. For this
problem, we have two lists of artist/band names, for example:

>>> userPrefs

[’Maroon 5’, ’Lady Gaga’, ’Justin Bieber’]

>>> storedUserPrefs

[’Maroon 5’, ’Kelly Clarkson’, ’Lady Gaga’, ’Bruno Mars’]

Our first version of this function will implement the following algorithm:

• Initialize a counter to 0

• For each artist in the user’s preference’s

– If that artist is in the stored user’s preferences too, add one to count

This simple algorithm is implemented with the following Python code:

def numMatches(userPrefs , storedUserPrefs ):

' ' ' r e t u r n t h e number o f e l e m e n t s t h a t match be tween
t h e l i s t s u s e r P r e f s and s t o r e d U s e r P r e f s ' ' '

count = 0

for item in userPrefs:

i f item in storedUsersPrefs:

count += 1

return count

In this function we’ve used a shorthand notation to increment the value of count. TheSimilar shorthands
include -=, *=, and /=. line

count += 1

is just shorthand for

count = count + 1

Notice that the code above is actually not specific to our music recommender function, but
in fact can be used to compare any two lists and returns the number of matching elements
between them. For this reason, it’s stylistically better to use generic list names for the
parameters to this function – that is we could replace the variable name userPrefs with a
more general name such as listA and storedUserPrefs with listB.

Finally, let’s complete the process of choosing the stored user with the highest number
of matches to the current user. Let’s assume that each stored user is represented by a list
of that user’s preferences and then we put all of those lists into one master list. Using the
representation, the stored users’ preferences might look like this:

[[’Maroon 5’, ’The Rolling Stones’, ’The Beatles’],

[’Lady Gaga’, ’Adele’, ’Kelly Clarkson’, ’The Dixie Chicks’, ’Lady Antebellum’],

[’Kelly Clarkson’, ’Lady Gaga’, ’Katy Perry’, ’Justin Bieber’, ’Lady Antebellum’],

[’The Beatles’, ’Maroon 5’, ’Eli Young Band’, ’Scotty McCreery’],

[’Adele’, ’Maroon 5’, ’Katy Perry’, ’Bruno Mars’]]
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Note that we have not included the names of the stored users, since we only care about
their preferences for now. However, we can think about the stored users as having indices.
In the list above, index 0 corresponds to the user who likes [’Maroon 5’, ’The Rolling

Stones’, ’The Beatles’]. There are four other users with indices 1, 2, 3, and 4. Let’s
will assume that this list does not contain the preferences of the current user.

So, imagine that we want to calculate the index of the stored user with the best match
to our current user. For example, if our current user likes [’Lady Gaga’, ’Katy Perry’,

’Justin Bieber’, ’Maroon 5’] then the stored user at index 2 in the stored user list
above has the most matches in common – three matches whereas all other stored users have
fewer matches.

The algorithm for finding the user with the best match to the current user is the follow-
ing:

• Initialize the maximum number of matches seen so far to 0

• For each stored user:

– Count the number of matches between that stored user’s preferences and the
current user’s preferences

– If that number of matches is greater than the maximum number of matches so
far:

∗ Update the maximum number of matches seen so far

∗ Keep track of index of that user

• Return the index of the user with the maximum number of matches

How could we express this in Python? A first attempt might begin like this:

def findBestUser(userPrefs , allUsersPrefs ):

' ' ' Given a l i s t o f u s e r a r t i s t p r e f e r e n c e s and a
l i s t o f l i s t s r e p r e s e n t i n g a l l s t o r e d u s e r s '
p r e f e r e n c e s , r e t u r n t h e i n d e x o f t h e s t o r e d
u s e r w i t h t h e most matches t o t h e c u r r e n t u s e r . ' ' '

max_matches = 0 # no matches found y e t !
best_index = 0

for pref_list in allUsersPrefs:

i f numMatches(userPrefs , pref_list) > max_matches:

# somehow g e t t h e i n d e x o f p r e f l i s t ??

Note that we maintain a variable called max_matches that stores the maximum number of
matches found so far. Initially it is set to 0, because we haven’t done any comparisons yet
and have no matches. We also maintain a variable called best_index that stores the index
of the list in the allUsersPrefs that has the highest number of matches. We’ve initialized
this to 0 as well. Is this a good idea? It suggests that the list with index 0 has the best
number of matches so far. In fact, we haven’t even looked at the list with index 0 at this
point, so this may seem a bit weird. On the other hand, it doesn’t hurt to initialize this
variable to 0 since we’re about to begin counting matches in the loop and the best solution
will be at least 0.

113 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



CHAPTER 5. IMPERATIVE PROGRAMMING

Notice that we reach a dead end in the last line of our function above. We have the
element from the allPrefs list, but we have no way of getting the index that corresponds
to it and it’s that index that we’re committed to finding. Can you think of a way to solve
this problem—before peeking at the solution below?

Here’s our next attempt—this time, more successful:

def findBestUser(userPrefs , allUsersPrefs ):

' ' ' Given a l i s t o f u s e r a r t i s t p r e f e r e n c e s and a
l i s t o f l i s t s r e p r e s e n t e d a l l s t o r e d u s e r s '
p r e f e r e n c e s , r e t u r n t h e i n d e x o f t h e s t o r e d
u s e r w i t h t h e most matches t o t h e c u r r e n t u s e r . ' ' '

max_matches = 0

best_index = 0

for i in range(len(allUsersPrefs )):

curr_matches = countMatches(userPrefs ,

allPrefs[i])

i f curr_matches > max_matches:

best_index = i

max_matches = curr_matches

return best_index

What’s the difference? Notice that now our for loop is iterating not over the lists in
allUsersPrefs but rather over the indices of those lists. We do this using the range

function to generate the list of all indices in allUsersPrefs. With this index variable, we
can access the element in the list and we can store that index in our best_index variable.

5.3.5 Indefinite Iteration: while Loops

In all of the examples above, we knew exactly how many times we wanted to loop. However,
in many cases, we can’t know how many iterations we need — the number of iterations of
the loop depends on some external factor out of our control.

Let’s continue with our recommendation program. In the last section we collected a
fixed number of preferred artists from the user. But in our original program we allowed the
user to enter as many artists as they wished, whether that number was one or one thousand.

Recall that for loops always run a definite number of times, so this situation calls for a
different kind of loop: the while loop. A while loop runs as long as its boolean condition
is true.

In other words,
a while loop

runs for
awhile.

Let’s take a close look at the structure of a while loop that implements the new desired
behavior for our recommender program

1 newPref = raw_input("Plese enter the name of an \

2 artist of band that you like: " )

3
4 while newPref != '':
5 prefs.append(newPref)

6 newPref = raw_input("Please enter an artist or band \

7 that you like , or just press enter to see recommendations: ")

8
9 print ('Thanks for your input!')
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The while loop is similar to the for loop in that it consists of a loop header (line 4)
and a loop body (lines 5–7). The loop header consists of the following three elements, in
order:

1. The keyword while

2. A boolean expression. In our example this expression is newPref != ’’

3. A colon

As with for loops, the loop body must be indented within the loop header. Thus, line
9 in the above example is not inside the loop body. Note that both of the raw_input

statements are split over more than one line of text, but Python considers each really just
one line because of the \symbols at the end of the lines.

A while loop will execute as long as the Boolean expression in the header evaluates
to True. In this case, the Boolean expression is newPref != ’’. Assuming that the user
entered a string in line 1, the expression newPref != ’’ will evaluate to True the first
time it is evaluated. Thus, we enter the body of the for loop and execute lines 5–7. If
the user entered another string, then this Boolean will again evaluate to True. This will
repeat until, eventually, the user enters no string – she just presses Return or Enter.
At this point, newPref is an empty string. Thus, when we return to evaluate the Boolean
expressionnewPref != ’’ in the while statement, it is now False and the loop terminates,
causing execution to continue at line 9.

5.3.6 for Loops vs. while Loops

Often it’s clear whether a computational problem calls for definite (for) or indefinite
(while) iteration. One simple rule-of-thumb is that for loops are ideally suited to cases
when you know exactly how many iterations of the loop will be conducted whereas while

loops are ideal for cases when it’s less clear in advance how many times the loop must
repeat.

But aliens
don’t have
thumbs!

It is always possible to use a while loop to emulate the behavior of a for loop. For
example, we could express the factorial function with a while loop as follows:

def factorial(n):

answer = 1

while n > 0:

answer = answer * n

n = n-1

return answer

Here we’ve used answer instead of answerSoFar with the understanding that answer will
not actually hold the value of the desired answer until the end of the loop—this is a common
style for naming accumulator variables. . . . that saves typing!

Be careful! Sometimes when people try to use a while loop to perform a specific number
of iterations their code ends up looking like this:

def factorial(n):

answer = 1

while n > 0:
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answer = answer * n

return answer

What happens when you run factorial(5) using the function above? The loop will run,
but it will never stop!

This while loop depends on the fact that n will eventually reach 0, but in the body of
the loop we never change the value of n! Python will happily continue multiplying answerand we never get n!

* n forever—or at least until you get tired of waiting and hit Ctrl-C to stop the program.
See if you can spot the error in the following version:

def factorial(n):

answer = 1

while n > 0:

answer = answer * n

n = n-1

return answer

This code will also run forever. But why? After all, we definitely do decrease n? This bug
is more subtle. Remember that the while loop runs only the code in the body of the loop
before repeating. Because the statement that subtracts 1 from n is not indented, it is not
part of the while loop’s body. Again, the loop variable does not change within the loop,
and it runs forever.

A loop that never ends is called an infinite loop and it is a common programmingThe Apple Corporation’s
address is One Infinite

Loop, Cupertino, CA
bug. When using a while loop, remember to update your loop-control variable inside the
loop. It’s an advantage of for loops that this updating is done automatically! In fact,
the tendency to accidentally create infinite loops is so common leads us to an important
takeaway message about the choice between for and while loops.

Takeaway message: If you know in advance how many times you want to run a loop,
use a for loop; if you don’t, use a while loop.

5.3.7 Creating Infinite Loops On Purpose

Sometimes infinite loops can come in handy. They’re not actually infinite, but the idea
is that we will stop them when we are “done,” and we don’t have to decide what “done”
means until later in the loop itself.

I’m pro-
crastination!

For example, consider a different version of the recommender loop above that gathers
data from the user.

numCorrect = 0

while True: # run forever -- or at least as long as needed...

newPref = raw_input("Please enter an artist or band that you like, \

or just press enter to see recommendations: ")

if newPref:

prefs.append(newPref)

else:

break

print(’Thanks for your input!’)
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The body of the else statement contains one instruction: the break instruction. break
will immediately halt the execution of the loop that it appears in, causing the code to jump
to the next line immediately after the loop body. break can be used in any kind of loop,
and its effect is always the same–if the code reaches a break statement, Python immediately
exits the containing loop and proceeds with the next line after the loop. If you have one loop
inside another loop (a perfectly OK thing to do, as you’ll see below), the break statement
exits only the innermost loop.

You might ask, “Do we really need a break?” After all, the loop above can be written
Yes! I need a
break!

with a more informative condition, as we saw above. Which approach is better? It’s a
matter of style. Some prefer the “delayed decision” approach, writing loops that appear
to run too long, only to break out of them from the inside; others prefer to put all of the
conditions directly in the loop header. The advantage of the latter approach is that the
condition helps clarify the context for the loop. The advantage of the former (in some cases
anyway) is that it avoids the awkward double-input statement—there’s no need to ask the
user to enter their initial response in a separate input statement before the loop begins.

5.3.8 Iteration Is Efficient

The heart of imperative programming is the ability to change the value of variables—one or
more accumulators—until a desired result is reached. These in-place changes can be more
efficient, because they save the overhead of recursive function calls. For example, on our
aging computer, the Python code

counter = 0

while counter < 10000:

counter = counter + 1

ran in 2.6 milliseconds. The “equivalent” recursive program

def increment(value, times):

if times <= 0:

return value

return increment(value + 1, times - 1)

counter = increment(0, 10000)

ran more than an order of magnitude slower, in 38.3 milliseconds.
Why the difference? Both versions evaluate 10,000 boolean tests; both execute the same

10,000 additions. The difference comes from the overhead of building and removing the
stack frames used to implement the function calls made recursively.

Memory differences are even more dramatic: storing partial results on the stack can
quickly exhaust even today’s huge memory stores.

5.4 References and Mutable vs. Immutable Data

At the beginning of this chapter we introduced the two key components of imperative
programming: iteration and data mutation. We have already discussed iteration in some
depth. Now we begin to explore the concept of data mutation.
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5.4.1 Assignment by Reference

The assignment and re-assignment of values to one variable—the accumulator—charac-
terizes imperative programming with loops. All of these assignments are efficient, but only
if the size of the copied data is small! Floating-point values and typical integers are
stored in a small space, often the size of one register, 32 or 64 bits. They can be copied
from place to place rapidly. For example, the assignment operation

# s u p p o s e x r e f e r s t o t h e v a l u e 42 r i g h t now
y = x

runs extremely fast, probably best measured in nanoseconds, as suggested by the timings
in the previous section.

Lists, on the other hand, can grow very large. Consider this code:

# s u p p o s e t h a t l i s t 1 h o l d s t h e v a l u e o f
# range (10 00 04 2) r i g h t now
list2 = list1

This assignment makes list2 refer to a 1,000,042-element list—a potentially expensive
proposition, if it involved 1,000,042 individual integer assignments like the y = x example
above. What’s more, there’s no guarantee the elements of list1 aren’t lists themselves. . . .

How does Python make both integer and list assignments efficient? It does so through a
simple, single rule for all of its data types: Assignments copy a single reference.

Reference? Recall from Chapter 2 that all Python variables consist of both a reference,
their memory address, and a value, the data that is referred to by that reference. We
typically think only of the value of a variable, but you can also view the reference with
Python’s built-in id function:

>>> x = 42

>>> x # Python w i l l r e p l y w i t h x ' s v a l u e
42

>>> id(x) # a s k s f o r x ' s r e f e r e n c e
# ( i t s memory l o c a t i o n )

505494448 # t h i s w i l l be d i f f e r e n t on your machine !

The reference is, in fact, something that should be very familiar to you after reading
Chapter 4: it is the location of that piece of data in memory! If you like, you can think of
the variables that store the references as registers on the CPU. (This is not quite exactly
correct, but a reasonable conceptual model.) Figure 5.1 illustrates this concept graphically.

Python makes assignment efficient by only copying the reference, and not the data:

>>> x = 42 # t h i s p u t s t h e v a l u e 42 i n t h e n e x t memory
# s l o t , 505494448 and t h e n i t g i v e s x a copy
# o f t h a t memory r e f e r e n c e

>>> y = x # t h i s c o p i e s x ' s memory r e f e r e n c e i n t o y ' s

>>> id(x) # a s k s f o r x ' s r e f e r e n c e ( i t s memory l o c a t i o n )
505494448

>>> id(y) # a s k s f o r y ' s r e f e r e n c e ( i t s memory l o c a t i o n )
505494448
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505494448x

y 505494448

Variables Memory

0
address

505494448

…

…

42

505494464x

y 505494448

Variables Memory

0
address

505494464

…

…

43
42505494448

x = 42
y = x

x = 42
y = x
x = 43

Figure 5.1: A depiction of how Python stores data. The boxes on the left are the variables,
which you can think of as registers on the CPU, which store references to locations in
memory. The actual data is stored in memory.

As you would expect, changes to x do not affect y:

>>> x = 43 # t h i s p u t s 43 i n t h e n e x t memory s l o t ,
# 505494464

>>> id(x)

505494464 # x ' s r e f e r e n c e has changed
>>> id(y)

505494448 # b u t y ' s has not

The result of executing the above code is shown on the right in Figure 5.1.
Assignment happens the same way, regardless of the data types involved: It is possible to

reprogram how
assignment works for
user-defined data types,
but this is the default.

>>> list1 = [42 ,43] # t h i s w i l l c r e a t e t h e l i s t [ 4 2 , 4 3 ]
# and g i v e i t s l o c a t i o n t o l i s t 1

>>> list2 = list1 # g i v e l i s t 2 t h a t r e f e r e n c e , as w e l l

>>> list1 # t h e v a l u e s o f each are as e x p e c t e d
[42,43]

>>> list2

[42,43]

>>> id(list1) # a s k s f o r l i s t 1 ' s r e f e r e n c e
# ( i t s memory l o c a t i o n )

538664

>>> id(list2) # a s k s f o r l i s t 2 ' s r e f e r e n c e
# ( i t s memory l o c a t i o n )

538664
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list1

Variables Memory

list1 = [42,43] 
list2 = list1

list2

[  ,  ]
list1

Variables Memory

list1 = [42,43] 
list2 = list1
list1 = [44]

list2 [  ,  ]

[  ]

42 43

42
43 44

Figure 5.2: A box-and-arrow diagram abstraction of how Python stores list data. All of the
elements in the list (and the list itself) are in memory, but we have abstracted away from
the exact addresses of these elements.

As the data we store gets more complicated, it becomes cumbersome to try to actually
represent what is happening in memory faithfully, so computer scientists often use a type
of diagram called a box-and-arrow diagram to illustrate how references refer to memory.
A box-and-arrow diagram for the above code is shown on the left in Figure 5.2. In this
figure, the list [42, 43] exists in memory at the location referred to by both list1 and
list2, but instead of writing out the actual memory location, we indicate that list1 and
list2 refer to the same data in memory using arrows. In fact, notice something interesting
about Figure 5.2: the elements in the list are also references to data in other locations in
memory! This is a fundamental difference between integers and lists: a list refers to the
memory location of a collection of potentially many elements, each of which has its own
reference to the underlying data!

As with integers, if an assignment is made, one reference is copied, as shown in the code
below, and on the right in Figure 5.2:

>>> list1 = [44] # w i l l c r e a t e t h e l i s t [ 4 4 ]
# and make l i s t 1 r e f e r t o i t

>>> id(list1) # l i s t 1 ' s r e f e r e n c e has changed
541600

>>> id(list2) # b u t l i s t 2 ' s has not
538664

Because assignment copies only one memory reference, list1 and list2 contain exactly
the same set of references as their elements!

This one-reference rule can have surprising repercussions. Consider this example, in
which x, list1[0], and list2[0] start out by holding the same reference to the value 42:

>>> x = 42 # t o g e t s t a r t e d
>>> list1 = [x] # s i m i l a r t o b e f o r e
>>> list2 = list1 # g i v e l i s t 2 t h a t r e f e r e n c e , as w e l l

>>> id(x) # a l l r e f e r t o t h e same d a t a
505494448
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list1

Variables Memory

x = 42
list1 = [x]
list2 = list1

list2

[  ]

42x

list1

Variables Memory

x = 42
list1 = [x]
list2 = list1
list1[0] = 43

list2

[  ]

42x 43

Figure 5.3: A graphical illustration of what happens when you modify the elements in a
list that is referenced by two variables.

>>> id(list1 [0])

505494448

>>> id(list2 [0])

505494448

What happens when we change list1[0]?

>>> list1 [0] = 43 # t h i s w i l l change t h e r e f e r e n c e
# h e l d by t h e ” z e r o t h ” e l e m e n t o f l i s t 1

>>> list1 [0]

43 # not s u r p r i s i n g a t a l l
>>> list2 [0]

43 # aha ! l i s t 1 and l i s t 2 c o n t a i n
# t h e SAME REFERENCES

>>> x

42 # x i s a d i s t i n c t r e f e r e n c e

# Let ' s s e e

>>> id(list1 [0]) # indeed , t h e r e f e r e n c e o f t h a t z e r o t h
# e l e m e n t has changed

505494464

>>> id(list2 [0]) # l i s t 2 ' s z e r o t h e l e m e n t has changed t o o !
505494464

>>> id(x) # x i s s t i l l , h a p p i l y , t h e same as b e f o r e
505494448

This example is illustrated in Figure 5.3.
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5.4.2 Mutable Data Types Can Be Changed Using Other Names!

Note that list2[0] has been changed in the above example, even though no assignment
statements involving list2[0] were run! Because list2 is really just another name for
the exact same data as list1, we say that list2 is an alias of list1. Note that aliases
should be used with caution as they can be both powerful and dangerous, as we explore
more below.

Data types, such as lists, that allow assignment via shared references are called mutable.
They are mutable, because their components can mutate “out from under them,” through
another reference that points to the same component parts.

Data types that do not allow changes to a variable’s value—except by direct reassign-
ment via the variable’s name—are termed immutable. Integers, floating-point values, and

I love to talk. I
guess that
makes me

immutable!
booleans are examples of immutable types. This isn’t surprising, because they do not have
any accessible component parts that could mutate anyway.Python lets you compute

what bits make up these
data types, but you can’t

change—or even
read—the individual bits

themselves.

Types with component parts can also be immutable: for example, strings are an im-
mutable type. If you try to change a piece of a string, Python will complain:

>>> s = ’immutable’

>>> s[0] = ’ ’

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: ’str’ object does not support item assignment

Keep in mind that, mutable or immutable, you can always change the data to which a
variable refers:

>>> s = ’immutable’

>>> s

’immutable’

>>> s = ’mutable’

>>> s

’mutable’

Take-Home Message

There are a few key ideas to keep in mind:

• All Python variables have both a reference and a value.

• Python assignment copies one reference.

• Mutable types allow assignment to component parts—this enables the value of a
variable to change through other references that share its component parts.

• Immutable types do not allow assignment to component parts—but reassignment of
the whole variable and its reference remains possible.
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5.5 Mutable Data + Iteration: Sorting out Artists

Now that we have introduced the two fundamental concepts in imperative programming,
we return to our recommendation example in order to motivate and illustrate the power of
data mutation and iteration together. The example we will use is sorting a list of elements.

5.5.1 Why Sort? Running Time Matters

Before we dive into the details of sorting, let’s establish (at least one reason) why it is
useful to have data that is in sorted order. In short, sorted data makes data processing
much faster.

But how do we measure what is “fast” vs. what is “slow?” The key to analyzing how
long a program takes to run is to count the number of operations that it will perform for
a given size input. Computer Scientists rarely care how fast or slow programs are for very
small input: they are almost always fast if the input is small. However, if they are processing
large inputs (for example, millions of users who have each rated hundreds or even thousands
of artists), speed becomes critical. In fact, if we were trying

to build a system to
handle millions of users,
we would need to make
many more optimizations
and use fundamentally
different algorithms, but
that is beyond the scope
of this chapter. Here we
show you how to speed
things up to handle
slightly larger inputs.

So, let’s look at how long it takes to calculate the number of matches between two lists
using the function from section 5.3.4, reproduced here:

def numMatches(list1 , list2 ):

' ' ' r e t u r n t h e number o f e l e m e n t s t h a t match be tween
l i s t 1 and l i s t 2 ' ' '

count = 0

for item in list1:

i f item in list2:

count += 1

return count

Let’s say for the moment that each list has four elements in it. Take a moment to think
about how many comparisons you think the program will make... then read on below.

First, you take the first element of the first list, and ask if it is in the second list. The
in command is a bit deceptive because it hides a significant number of comparisons. How
does Python tell if an item is in a list? It has to compare that item to every item in the
list! So in this case, the first item in the first list is compared to every item (i.e., four of
them) in the second list to determine whether it is in that list.

“Wait!” you say. If the item is actually in the list, it doesn’t actually have to check all
four, and can stop checking when it finds the item in question. This is exactly correct, but
in fact it doesn’t matter in our analysis. For the purpose of an analysis like this, computer
scientists are quite pessimistic. They rarely care what happens when things work out well–
what they care about is what might possibly happen in the worst case. In this case, the
worst case is when the item is not in the list and Python has to compare it to every item in
the list to determine it’s not there. Since what we care about is this worst case behavior,
we will perform our analysis as if we were dealing with the worst case.

So, back to the analysis, for the first item in the list, Python made four comparisons to
the items in the second list which were hidden away in the in command. Now our program
moves on to the second item in the first list, where it again makes four comparisons with
the second list. Similarly, it makes four comparisons for each of the third and the fourth
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elements in the first list. For a total of: 4 + 4 + 4 + 4 = 4 ∗ 4 = 16 Again, this probably
doesn’t sound like such a bad number. After all, your computer can make 16 comparisons
in way less than a second. But what if our lists were longer. What if the user had rated
100 artists and the comparison user had rated 1000 (high, but not crazy). Then the system
would have to do 1000 comparisons (to the items in the second list) for each of the 100 items
in the first list for a total of 100∗1000 = 105 comparisons. Still not huge, but hopefully you
can see where this is going. In general, the matching algorithm we’ve written above takes
N ∗M comparisons, where N is the size of the first list and M is the size of the second list.
For simplicity, we might just assume that the two lists will always be the same length, N ,
in which case it makes N2 comparisons.

The good news is that we can do significantly better, but we have to make an assump-
tion about the lists themselves. What if our lists were sorted alphabetically? How could
that make our matching algorithm faster? The answer is that we can keep the lists “syn-
chronized,” so to speak, and march through both lists at the same time, rather than pulling
a single element out of the first list and comparing it to all of the elements in the second.
For example, if you are looking at the first element of the first list and it is “Black Eyed
Peas” and the first element of the second list is “Counting Crows” you know that the Black
Eyed Peas do not appear in the second list, because C is already past B. So you can simply
discard the Black Eyed Peas and move on to the next artist in the first list.

Discarding the
“Black Eyed
Peas” would

save my
hearing!

Here’s what the new algorithm looks like. Remember that it assumes the lists will be in
sorted order (we’ll talk about how to sort lists in section 5.5).

• Initialize a counter to 0

• Set the current item in each list to be the first item in each list

• Repeat the following until you reach the end of one of the two lists:

– Compare the current items in each list.

– If they are equal, increment the counter and advance the current item of both
lists to the next items in the lists.

– Else, if the current item in the first list is alphabetically before the current item
in the second list, advance the current item in the first list.

– Else, advance the current item in the second list.

• The counter holds the number of matches.

Before you look at the code below, ask yourself: “What kind of loop should I use here? A
for loop or while loop?” When you think you’ve got an answer you’re happy with, read
on.

Here’s our associated Python code:

def numMatches( list1, list2 ):

’’’return the number of elements that match between two sorted lists’’’

matches = 0

i = 0

j = 0

while i < len(list1) and j < len(list2):
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if list1[i] == list2[j]:

matches += 1

i += 1

j += 1

elif list1[i] < list2[j]:

i += 1

else:

j += 1

return matches

Using ==, >, <, etc. on strings is perfectly valid and that these operators will compare
strings alphabetically. Recall from section 4.2.3 that text is represented numerically. In Python 2 and earlier

versions use ASCII
encoding, while Python
3 uses a slightly different
encoding called Unicode,
but everything here
applies to both
encodings.

this encoding all of the capital letters are mapped to consecutive numbers, with ‘A’ getting
the lowest number and ‘Z’ getting the highest. The lower-case letters are also mapped to
consecutive numbers, which are all higher than the number used for ‘Z’. It is these encodings
that are used when strings are compared. This means that strings that start with capital
letters will always come “alphabetically” before those that start with lower case letters.
This issue is important to consider in our program (we haven’t yet), and we’ll discuss it
below in Section 5.5.2.

Now the question remains, is this approach really faster than the previous approach to
comparing the elements in two lists? The answer is, definitely yes. Let’s again look at the
number of comparisons that would have to be made to compare two lists with 4 elements
each. Imagine that none of the elements match and that the lists are exactly interleaving
alphabetically. That is, first the element in list 1 is smaller, then the element in list 2 is
smaller, and so on, as in the lists [“Black Eyed Peas”, “Dave Matthews Band”, “Madonna”,
‘No Doubt”, “Stevie Nicks”] and [“Amy Winehouse”, “Coldplay”, “Maroon 5”, “Red Hot
Chili Peppers”].

With these two lists, the code above will never trigger on the first if condition–it will
always increment either i or j, but not both. Furthermore, it will run out of elements in
one list just before it runs out of elements in the second. Essentially it will look at all the
elements in both lists.

At first it might seem like we haven’t made any improvements. After all, aren’t we still
looking at all the elements of both lists? Aha, but now there’s a subtle difference! Where
as before we were looking at all the elements in the second list for each element in the first
list, here we are only looking at all the elements in the second list once. In other words,
each time through the loop, either i or j is incremented, and they are never decremented.
So either i or j will hit the end of the list after all of the elements of that list have been
looked at and one fewer than the elements of the other list have been looked at. So in this
example, this means we will make exactly 7 comparisons. In general, if the lists are both
length N, the number of comparisons this algorithm will make is N + N − 1 or 2N − 1.
So even for the case where one list has 100 elements and the second has 1000, this is only
about 1100 comparisons, a significant improvement over the 105 of the previous approach!

In technical terms, computer scientists call this second algorithm a linear time algo-
rithm because the equation which describes the number of comparisons is linear. The first
algorithm is called a quadratic time algorithm because its equation is quadratic.
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5.5.2 A Simple Sorting Algorithm: Selection Sort

Now that we’ve motivated at least one reason to sort data (there are many others—you can
probably think of several of them), let’s look at an algorithm for actually doing the sorting.

Let’s consider the list of artists that the user likes that we collect by prompting the user
at the start of the program. Recall that the code that gathers this list is the following:

newPref = raw_input("Plese enter the name of an artist \

or band that you like: " )

while newPref != '':
prefs.append(newPref)

newPref = raw_input("Please enter an artist or band \

that you like , or just press enter to see recommendations: ")

print 'Thanks for your input!'

The artists the user has entered are stored in the list prefs, but that list is entirely
unsorted. We would like to sort this list alphabetically, and clean up the formatting of the
text while we’re at it.

First, to make our lives easier, and to facilitate the matching process between user
profiles, we will make a pass through the list to standardize the format of the artist names.
In particular, we want to be sure that there is no leading (or trailing) whitespace, and that
the artist or band names are in Title Case (i.e., the first letter of each word is capitalized,
and the rest are lower case). Even though this format may fail for some bands , we’ll work

I don’t think
this will work

for LMFAO!

with it because it gives us a standard representation that allows the strings to be sorted
and compared without us having to worry about case issues getting in the way.Recall that all uppercase

strings are considered
“less than” lower case

strings, and it would be
confusing to the user to

alphabetically sort ZZ
Top before adele.

Because strings are immutable objects, we can’t actually change them, but rather we
have to generate new strings with the formatting we desire. Here is the code that accom-
plishes this goal (note that we also build a new list, which is not strictly necessary):

standardPrefs = []

for artist in prefs:

standardPrefs.append(artist.strip().title())

The strip function returns a new string identical to artist, but without any leading
or trailing whitespace. Then the title function returns that same string in Title Case.

Now that our data is standardized, we can sort it from smallest (alphabetically first) to
largest. Sorting is an important topic of study in computer science in its own right. Here

I sort of new
that it was
important!

we will discuss one sorting algorithm, but there’s much more to be said on the subject.
To develop our algorithm, we start with small cases: what are the computational pieces

that enable the rearrangement of a list?
A two-element list is the smallest (non-trivial) case to consider: in the worst case, the

two elements would need to swap places with each other.
In fact, this idea of a swap is all we need! Imagine a large list that we’d like sorted in

ascending order.

• First, we could find the smallest element. Then, we could swap that smallest element
with the first element of the list.
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• Next, we would search for the second-smallest element, which is the smallest element
of the rest of the list. Then, we could swap it into place as the second element of the
overall list.

• We continue this swapping so that the third-smallest element takes the third place in
the list, do the same for the fourth, . . . and so on. . . until we run out of elements.

This algorithm is called selection sort because it proceeds by repeatedly selecting the
minimum remaining element and moving it to the next position in the list.

What functions will we need to write selection sort? It seems we need only two:

• index of min(aList, starting index), which will return the index of the smallest
element in aList, starting from index starting index.

• swap(aList, i, j), which will swap the values of aList[i] and aList[j]

Here is the Python code for this algorithm:

def selectionSort(listToSort ):

' ' ' s o r t s a L i s t i t e r a t i v e l y and in−p l a c e ' ' '
for starting_index in range(len(listToSort )):

min_elem_index = index_of_min(listToSort ,

starting_index)

swap(listToSort , starting_index , min_elem_index)

Here is index of min:

def index_of_min(aList , start_index ):

' ' ' r e t u r n s t h e i n d e x o f t h e min e l e m e n t a t or a f t e r
s t a r t i n d e x ' ' '

min_elem_index = start_index

for i in range(start_index , len(aList )):

i f aList[i] < aList[min_elem_index]

min_elem_index = i

return min_elem_index

And swap:

def swap(aList , i, j):

' ' ' swaps t h e v a l u e s o f a L i s t [ i ] and a L i s t [ j ] ' ' '
temp = aList[i] # s t o r e t h e v a l u e o f a L i s t [ i ]

# f o r a moment
aList[i] = aList[j] # make a L i s t [ i ] r e f e r t o

# t h e v a l u e o f a L i s t [ j ]
aList[j] = temp # make a L i s t [ j ] r e f e r t o t h e

# s t o r e d v a l u e

Notice that the code above does not return anything. But when we run it, we see that
it works. After the call to selectionSort, our list is sorted!

>>> standardPrefs

[’Maroon 5’, ’Adele’, ’Lady Gaga’]
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>>> selectionSort(standardPrefs)

>>> standardPrefs

[’Adele’, ’Lady Gaga’, ’Maroon 5’]

5.5.3 Why selectionSort Works

Why does this code work? What is more, why does it work even though swap does not have
a return statement? There are two key factors.

First, lists are mutable. Thus, two (or more) variables can refer to the same list, and
changing list elements through one variable changes the value of all of the variables. But
where are the two variables referring to the same list? It seems that standardPrefs is the
only variable referring to the original three-element list in the example above.

This is the second factor: when inputs are passed into functions, the function parameters
are assigned to each input just as if an assignment statement had been explicitly written,
e.g.,

listToSort = standardPrefs

occurs at the beginning of the call to selectionSort(standardPrefs).
As a result, as long as listToSort and standardPrefs refer to the same list, any

changes that are made to listToSort’s elements will affect standardPrefs’s elements—
because listToSort’s elements and standardPrefs’s elements are one and the same thing.

The message here is: Takeaway message: passing inputs into a function is equivalent
to assigning those inputs to the parameters of that function. Thus, the subtleties of mutable
and immutable data types apply, just as they do in ordinary assignment.

The left side of Figure 5.4 illustrates what is happening at the beginning of the first
call to swap. swap’s variables are displayed in red, while selectionSort’s variables are
displayed in black. Notice that swap’s i and j refer to the index locations in the list aList
(which is just another name for the list listToSort).

The right side of Figure 5.4 shows how the variables look at the very end of the first call
to swap. When swap finishes, its variables disappear. But notice that even when swap’s
aList, i, j, and temp are gone, the value of the list has been changed in memory. Because
swap’s aList and selectionSort’s listToSort and the original standardPrefs are all
references to the same collection of mutable elements, the effect of assignment statements
on those elements will be shared among all of these names. After all, they all name the
same list!

5.5.4 A Swap of a Different Sort

Consider a very minor modification to the swap and selectionSort functions that has a
very major impact on the results:

def selectionSort(listToSort):

’’’sorts listToSort iteratively and in-place’’’

for starting_index in range(len(listToSort)):

min_elem_index = index_of_min(listToSort, starting_index)

# now swap the elements!
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At the start of the first call to swap At the end of the first call to swap

Figure 5.4: A graphical depiction of the variables in selectionSort and swap at the be-
ginning and the end of the first call to swap.

swap(listToSort[starting_index], listToSort[min_elem_index])

def swap(a, b):

’’’swaps the values of a and b’’’

temp = a

a = b

b = temp

The code looks almost the same, but now it does not work!

>>> standardPrefs # Assume t h i s l i s t i s a l r e a d y p o p u l a t e d
# w i t h s t a n d a r d i z e d u s e r p r e f e r e n c e s

[’Maroon 5’, ’Adele’, ’Lady Gaga’]

>>> selectionSort(standardPrefs)

>>> standardPrefs

[’Maroon 5’, ’Adele’, ’Lady Gaga’]

The variables a and b in swap indeed do get swapped, as the following before-and-after
figure illustrates. But nothing happens to the elements of aList or, to say the same thing,
nothing happens to the elements of standardPrefs.

Figure 5.5 illustrates what is happening before and after the call to swap.
What happened? This time, swap has only two parameters, a and b, whose references are

copies of the references of listToSort[start index] and listToSort[min elem index],
respectively. Keep in mind Python’s mechanism for assignment: Assignments make a copy
of a single reference.

Thus, when swap runs this time, its assignment statements are working on copies of
references. All of the swapping happens just as specified, so that the values referred to
by a and b are, indeed, reversed. But the references held within selectionSort’s list
listToSort have not changed. Thus, the value of listToSort does not change. Since the
value of standardPrefs is the value of listToSort, nothing happens.

129 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



CHAPTER 5. IMPERATIVE PROGRAMMING
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Figure 5.5: A graphical depiction of the variables in selectionSort and the new (and
faulty) swap at the beginning and the end of the first call to swap.

As we mentioned at the start of this section, Selection Sort is just one of many sorting
algorithms, some of which are faster than others (Selection Sort is not particularly fast,
though it’s certainly not the slowest approach either). In practice, especially for now, you’ll
probably just call Python’s built-in sort function for lists, which is efficient, and more
importantly, correctly implemented.

>>> standardPrefs # Assume t h i s l i s t i s a l r e a d y p o p u l a t e d
# w i t h s t a n d a r d i z e d u s e r p r e f e r e n c e s

[’Maroon 5’, ’Adele’, ’Lady Gaga’]

>>> standardPrefs.sort()

>>> standardPrefs

[’Adele’, ’Lady Gaga’, ’Maroon 5’]

5.5.5 2D Arrays and Nested Loops

It turns out that you can store more than just numbers in lists: arbitrary data can be
stored. We’ve already seen many examples in Chapter 2 where lists were used to store
strings, numbers, and combinations of those data types. Lists of lists are not only possible,
but powerful and common.

In an imperative context, lists are often called arrays, and in this section we examine
another common array structure: arrays that store other arrays, often called 2D arrays.Our attorneys have

advised us to note that
technically, there are

very subtle differences
between “lists” and
“arrays” – but the

distinctions are too fine
to worry about here.

The concept behind a 2D array is simple: it is just a list whose elements themselves are
lists. For example, the code

>>> a2DList = [[1, 2, 3, 4],[5, 6, 7, 8], [9, 10, 11, 12]]

creates a list named a2DList where each of a2DList’s elements is itself a list. Figure 5.6
illustrates this 2D array (list) graphically. In the figure the array name has been shorted to
just A for conciseness.
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list
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A[1]

A[2]

A[2][3]

A[0][0]

1 2 3 4

5 6 7 8
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Figure 5.6: A graphical depiction of a 2D array. Following our model from above, the green
box is stored in the CPU, and the rest of the data (including the references to other lists)
is stored in memory.

You can access the individual elements in the 2D array by using nested indices. For
example:

>>> a2DList [0] # Get t h e f i r s t e l e m e n t o f a2DLis t
[1, 2, 3, 4]

>>> a2DList [0][0] # Get t h e f i r s t e l e m e n t o f a2DLis t [ 0 ]
1

>>> a2DList [1][1] # Get t h e second e l e m e n t o f a2DLis t [ 1 ]
6

We can also ask questions about a2DList’s height (the number of rows) and its width
(the number of columns):

>>> len(a2DList) # The number o f e l e m e n t s ( rows ) i n a2DLis t
3

>>> len(a2DList [0]) # The number o f e l e m e n t s i n a l i s t i n
# a2DLis t ( i . e . , t h e number o f columns )

4

Typically, arrays have equal-length rows, though “jagged” arrays are certainly possible.
This 2D structure turns out to be a very powerful tool for representing data. In fact,

we’ve already seen an example of this in our recommender program: the stored users’
preferences were represented by a list-of-lists, i.e., a 2D array. In this case, the array
certainly was “jagged” as different stored users had rated different numbers of artists.

Above we wrote some code to standardize the representation of one particular user’s
preferences. But we might be unsure about the database—are those lists also standardized
(and sorted)? If not, no problem. It’s easy to write code that quickly standardizes all the
elements in all of the lists:

131 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



CHAPTER 5. IMPERATIVE PROGRAMMING

def standardizeAll(storedPrefs):

’’’ Returns a new list of lists of stored user preferences,

with each artist string in Title Case,

with leading and trailing whitespace removed.

’’’

standardStoredPrefs = []

for storedUser in storedPrefs:

standardStoredUser = []

for artist in storedUser:

standardStoredUser.append(artist.strip().title())

standardStoredPrefs.append(standardStoredUser)

return standardStoredPrefs

In the above code, the outer loop controls the iteration over the individual users. That is,
the value of storedUser is an entire list each iteration of the for loop. The inner loop then
iterates over the elements in an individual user’s preferences. In other words, artist is
simply a string.

We can also write the above code as follows:

def standardizeAll(storedPrefs):

’’’ Returns a new list of lists of stored user preferences,

with each artist string in Title Case,

with leading and trailing whitespace removed.

’’’

standardStoredPrefs = []

for i in range(len(storedPrefs):

standardStoredUser = []

for j range(len(storedPrefs[i])):

standardStoredUser.append(storedPrefs[i][j].strip().title())

standardStoredPrefs.append(standardStoredUser)

return standardStoredPrefs

This code does the same thing, but we use the indexed version of the for loop instead
of letting the for loop iterate directly over the elements in the list. Either construct is fine,
but the latter makes the next example more clear.

Because lists are mutable, we don’t actually have to create a whole new 2D array just
to change the formatting of the strings in the array. Remember that strings themselves are
not mutable, so we can’t directly change the strings stored in the list. However, we can
change which strings are stored in the original list, as follows:

def standardizeAll(storedPrefs):

’’’ Mutates storedPrefs so that each string is in

Title Case, with leading and trailing whitespace removed.

Returns nothing.

’’’

for i in range(len(storedPrefs):

for j in range(len(storedPrefs[i])):

standardArtist = storedPrefs[i][j].strip().title()

storedPrefs[i][j] = standardArtist
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Notice that this code is slightly simpler than the code above, and avoids the overhead
of creating a whole new list of lists.

5.5.6 Dictionaries

So far we’ve looked at one mutable datatype: arrays. Of course, there are many others. In
fact, in the next chapter you’ll learn how to create your own mutable data types. But more
on that later. For now we will examine a built-in datatype called a dictionary that allows
us to create mappings between pieces of data.

Have you ever
looked up
“dictionary” in
a dictionary?

To motivate the need for a dictionary, let’s once again return to the recommender pro-
gram. Until now, in our examples we have not been associating stored user’s names with
their preferences. While we don’t need to store the user’s name with their examples in
order to calculate the best matching user (assuming we know that the list of stored users
does not contain the current user!) there are many advantages of doing so. For one, we can
make sure that the user doesn’t get matched against themselves! Additionally, it might be
nice in an extended version of the system to suggest possible “music friends” to the user,
whose tastes they may want to track.

So how will we associate user names with their preferences? One way would be to simply
use lists. For example, we could have a convention where the first element in each user’s
stored preferences is actually the name of the user herself. This approach works, but it is
not very elegant and likely to lead to mistakes. For example, what if another programmer
working on this system forgets that this is the representation and starts treating user names
as artist names? Perhaps not a tragedy, but incorrect behavior nonetheless. In short, elegant
design is important!

What we need is a single place to store the mapping from user names to user preferences
that we can pass around to all of the functions that need to know about it. This is where
the dictionary comes in handy! A dictionary allows you to create mappings between pieces
of (immutable) data (the keys) and other pieces of (any kind of) data (the values). Here’s
an example of how they work:

>>> myDict = {} # c r e a t e s a new empty d i c t i o n a r y

# c r e a t e an a s s o c i a t i o n be tween ' A p r i l ' her
# l i s t o f p r e f e r r e d a r t i s t s .
# ' A p r i l ' i s t h e key and t h e l i s t i s t h e v a l u e
>>> myDict['April '] = ['Maroon 5', 'The Rolling Stones ',

'The Beatles ']

# D i t t o f o r Ben and h i s l i s t
>>> myDict['Ben'] = ['Lady Gaga', 'Adele ',

'Kelly Clarkson ', 'The Dixie Chicks ']
>>> myDict # d i s p l a y t h e mappings c u r r e n t l y

# i n t h e d i c t i o n a r y
’April’: [’Maroon 5’, ’The Rolling Stones’,’The Beatles’],

’Ben’: [’Lady Gaga’, ’Adele’, ’Kelly Clarkson’,’The Dixie Chicks’]

>>> myDict['April '] # g e t t h e i tem mapped t o ' A p r i l '
[’Maroon 5’, ’The Rolling Stones’, ’The Beatles’]
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>>> myDict['f'] # g e t t h e i tem mapped t o ' f ' .
# W i l l c a u s e an e r r o r b e c a u s e
# mappings are one−way−−' f ' i s not
# a v a l i d key .

Traceback (most recent call last):

File "<pyshell#14>", line 1, in <module>

myDict[’f’]

KeyError: ’f’

>>> myDict.has_key('f') # Check w h e t h e r a key i s i n t h e
# d i c t i o n a r y

False

>>> myDict.keys() # Get t h e k e y s i n t h e d i c t i o n a r y
dict keys([’April’, ’Ben’]) # N o t i c e t h a t t h i s i s a s p e c i a l k i n d o f

# o b j e c t t h a t you can i t e r a t e
# over , b u t t h a t ' s not a l i s t

>>> myDict [1] = 'one' # k e y s can be any immutab le t y p e
>>> myDict [1.5] = [3, 5, 7] # v a l u e s can a l s o be mutab le , and

# we can mix t y p e s i n t h e same
# d i c t i o n a r y

>>> myDict [[1, 2]] = 'one' # Keys cannot be m u t a b l e

Traceback (most recent call last):

File "<pyshell#36>", line 1, in <module>

myDict[[1, 2]] = ’one’

TypeError: list objects are unhashable

# a s h o r t h a n d way t o c r e a t e a d i c t i o n a r y
>>> userPrefs = {'April ': ['Maroon 5', 'The Rolling Stones ',
'The Beatles '], 'Ben': ['Lady Gaga', 'Adele ',
'Kelly Clarkson ', 'The Dixie Chicks ']}
>>> userPrefs

’April’: [’Maroon 5’, ’The Rolling Stones’, ’The Beatles’],

’Ben’: [’Lady Gaga’, ’Adele’, ’Kelly Clarkson’, ’The Dixie Chicks’]‘

The order in which the key-value pairs appear in Python’s output of userPrefs represents
its internal representation of the data. It is not always in the same order in which they
went in.

Now let’s look at how we can modify our recommender code to use a dictionary instead
of a list of lists:

def getBestUser(currUser , prefs , userMap ):

' ' ' Gets recommendat ions f o r c u r r U s e r b a s e d on
t h e u s e r s i n userMap ( a d i c t i o n a r y )
and t h e c u r r e n t u s e r ' s p r e f e r e n c e s
i n p r e f ( a l i s t ) ' ' '

users = userMap.keys()

bestuser = None

bestscore = -1
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for user in users:

score = numMatches(prefs , userMap[user])

i f score > bestscore and currUser != user:

bestscore = score

bestuser = user

return bestuser

Notice that dictionaries allow us to make sure we’re not matching a user to their own
stored preferences! Pretty simple. . . and flexible too!

5.6 Reading and Writing Files

We’ve almost got all the pieces we need to build our recommender program. The last major
piece we are missing is the ability to read and write files, which we will need to load and
store the preferences for the users the system already knows about.

Fortunately, working with files is very simple in Python, and we illustrate file input and
output (i.e., file I/O) through example. Imagine that our stored user preferences exist in a
file named musicrec-store.txt. There is one line in the file for each user and the format
of each line is the following:

username:artist1,artist2,...,artistN

We can write the following code to read in and process all the lines from this file:

def loadUsers(fileName ):

' ' ' Reads i n a f i l e o f s t o r e d u s e r s ' p r e f e r e n c e s s t o r e d
i n t h e f i l e ' f i l e N a m e ' .
Returns a d i c t i o n a r y c o n t a i n i n g a mapping o f u s e r
names t o a l i s t p r e f e r r e d a r t i s t s

' ' '
file = open(fileName , 'r')
userDict = {}

for line in file:

# Read and p a r s e a s i n g l e l i n e
[userName , bands] = line.strip (). split(":")

bandList = bands.split(",")

bandList.sort()

userDict[userName] = bandList

file.close()

return userDict

When we call this function we would pass it the filename musicrec-store.txt.
There are a few key pieces to this function. First, we have to open the file for reading.

This task is accomplished with the line file = open(fileName, ’r’), which gives us a
link to the contents of the file through file, but we can only read from this file (we cannot
write to it). If we wanted to write to the file, we would specify ’w’ as the second argument
to the open command; if we wanted to both read and write, we would pass ’w+’ as the
second argument.
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Once we have our handle to the file’s contents (file) we can read lines from it using
the for loop construct above. As the for loop iterates over file, what it is actually doing
is pulling out one line at a time until there are no more lines, at which point the for loop
ends.

Finally, when we have read all the data out of the file and stored it in the dictionary in
our program, we can close the file using file.close().

The function below shows the part of the code that writes the stored user’s preferences
(including the current user) back to the file:

def saveUserPreferences(userName , prefs , userMap , fileName ):

' ' ' Writes a l l o f t h e u s e r p r e f e r e n c e s t o t h e f i l e .
Returns n o t h i n g . ' ' '

userMap[userName] = prefs

file = open(fileName , "w")

for user in userMap:

toSave = str(user) + ":" + ",".join(userMap[user]) + \

"\n"

file.write(toSave)

file.close ()

5.7 Putting It All Together: Program Design

Now that we’ve got all the tools, it’s time to construct the whole recommender program.
However, as a disclaimer, large scale program design can at times feel more like an art than
a science. There are certainly guiding principles and theories, but you rarely “just get itMaybe more science

than art! right” on your first try, no matter how careful you are. So expect that in implementing
any program of reasonable size, you’ll need to make a couple of revisions. Think of it like
writing a paper—if you like writing papers.CS is at least as creative

and precise as careful
writing; don’t be afraid

of creating—and
redoing—several drafts!

The first step to program design is trying to figure out what data your program is
responsible for and how that data comes into the program (input), gets manipulated (com-
putation) and is output from the program (output). In fact, this task is so important that
we had you do this at the beginning of the chapter.

After identifying the data your program must keep track of, the next step is to decide
what data structures you will use to keep track of this data. Do you need ints, lists, or
dictionaries, or some other structure entirely? Take a moment to choose variable names
and data types for each of the piece of data you identified at the beginning of the chapter
(or that you identify now).

Finally, now that you have identified our data and the computation that our program
needs to perform, you are ready to start writing functions. We can start with any function
we like–there’s no right order as long as we are able to test each function as we write it.

Our complete program is given below in isting 5.1. Let’s return to the idea of col-
laborative filtering and examine how this program implements the basic CF algorithm we
described in section 5.1. As we described there, the basic idea behind collaborative filtering
is to try to make predictions about a user by looking at data from a number of other users.
There are two basic steps to a CF algorithm:

1. Find the user (or users) most similar to the current user,
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2. Make predictions based on what they like.

In the code in listing 5.1, these two steps are performed in helper functions called in
getRecommendations. First, findBestUser finds and returns the user whose tastes are
closest to the current user. Then drop returns a list of the artists who the best user likes
who are not already in the current user’s list.

Notice that even though the code is relatively short, we have chosen to separate the
two stages of the algorithm into two separate functions for clarity. Generally it is a good
idea for each semantic piece of your algorithm to have its own function. Notice also that
findBestUser also relies on a helper function (numMatches), which again helps make the
specific functionality of each piece of the code more clear.

One more item that’s new in the code below is the last line:

i f __name__ == "__main__": main()

You will notice that the function main implements the main control of the recommen-
dation program. So, we could run our recommendation program by loading this code into
the Python interpreter and then typing:

>>> main()

However, to keep the user from having to type this extra command, we include the above
line, which tells the program to automatically run the function main as soon as the code is
loaded into the interpreter.

Finally, you’ll notice the variable PREF FILE at the top of the program. This variable
is known as a global variable because it is accessible to all of the functions in the program.
By convention, global variable names are often ALL CAPS to distinguish them from local
variables and parameters. Generally global variables should be avoided, but there are a
few special cases such as this one where we want to avoid sprinkling a hard-coding value
throughout the program (in this case the name of a file) so that it is easy to change in the
future.

Listing 5.1: A Recommender Program

# A v e r y s i m p l e music recommender sys tem .
# Author : C h r i s t i n e Alvarado
# Date : October 6 , 2011

PREF_FILE = "musicrec -store.txt"

def loadUsers(fileName ):

' ' ' Reads i n a f i l e o f s t o r e d u s e r s ' p r e f e r e n c e s
s t o r e d i n t h e f i l e ' f i l e N a m e ' .
Returns a d i c t i o n a r y c o n t a i n i n g a mapping
o f u s e r names t o a l i s t p r e f e r r e d a r t i s t s

' ' '
file = open(fileName , 'r')
userDict = {}

for line in file:

# Read and p a r s e a s i n g l e l i n e
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[userName , bands] = line.strip (). split(":")

bandList = bands.split(",")

bandList.sort()

userDict[userName] = bandList

file.close ()

return userDict

def getPreferences(userName , userMap ):

' ' ' Returns a l i s t o f t h e u e s r ' s p r e f e r r e d a r t i s t s .

I f t h e sys tem a l r e a d y knows a b o u t t h e user ,
i t g e t s t h e p r e f e r e n c e s ou t o f t h e userMap
d i c t i o n a r y and t h e n a s k s t h e u s e r i f s he has
a d d i t i o n a l p r e f e r e n c e s . I f t h e u s e r i s new ,
i t s i m p l y a s k s t h e u s e r f o r her p r e f e r e n c e s . ' ' '

newPref = ""

i f userName in userMap:

prefs = userMap[userName]

print ("I see that you have used the system before.")

print ("Your music preferences include:")

for artist in prefs:

print (artist)
print ("Please enter another artist or band that you")

print ("like , or just press enter")

newPref = input("to see your recommendations: ")

e l se :
prefs = []

print ("I see that you are a new user.")

print ("Please enter the name of an artist or band")

newPref = input("that you like: " )

while newPref != '':
prefs.append(newPref.strip (). title ())

print ("Please enter another artist or band that you")

print ("like , or just press enter")

newPref = input("to see your recommendations: ")

# Always keep t h e l i s t s i n s o r t e d o r d e r f o r e a s e o f
# comparison
prefs.sort()

return prefs

def getRecommendations(currUser , prefs , userMap ):

' ' ' Gets recommendat ions f o r a u s e r ( c u r r U s e r ) b a s e d
on t h e u s e r s i n userMap ( a d i c t i o n a r y )
and t h e u s e r ' s p r e f e r n e c e s i n p r e f ( a l i s t ) .
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Returns a l i s t o f recommended a r t i s t s . ' ' '
bestUser = findBestUser(currUser , prefs , userMap)

recommendations = drop(prefs , userMap[bestUser ])

return recommendations

def findBestUser(currUser , prefs , userMap ):

' ' ' Find t h e u s e r whose t a s t e s are c l o s e s t t o t h e c u r r e n t
u s e r . Return t h e b e s t u s e r ' s name ( a s t r i n g ) ' ' '

users = userMap.keys()

bestUser = None

bestScore = -1

for user in users:

score = numMatches(prefs , userMap[user])

i f score > bestScore and currUser != user:

bestScore = score

bestUser = user

return bestUser

def drop(list1 , list2):

' ' ' Return a new l i s t t h a t c o n t a i n s o n l y t h e e l e m e n t s i n
l i s t 2 t h a t were NOT i n l i s t 1 . ' ' '

list3 = []

i = 0

j = 0

while i < len(list1) and j < len(list2 ):

i f list1[i] == list2[j]:

i += 1

j += 1

e l i f list1[i] < list2[j]:

i += 1

e l se :
list3.append(list2[j])

j += 1

return list3

def numMatches( list1 , list2 ):

' ' ' r e t u r n t h e number o f e l e m e n t s t h a t match be tween
two s o r t e d l i s t s ' ' '

matches = 0

i = 0

j = 0

while i < len(list1) and j < len(list2 ):

i f list1[i] == list2[j]:

matches += 1

i += 1

j += 1
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e l i f list1[i] < list2[j]:

i += 1

e l se :
j += 1

return matches

def saveUserPreferences(userName , prefs , userMap , fileName ):

' ' ' Writes a l l o f t h e u s e r p r e f e r e n c e s t o t h e f i l e .
Returns n o t h i n g . ' ' '

userMap[userName] = prefs

file = open(fileName , "w")

for user in userMap:

toSave = str(user) + ":" + ",".join(userMap[user]) + \

"\n"

file.write(toSave)

file.close ()

def main ():

' ' ' The main recommendation f u n c t i o n ' ' '
userMap = loadUsers(PREF_FILE)

print ("Welcome to the music recommender system!")

userName = input("Please enter your name: ")

print ("Wecome ,", userName)

prefs = getPreferences(userName , userMap)

recs = getRecommendations(userName , prefs , userMap)

# P r i n t t h e u s e r ' s recommendat ions
i f len(recs) == 0:

print ("I'm sorry but I have no recommendations")

print ("for you right now.")

e l se :
print (userName , "based on the users I currently")

print ("know about , I believe you might like:")

for artist in recs:

print (artist)

print ("I hope you enjoy them! I will save your")

print ("preferred artists and have new")

print (" recommendations for you in the future")

saveUserPreferences(userName , prefs , userMap , PREF_FILE)

i f __name__ == "__main__": main()
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5.8 Conclusion

We’ve covered a lot of ground in this chapter, ultimately resulting in a recommender pro-
gram similar in spirit to ones that you undoubtedly use yourself.

Are there any
recommender
programs that
recommend
recommender
programs?We’ve also seen that there are often multiple different ways of doing the same thing.

For example, recursion, for loops, and while loops all allow us to repeat a computational
task. How do you determine which one to use? Some problems are inherently recursive. For
example, the edit distance problem from Chapter 2 was very naturally suited for recursion
because it can be solved using solutions to smaller versions of the same problem – the so-
called “recursive substructure” problem. Other problems, like computing the factorial of a
number, can be solved naturally – albeit differently – using recursion or loops. And then
there are cases where loops seem like the best way to do business. The fact that there are
choices like these to be made is part of what makes designing programs fun and challenging.
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Chapter 6

Fun and Games with OOPs:
Object-Oriented Programs

I paint objects as I think them, not as I see them. —Pablo Picasso

6.1 Introduction

In this chapter we’ll develop our own “killer app”: A 3D video game called “Robot versus
Zombies.” By the end of this chapter you’ll have the tools to develop all kinds of interactive
3D programs for games, scientific simulations, or whatever else you can imagine.

We’re sneaky! The true objective of this chapter is to demonstrate a beautiful and
fundamental concept called object-oriented programming . Object-oriented programming is
not only the secret sauce in 3D graphics and video games, it’s widely used in most modern
large-scale software projects. In this chapter, you’ll learn about some of the fundamental
ideas in object-oriented programming. And, yes, we’ll write that video game too!

6.2 Thinking Objectively

Before we get to Robot versus Zombies video game, let’s imagine the following scenario.
You’re a summer intern at Lunatix Games, a major video game developer. One of their
popular games, Lunatix Lander, has the player try to land a spaceship on the surface of
a planet. This requires the player to fire thrusters to align the spaceship with the landing
site and slow it down to a reasonable landing speed. The game shows the player how much
fuel remains and how much fuel is required for certain maneuvers.

As you test the game, you notice that it often reports that there is not enough fuel to
perform a key maneuver when, in fact, you are certain there should be just the right amount
of fuel. Your task is to figure out what’s wrong and find a way to fix it.

Each of the rocket’s two fuel tanks has a capacity of 1000 units; the fuel gauge for each
tank reports a value between 0 and 1.0, indicating the fraction of the capacity remaining in
that tank. Here is an example of one of your tests, where fuelNeeded represents the fraction
of a 1000 unit tank required to perform the maneuver while tank1 and tank2 indicate the
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fraction of the capacity of each of the two tanks. The last statement is checking to see if the
total amount of fuel in the two tanks equals or exceeds the fuel needed for the maneuver.

>>> fuelNeeded = 42.0/1000

>>> tank1 = 36.0/1000

>>> tank2 = 6.0/1000

>>> tank1 + tank2 >= fuelNeeded

False

Notice that 36
1000 + 6

1000 = 42
1000 and the fuel needed is exactly 42

1000 . Strangely though, the
code reports that there is not enough fuel to perform the maneuver, dooming the ship to
crash.Bummer!

When you print the values of fuelNeeded, tank1, tank2, and tank1 + tank2 you see
the problem:

>>> fuelNeeded

0.042000000000000003

>>> tank1

0.035999999999999997

>>> tank2

0.0060000000000000001

>>> tank1 + tank2

0.041999999999999996

This example of numerical imprecision is the result of the inherent error that arises whenTo be precise,
imprecision occurs

because computers use
only a fixed number of

bits of data to represent
data. Therefore, only a

finite number of different
quantities can be stored.

In particular, the
fractional part of a

floating-point number,
the mantissa, must be
rounded to the nearest

one of the finite number
of values that the

computer can store,
resulting in the kinds of

unexpected behavior
that we see here.

computers try to convert fractions into floating-point numbers (numbers with a decimal-
point representation). However, assuming that all of the quantities that you measure on
your rocket are always rational numbers—that is fractions with integer numerators and
denominators—this imprecision problem can be avoided! How? Integers don’t suffer from
imprecision. So, for each rational number, we can store its integer numerator and denomi-
nator and then do all of our arithmetic with integers.

For example, the rational number 36
1000 can be stored as the pair of integers 36 and 1000

rather than converting it into a floating-point number. To compute 36
1000 + 6

1000 we can
compute 36+6 = 42 as the numerator and 1000 as the denominator. Comparing this to the
fuelNeeded value of 42

1000 involves separately comparing the numerators and denominators,
which involves comparing integers and is thus free from numerical imprecision.

So, it would be great if Python had a way of dealing with rational numbers as pairs
of integers. That is, we would like to have a “rational numbers” type of data (or data

A rational
thing to have!

type, as computer scientists like to call it) just as Python has an integer data type, a string
data type, and a list data type (among others). Moreover, it would be great if we could
do arithmetic and comparisons of these rational numbers just as easily as we can do with
integers.

The designers of Python couldn’t possibly predict all of the different data types that
Or even a

fraction of
them all.

one might want. Instead, Python (like many other languages) has a nice way to let you,
the programmer, define your own new types and then use them nearly as easily as you use
the built-in types such as integers, strings, and lists.

This facility to define new types of data is called object-oriented programming or OOP
and is the topic of this chapter.
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6.3 The Rational Solution

Let’s get started by defining a rational number type. To do this, we build a Python “factory”
for constructing rational numbers. This factory is called a class and it looks like this:

c la s s Rational:

def __init__(self , num , denom ):

self.numerator = num

self.denominator = denom

Don’t worry about the weird syntax; we’ll come back in a moment when we take a
closer look at the details. For now, the big idea is that once we’ve written this Rational

class (and saved it in a file with the same name but with the suffix .py at the end, in this
case Rational.py) we can “manufacture” – or more technically instantiate – new rational
numbers to our heart’s content. Here’s an example of calling this “factory” to instantiate
two rational numbers 36

1000 and 6
1000 :

r1 = Rational (36, 1000)

r2 = Rational(6, 1000)

What’s going on here? When Python sees the instruction

r1 = Rational (36, 1000)

it does two things. First, it instantiates an empty object which we’ll call self. Actually,

Perhaps this is
selfish of
Python.

self is a reference to this empty object as shown in Figure 6.1.

(There's nothing  
here.  Please 
move along.)

self

Figure 6.1: self refers to a new empty object. It’s only empty for a moment!

Next, Python looks through the Rational class definition for a function named __init__

(notice that there are two underscore characters before and after the word “init”). That’s
a funny name, but it’s a convention in Python. Notice that in the definition of __init__
above, that function seems to take three arguments, but the line r1 = Rational(36, 1000)

has only supplied two. That’s weird, but—as you may have guessed—the first argument is
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passed in automatically by Python and is a reference to the new empty self object that
we’ve just had instantiated for us.

The __init__ function takes the reference to our new empty object called self, and
it’s going to add some data to that object. The values 36 and 1000 are passed in to
__init__ as num and denom, respectively. Now, when the __init__ function executes
the line self.numerator = num, it says, “go into the object referenced by self, give it
a variable called numerator, and give that variable the value that was passed in as num.”
Similarly, the line self.denominator = denom says “go into the object referenced by self,
give it a variable called denominator, and give that variable the value that was passed in
as denom.” Note that the the names num, denom, numerator, and denominator are not
special—they are just the names that we chose.

The variables numerator and denominator in the __init__ function are called at-
tributes of the Rational class. A class can have as many attributes as you wish to definePython uses the name

“attributes” for the
variables that belong to

a class. Some other
languages use names like

“data members”,
“properties”, and

“fields” for the same
idea.

for it. It’s pretty clear that a rational number class would have to have at least these two
attributes!

The last thing that happens in the line

r1 = Rational (36, 1000)

is that the variable r1 is now assigned to be a reference to the object that Python just
created and we initialized. We can see the contents of the rational numbers as follows:

>>> r1.numerator

36

We used the “dot” in the function __init__ as well, when we said self.numerator = num.
The “dot” was doing the same thing there. It said, “go into the self object and look at
the attribute named numerator.” Figure 6.2 shows the situation now.

numerator

denominator

r1

36

1000

Figure 6.2: r1 refers to the Rational object with its numerator and denominator.

In our earlier example, we “called” the Rational “factory” twice to instantiate two
different rational numbers in the example below:
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r1 = Rational (36, 1000)

r2 = Rational(6, 1000)

The first call, Rational(36, 1000) instantiated a rational number, self, with numerator

36 and denominator 1000. This was called self, but then we assigned r1 to refer to this
object. Similarly, the line r2.numerator is saying, “go to the object called r2 and look at
its attribute named numerator.” It’s important to keep in mind that since r1 and r2 are
referring to two different objects, each one has its “personal” numerator and denominator.
This is shown in Figure 6.3.

numerator

denominator

r1

36

1000

numerator

denominator

r2

6

1000

Figure 6.3: Two Rational numbers with references r1 and r2.

Let’s take stock of what we’ve just seen. First, we defined a factory—technically known
as a class—called Rational. This Rational class describes a template for manufacturing
a new type of data. That factory can now be used to instantiate a multitude of items—
technically known as objects—of that type. Each object will have its own variables – or
“attributes” – in this case numerator and denominator, each with their own values.

That’s cute, but is that it? Remember that our motivation for defining the Rational

This would be
a short chapter
if that was the
whole story!

numbers was to have a way to manipulate (add, compare, etc.) rational numbers without
having to convert them to the floating-point world where numerical imprecision can cause
headaches (and rocket failures, and worse).

Python’s built-in data types (such as integers, floating-point numbers, and strings) have
the ability to be added, compared for equality, etc. We’d like our Rational numbers to
have these abilities too! We’ll begin by adding a function to the Rational class that will
allow us to add one Rational to another and return the sum, which will be a Rational as
well. A function defined inside a class has a special fancy name—it’s called a method of
that class. The __init__ method is known as the constructor method.

Our add method in the Rational class will be used like this:

>>> r1.add(r2)

This should return a Rational number that is the result of adding r1 and r2. So, we should
be able to write:
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>>> r3 = r1.add(r2)

Now, r3 will refer to the new Rational number returned by the add method. The syntax
here may struck you as funny at first, but humor us; we’ll see in a moment why this syntax
is sensible.

Let’s write this add method! If r1 = a
b and r2 = c

d then r1 + r2 = ad+bc
bd . The resulting

fraction might be simplified by dividing out by terms that are common to the numerator
and the denominator, but let’s not worry about that for now. Here is the Rational class
with its shiny new add method:

c la s s Rational:

def __init__(self , num , denom ):

self.numerator = num

self.denominator = denom

def add(self , other):

newNumerator = self.numerator * other.denominator +

self.denominator * other.numerator

newDenominator = self.denominator*other.denominator

return Rational(newNumerator , newDenominator)

What’s going on here!? Notice that the add method takes in two arguments, self and
other, while our examples above showed this method taking in a single argument. (Stop
here and think about this. This is analogous to what we saw earlier with the __init__

method.)

To sort this all out, let’s consider the following sequence:

>>> r1 = Rational(1, 2)

>>> r2 = Rational(1, 3)

>>> r3 = r1.add(r2)

The instruction r1.add(r2) does something funky: It calls the Rational class’s add

method. It seems to pass in just r2 to the add method but that’s an optical illusion!
In fact, it passes in two values: first it automatically passes a reference to r1 and then it
passes in r2. This is great, because our code for the add method is expecting two argu-
ments: self and other. So, r1 goes into the self “slot” and r2 goes into the other slot.
Now, the add method can operate on those two Rational numbers, add them, construct a
new Rational number representing their sum, and then return that new object.

Here’s the key: Consider some arbitrary class Blah. If we have an object myBlah of type
Blah, then myBlah can invoke a method foo with the notation myBlah.foo(arg1, arg2,

..., argN). The method foo will receive first a reference to the object myBlah followed
by all of the N arguments that are passed in explicitly. Python just knows that the first
argument is always the automatically passed in reference to the object before the “dot”.
The beauty of this seemingly weird system is that the method is invoked by an object and
the method “knows” which object invoked it. Snazzy!

“Snazzy” is a
technical term.

Now, for example, we could type:

>>> r3.numerator

>>> r3.denominator
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What we would we see? We’d see the numerator and denominator of the Rational number
r3. In this case, the numerator would be 5 and the denominator would be 6.

Notice that instead of typing r3 = r1.add(r2) above, we could have instead have typed
r3 = r2.add(r1). What would have happened here? Now, r2 would have called the add

method, passing r2 in for self and r1 in for other. We would have gotten the same result
as before because addition of rationals is commutative.

6.4 Overloading

So far, we have built a basic class for representing rational numbers. It’s neat and useful,
but now we’re about to make it even spiffier. You probably noticed that the syntax for

“Spiffy” is yet
another
technical term.

adding two Rational numbers is a bit awkward. When we add two integers, like 42 and
47, we certainly don’t type 42.add(47), we type 42+47 instead.

It turns out that we can use the operator “+” to add Rational numbers too! Here’s
how: We simply change the name of our add method to __add__. Those are two underscore
characters before and two underscore characters after the word add. Python has a feature
that says “if a function is named __add__ then when the user types r1 + r2, I will translate
that into r1.__add__(r2).” How does Python know that the addition here is addition of
Rational numbers rather than addition of integers (which is built-in)? It simply sees that
r1 is a Rational, so the “+” symbol must represent the __add__ method in the Rational

class. We could similarly define __add__ methods for other classes and Python will figure
out which one applies based on the type of data in front of the “+” symbol.

This feature is called overloading . We have overloaded the “+” symbol to give it a

This is “good”
overloading.
“Bad”
overloading
involves taking
more than 18
credits in a
term.

meaning that depends on the context in which it is used. Many, though not all, object-
oriented programming languages support overloading. In Python, overloading addition is
just the tip of the iceberg. Python allows us to overload all of the normal arithmetic
operators and all of the comparison operators such as “==”, “!=”, “<”, among others.

Let’s think for a moment about comparing rational numbers for equality. Consider the
following scenario, in which we have two different Rationals and we compare them for
equality:

>>> r1 = Rational(1, 2)

>>> r2 = Rational(1, 2)

>>> r1 == r2

False

Why did Python say “False”? The reason is that even though r1 and r2 look the same to
us, each one is a reference to a different object. The two objects have identical contents, but
they are different nonetheless, just as two identical twins are two different people. Another
way of seeing this is that r1 and r2 refer to different blobs of memory, and when Python

“Blob” really is
a technical
term!

sees us ask if r1 == r2 it says “Nope! Those two references are not to the same memory
location.” Since we haven’t told Python how to compare Rationals in any other way, it
simply compares r1 and r2 to see if they are referring to the very same object.

So let’s “overload” the “==” symbol to correspond to a function that will do the compar-
ison as we intend. We’d like for two rational numbers to be considered equal if their ratios
are the same, even if their numerators and denominators are not the same. For example
1
2 = 42

84 . One way to test for equality is to use the “cross-multiplying” method that we
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learned in grade school: Multiply the numerator of one of the fractions by the denominator
of the other and check if this is equal to the other numerator-denominator product. Let’s
first write a method called __eq__ to our Rational number class to test for equality.

def __eq__(self , other):

return self.numerator * other.denominator ==

self.denominator * other.numerator

Now, if we have two rational numbers such as r1 and r2, we could invoke this method
with r1.__eq__(r2) or with r2.__eq__(r1). But because we’ve used the special name
__eq__ for this method, Python will know that when we write r1 == r2 it should be
translated into r1.__eq__(r2). There are many other symbols that can be overloaded.
(To see a complete list of the methods that Python is happy to have you overload, go to
http://www.Python.org/doc/2.7/ref/customization.html.)

For example, we can overload the “>=” symbol by defining a method called __ge__

This example
serves to

doubly
underscore the

beauty of
overloading!

(which stands for greater than or equal). Just like __eq__, this method takes two ar-
guments: A reference to the calling object that is passed in automatically (self) and a
reference to another object to which we are making the comparison. So, we could write our
__ge__ method as follows:

def __ge__(self , other):

return self.numerator * other.denominator >=

self.denominator * other.numerator

Notice that there is only a tiny difference between how we implemented our __eq__ and
__ge__ methods. Take a moment to make sure you understand why __ge__ works.

Finally, let’s revisit the original fuel problem with which we started the chapter. Recall
that due to numerical imprecision with floating-point numbers, we had experienced mission
failure:

>>> fuelNeeded = 42.0/1000

>>> tank1 = 36.0/1000

>>> tank2 = 6.0/1000

>>> tank1 + tank2 >= fuelNeeded

False

In contrast, we can now use our slick new Rational class to save the mission!

>>> fuelNeeded = Rational (42, 1000)

>>> tank1 = Rational (36, 1000)

>>> tank2 = Rational(6, 1000)

>>> tank1 + tank2 >= fuelNeeded

True

Mission accomplished!

We hope that
you aren’t

feeling
overloaded at

this point.
We’d feel bad if
you “object”ed
to what we’ve

done here.

6.5 Printing an Object

Our Rational class is quite useful now. But check this out:
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>>> r1 = Rational(1, 2)

>>> r2 = Rational(1, 3)

>>> r3 = r1 + r2

>>> r3

<Rational.Rational instance at 0x6b918>

>>> print (r3)
<Rational.Rational instance at 0x6b918>

0x6b918!?
What the heck
is that?!

Notice the strange output when we asked for r3 or when we tried to print(r3). In both
cases, Python is telling us, “r3 is a Rational object and I’ve given it a special internal
name called 0x blah, blah, blah.”

What we’d really like, at least when we print(r3), is for Python to display the number
in some nice way so that we can see it! You may recall that Python has a way to “con-
vert” integers and floating-point numbers into strings using the built-in function str. For
example:

>>> str (1)

’1’

>>> str (3.142)

’3.142’

So, since the print function wants to print strings, we can print numbers this way:

>>> print (str (1))
1

>>> print ("My favorite number is " + str (42))

My favorite number is 42

In fact, other Python types such as lists and dictionaries also have str functions:

>>> myList = [1, 2, 3]

>>> print ("Here is a very nice list: " + str(myList ))

Here is a very nice list: [1, 2, 3]

Python lets us define a str function for our own classes by overloading a special method
called __str__ . For example, for the Rational class, we might write the following __str__

method:

def __str__(self):

return str(self.numerator) + "/" + str(self.denominator)

What is this function returning? It’s a string that contains the numerator followed by a
forward slash followed by the denominator. When we type print(str(r3)), Python will in-
voke this __str__ method. That function first calls the str function on self.numerator.
Is the call str(self.numerator) recursive? It’s not! Since self.numerator is an integer,
Python knows to call the str method for integers here to get the string representation of
that integer. Then, it concatenates to that string a another string containing the forward
slash, /, indicating the fraction line. Finally, to that string it concatenates the string rep-
resentation of the denominator. Now, this string is returned. So, in our running example
from above where r3 is the rational number 5

6 , we could use our str method as follows:
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>>> r3

<Rational.Rational instance at 0x6b918>

>>> print ("Here is r3: "+str(r3))

Here is r3: 5/6

Notice that in the first line when we ask for r3, Python just tells us that it is a reference to
Rational object. In the third line, we ask to convert r3 into a string for use in the print

function. By the way, the __str__ method has a closely related method named __repr__

that you can read about on the Web.

6.6 A Few More Words on the Subject of Objects

Let’s say that we wanted (for some reason) to change the numerator of r1 from its current
value to 42. We could simply type

r1.numerator = 42

In other words, the internals of a Rational object can be changed. Said another way, the
Rational class is mutable. (Recall our discussion of mutability in Chapter 5.) In Python,
classes that we define ourselves are mutable (unless we add fancy special features to make
them immutable). To fully appreciate the significance of mutability of objects, consider the
following pair of functions:

def foo():

r = Rational(1, 3)

bar(r)

print r

def bar(number ):

number.numerator += 1

What happens when we invoke function foo? Notice that function bar is not returning
anything. However, the variable number that it receives is presumably a Rational number,
and foo increments the value of this variable’s numerator. Since user-defined classes such
as Rational are mutable, this means that the numerator of the Rational object that was
passed in will have its numerator changed!

How does this actually work? Notice that in the function foo, the variable r is a
reference to the Rational number 1

3 . In other words, this Rational object is somewhere in
the computer’s memory and r is the address where this blob of memory resides. When foo

calls bar(r) it is passing the reference (the memory location) r to foo. Now, the variable
number is referring to that memory location. When Python sees number.numerator += 1

it first goes to the memory address referred to by number, then uses the “dot” to look at
the numerator part of that object, and increments that value by 1. When bar eventually
returns control to the calling function, foo, the variable r in foo is still referring to that
same memory location, but now the numerator in that memory location has the new value
that bar set.

This brings us to a surprising fact: Everything in Python is an object! For example,

Our legal team
objected to us

using the word
“everything”
here, but it’s

close enough to
the truth that

we’ll go with it.

Python’s list datatype is an object. “Wait a second!” we hear you exclaim. “The syntax
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for using lists doesn’t look anything like the syntax that we used for using Rationals!” You
have a good point, but let’s take a closer look.

For the case of Rationals, we had to make a new object this way:

r = Rational(1, 3)

On the other hand, we can make a new list more simply:

myList = [42, 1, 3]

In fact, though, this list notation that you’ve grown to know and love is just a convenience
that the designers of Python have provided for us. It’s actually a shorthand for this:

myList = list()

myList.append (42)

myList.append (1)

myList.append (3)

Now, if we ask Python to show us myList it will show us that it is the list [42, 1, 3].
Notice that the line myList = list() is analogous to r = Rational(1, 3) except that we
do not provide any initial values for the list. Then, the append method of the list class is
used to append items onto the end of our list. Lists are mutable, so each of these appends
changes the list!

Indeed, the list class has many other methods that you can learn about online. For
example, the reverse method reverses a list. Here’s an example, based on the myList list
object that we created above:

>>> myList

[42, 1, 3]

>>> myList.reverse ()

>>> myList

[3, 1, 42]

Notice that this reverse method is not returning a new list but rather mutating the list
on which it is being invoked.

Before moving on, let’s reflect for a moment on the notation that we’ve seen for com-
bining two lists:

>>> [42, 1, 3] + [4, 5]

[42, 1, 3, 4, 5]

How do you think that the “+” symbol works here? You got it—it’s an overloaded method
in the list class! That is, it’s the __add__ method in that class!

Strings, dictionaries, and even integers and floats are all objects in Python! However,
a few of these built-in types, such as strings, integers, and floats were designed to be
immutable. Recall from the previous chapter that this means that their internals cannot
be changed. You can define your own objects to be immutable as well, but it requires some
effort and it’s rarely necessary, so we won’t go there.
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6.7 Getting Graphical with OOPs

We’ve seen that object-oriented programming is elegant and, hopefully, you now believe
that it’s useful. But what about 3D graphics and our video game? That’s where we’re
headed next!

To get started, you’ll need to get the “VPython” 3D graphics system for Python. You
can find it at vpython.org. Once you have VPython installed, import the VPython graphics

Warning! This
section contains

graphical
language!

module, called visual, as follows:

>>> from visual import *

Next, type:

>>> b = box()

What you’ll see now on the screen is a white box. It might look more like a white square,
so rotate it around to see that it’s actually a 3D object.In the display window

(where the box is
displayed), click and

drag with the right
mouse button (hold

down the command key
on a Macintosh). Drag

left or right, and you
rotate around the scene.

To rotate around a
horizontal axis, drag up

or down. Click and drag
up or down with the

middle mouse button to
move closer to the scene

or farther away (on a
2-button mouse, hold

down the left and right
buttons; on a 1-button
mouse, hold down the

Option key).

As you may have surmised, box is a class defined in the visual module. The command

>>> b = box()

invoked the constructor to create a new box object and we made b be the name, or more
precisely “a reference”, to that box.

Just like our Rational number class had numerator and denominator attributes, the
box class has a number of attributes as well. Among these are the box’s length, height,
and width; it’s position, it’s color, and even its material properties. Try changing these
attributes at the command line as follows:

>>> b.length = 0.5 # t h e box ' s l e n g t h j u s t changed
>>> b.width = 2.0 # t h e box ' s w i d t h j u s t changed
>>> b.height = 1.5 # t h e box ' s h e i g h t j u s t changed
>>> b.color = (1.0, 0.0, 0.0) # t h e box t u r n e d red
>>> b.material = material.wood # i t ' s wood−g r a i n e d !
>>> b.material = material.glass # i t ' s t r a n s l u c e n t !

When we initially made our b = box() it had “default” values for all of these attributes.
The length, width, and height attributes were all 1.0, the color attribute was white, and
the material attribute was a boring basic one. Notice that some of the attributes of a
box are fairly obvious: length, width, and height are all numbers. However, the color

attribute is weird. Similarly, the material property was set in a strange way. Let’s take a
closer look at just one of these attributes and you can read more about others later on the
VPython documentation website.

Let’s make a new box and ask Python for it’s color attribute:

>>> c = box()

>>> c.color

(1.0, 1.0, 1.0)

VPython represents color using a tuple with three values, each between 0.0 and 1.0. The
three elements in this tuple indicate how much red (from 0.0, which is none, to 1.0, which
is maximum), green, and blue, respectively, is in the color of the object. So, (1.0, 1.0, 1.0)
means that we are at maximum of each color, which amounts to bright white. The tuple
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(1.0, 0.0, 0.0) is bright red and the tuple (0.7, 0.0, 0.4) is a mixture of quite a bit of red and
somewhat less blue.

The box class has another attribute called pos that stores the position of the center
of the box. The coordinate system used by VPython is what’s called a “right-handed”
coordinate system: If you take your right hand and stick out your thumb, index finger, and
middle finger so that they are perpendicular to one another with your palm facing you, the
positive x axis is your thumb, the positive y axis is your index finger, and the positive z axis
is your middle finger. Said another way, before you start rotating in the display window

If your
roommate sees
you staring at
your fingers,
just explain
that you are
doing
something very
technical.

with your mouse, the horizontal axis is the x axis, the vertical axis is the y axis, and the z
axis points out of the screen. When you used your

mouse to rotate the
scene, that actually
rotated the entire
coordinate system.

Take a look at the position of the box by typing b.pos. You’ll see this:

>>> b.pos

vector(0, 0, 0)

VPython has a class called vector, and pos is an object of this type. Nice! The box class
Is vector class
also called
linear algebra?is defined using the vector class. Using a vector class inside the box class is, well, very

classy! “OK,” we hear you concede grudgingly, “but what’s the point of a vector? Why
couldn’t we just use a tuple or a list instead?” Here’s the thing: The vector class has some
methods defined in it for performing vector operations. For example, the vector class has
an overloaded addition operator for adding two vectors:

>>> v = vector(1, 2, 3)

>>> w = vector (10, 20, 30)

>>> v + w

vector(11, 22, 33)

This class has many other vector operations as well. For example, the norm() method
returns a vector that points in the same direction but has magnitude (length) 1:

>>> u = vector(1, 1, 0)

>>> u.norm()

vector(0.707106781186547, 0.707106781186547, 0)

So, while we could have represented vectors using lists, we wouldn’t have a nice way of
adding them, normalizing them, and doing all kinds of other things that vectors like to do. Take a look at the rich

set of other vector
operations on the
VPython web site in
order to dot your i’s and
cross your t’s or, more
precisely, to dot your
scalars and cross your
vectors!

But, our objective for now is to change our box’s pos vector in order to move it. We
can do this, for example, as follows:

>>> b.pos = vector(0, 1, 2)

While we can always create a box and change its attributes afterwards, sometimes it’s
convenient to just set the attributes of the box at the time that the box is first instantiated.
The box class constructor allows us to set the values of attributes at the time of construction
like this:

>>> b = box(length = 0.5, width = 2.0, height = 1.5,

... color = (1.0, 0.0, 0.0))

Whatever attributes we don’t specify will get their default values. For example, since we
didn’t specify a vector value for pos, the box’s initial position will be the origin.

155 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



CHAPTER 6. FUN AND GAMES WITH OOPS: OBJECT-ORIENTED PROGRAMS

VPython has lots of other shape classes beyond boxes including spheres, cones, cylinders,
among others. While these objects have their own particular attributes (for example a
sphere has a radius), all VPython objects share some useful methods. One of these methods
is called rotate. Not surprisingly, this method rotates its object. Let’s take rotate out
for a spin!

Try this with the box b that we defined above:

>>> b.rotate(angle=pi/4)

We are asking VPython to rotate the box b by π
4 radians. The rotation is, by default,

specified in radians about the x axis.

Now, let’s put this all together to write a few short VPython programs just to flex our
3D graphics muscles. First, let’s write a very short program that rotates a red box forever:

from visual import *

def spinBox ():

myBox = box(color = (1.0, 0.0, 0.0))

while True:

# Slow down t h e animat ion t o 60 frames per second .
# Change t h e v a l u e t o s e e t h e e f f e c t !
rate (60)

myBox.rotate(angle=pi/100)

Second, take a look at the program below. Try to figure out what it’s doing before you
run it.

from visual import *

import random

def spinBoxes ():

boxList = []

for boxNumber in range (10):

x = random.randint(-5, 5) # i n t e g e r be tween −5,5
y = random.randint(-5, 5)

z = random.randint(-5, 5)

red = random.random () # r e a l number be tween 0 & 1
green = random.random ()

blue = random.random ()

newBox = box(pos = vector(x, y, z),

color = (red , green , blue) )

boxList.append(newBox)

while True:

for myBox in boxList:

rate (60)

myBox.rotate(angle=pi/100)

This is very cool! We now have a list of objects and we can go through that list and rotate
each of them.
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6.8 Robot and Zombies, Finally!

It’s time to make our video game! The premise of our game is that we will control a robot
that moves on the surface of a disk (a large flat cylinder) populateed by zombies. The player
will control the direction of the robot with the keyboard: Pressing the “j” key will turn the
robot a bit to the left and pressing the “k” key will turn it a bit to the right. The zombies
will each turn independently by random amounts.

The program will be in an infinite loop. At each step, the player’s robot will check to
see if the player has pressed a key to make it turn. Then, whether or not it turns, the robot
will take a small step forward. Similarly, each zombie will turn a random amount and then
take a small step forward. Our game will have no particular objective, but you can add
one later if you like. Perhaps, the objective is to run into as many zombies as possible – or
perhaps avoid them.

To get started, we wish to define a player robot class that we’ll use to manufacture
(“instantiate”) the player’s robot and another class that allows to instantiate zombies. It
particularly makes sense to have a zombie class because a class allows us to instantiate
many objects – and we indeed plan to have many zombies!

In fact, the player’s robot and zombies have a lot in common. They are 3D entities
that should be able to move forward and turn. Because of this commonality, we would be
replicating a lot of effort if we were to define a robot class and a zombie class entirely sepa-
rately. On the other hand, the two classes are not going to be identical because the player’s
robot looks different from zombies (we hope) and because the robot will be controlled by
the player while the zombies move on their own.

So, here’s the key idea: We’ll define a class – let’s call it GenericBot – that has all
of the attributes that any entity in our game – a player robot or a zombie – should have.
Then, we’ll define a PlayerBot class and a ZombieBot class both of which “inherit” all of
the attributes and methods of the GenericBot and add the special extras (e.g., how their
bodies look) that differentiate them.

Our GenericBot class will have a constructor, an __init__ method, that takes as input
the initial position of the bot, it’s initial heading (the direction in which it is pointing), and
its speed (the size of each step that it makes when we ask it to move forward). Here’s the
code; we’ll dissect it below.

from visual import *

import math

import random

c la s s GenericBot:

def __init__(self , position = vector(0, 0, 0),

heading = vector(0, 0, 1), speed = 1):

self.location = position

self.heading = heading.norm()

self.speed = speed

self.parts = []

def update(self):

self.turn (0)
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self.forward(self.speed)

def turn(self , angle ):

# c o n v e r t a n g l e from d e g r e e s t o r a d i a n s ( VPython
# assumes a l l a n g l e s are i n r a d i a n s )
theta = math.radians(angle)

self.heading = rotate(self.heading , angle = theta ,

axis = vector(0, 1, 0))

for part in self.parts:

part.rotate(angle = theta , axis = vector(0, 1, 0),

origin = self.position)

def forward(self):

self.position += self.heading * self.speed

for part in self.parts:

part.pos += self.heading * self.speed

Let’s start with the __init__ method – the so-called “constructor” method. It takes
three input arguments: A position (a VPython vector object indicating the bot’s initial
position), a heading (a vector indicating the direction that the bot is initially pointing),
and speed (a number indicating how far the bot moves at each update step). Notice that
the line:

def __init__(self , position = vector(0, 0, 0),

heading = vector(0, 0, 1), speed = 1):

provides default values for these inputs. This means that if the user doesn’t provide values
for these input arguments, the inputs will be set to these values. (You may recall that the
box class had default arguments as well. We could either define a new box with b = box() in
which case we got the default values or we could specify our own values for these arguments.)
If the user provides only some of the input arguments, Python will assume that they are
the arguments from left-to-right. For example, if we type

>>> mybot = GenericBot(vector(1, 2, 3))

then Python assumes that vector(1, 2, 3) should go into the position variable and it
uses the default values for heading and speed. If we type

>>> mybot = GenericBot(vector(1, 2, 3), vector(0, 0, 1))

then the first vector goes into the position argument and the second goes into the heading
argument. If we want to provide values in violation of the left-to-right order, we can always
tell Python which value we are referring to like this:

>>> mybot = GenericBot(heading=vector(0, 1, 0))

Now, Python sets the heading to the given value and uses the default values for the other
arguments.

OK, so much for defaults! The __init__ method then sets its location (self.location),

It was de-fault
of de-authors

for this
de-gression!

heading (self.heading), speed (self.speed), and parts (self.parts) attributes. The
self.heading is normalized to make the length of the vector a unit vector (a vector of
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length 1) using the vector class’s norm() method. The self.parts list will be a list of
VPython 3D objects – boxes, spheres, and so forth – that make up the body of the bot.
Since the player bot and the zombie bots will look different, we haven’t placed any of these
body parts into the list just yet. That’s coming soon!

Notice that the GenericBot has three additional methods: update, forward, and turn.
In fact, the update method simply calls the turn method to turn the bot 0 radians (we’ll
probably change that later!) and then calls the forward method to move one step at the
given speed. The turn method changes the bot’s self.heading so that it heads in the
new direction induced by the turning angle and then rotates each of the parts in the bot’s
self.parts list by that same angle.

Something very lovely and subtle is happening in the for loop of the turn method!
Notice that each part is expected to be a VPython object, like a box or sphere or something
else. Each of those objects has a rotate method. Python is saying here “hey part, figure
out what kind of object you are and then call your rotate method to rotate yourself.” So,
if the first part is a box, then this will call the box rotate method. If the next part is
a sphere, the sphere’s rotate method will be called here. This all works great, as long
as each element in the self.parts list has a rotate method. Fortunately, all VPython
shapes do have a rotate method.

We’ll also just point out quickly, that the line

part.rotate(angle = theta , axis = vector(0, 1, 0),

origin = self.position)

is telling that part to rotate by an angle theta about a vector aligned with vector

(0, 1, 0) (the y-axis) but starting at the vector given by self.position. Under our
assumption that the y-axis is “up”, this effectively rotates the object about a line that runs
through the center of its body from “its feet to its head”. That is, it rotates the body parts
the way we would like it to rotate, as opposed to the default rotation which is about the
x-axis.

The forward method changes the bot’s self.position vector by adding to it the
heading vector scaled by the bot’s self.speed. Note that self.position is just the
bot’s own self-concept of where it is located. We also need to physically move all of the
parts of the bot’s body, which is done by changing the pos position vector of each VPython
objects in the self.parts list, again by the self.heading vector scaled by self.speed.

Next comes the most amazing part of this whole business! We now define the ZombieBot
Drumroll,
please!

class that inherits all of the methods of the GenericBot but adds the components that are
specific to a zombie. Here’s the code and we’ll discuss it in a moment.

c la s s ZombieBot(GenericBot ):

def __init__(self , position = vector(0, 0, 0),

heading = vector(0, 0, 1)):

GenericBot.__init__(self , position , heading)

self.body = cylinder(pos = self.location ,

axis = (0, 4, 0), radius = 1,

color = (0, 1, 0))

self.arm1 = cylinder(pos = self.location +

vector (0.6, 3, 0),

axis = (0, 0, 2), radius = .3,
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color = (1, 1, 0))

self.arm2 = cylinder(pos = self.location +

vector (-0.6, 3, 0),

axis = (0, 0, 2), radius = .3,

color = (1, 1, 0))

self.halo = ring(pos = self.location +

vector(0, 5, 0),

axis = (0, 1, 0), radius = 1,

color = (1, 1, 0))

self.head = sphere(pos = self.location +

vector(0, 4.5, 0),

radius = 0.5, color = (1, 1, 1))

self.parts = [self.body , self.arm1 , self.arm2 ,

self.halo , self.head]

def update(self):

# c a l l t u r n w i t h a random a n g l e be tween −5 and 5
# d e g r e e s
self.turn(random.uniform(-5, 5))

self.forward ()

The class definition begins with the line: class ZombieBot(GenericBot). The GenericBot
in parentheses is saying to Python “this class inherits from GenericBot.” Said another way,
a ZombieBot “is a kind of” GenericBot. Specifically, this means that a ZombieBot has the
__init__, update, turn, and forward methods of GenericBot. The class GenericBot is
called the superclass of ZombieBot. Similarly, ZombieBot is called a subclass or derived
class of GenericBot.

Note that ZombieBot has its own __init__ constructor method. If we had not defined
this __init__ then each time we constructed a ZombieBot object, Python would automat-
ically invoke the __init__ from GenericBot, the superclass from which ZombieBot was
derived. However, since we’ve defined an __init__ method for ZombieBot, that method
will get called when we instantiate a ZombieBot object. It’s not that the GenericBot’s con-
structor isn’t useful to us, but we want to do some other things too. Specifically, we want
to populate the list of body parts, self.parts, with the VPython shapes that constitute a
zombie.

We get two-for-the-price-of-one by first having the ZombieBot’s __init__ method call
the GenericBot’s __init__ method to do what it can do for us. This is invoked via
GenericBot.__init__(self, position, heading). This is saying, “hey, I know that
I’m a ZombieBot, but that means I’m a kind of GenericBot and, as such, I can call any
GenericBot method for help. In particular, since the GenericBot already has an __init__

method that does some useful things, I’ll call it to set my position and heading attributes.”

After calling the GenericBot constructor, the ZombieBot constructor continues to do
some things on its own. In particular, it defines some VPython objects and places them in
the parts list of body parts. You might notice that all of those body parts are positioned
relative to the ZombieBot’s position – which is just a vector that we defined that keeps
track of where the bot is located in space.

Since ZombieBot inherited from GenericBot, it automatically has the update, turn,
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and forward methods defined in the GenericBot class. The turn and forward methods
are fine, but the update method needs to be replaced to turn the ZombieBot at random.
Thus, we provide a new turn method in the ZombieBot class.

Now, imagine that we do the following:

>>> zephyr = ZombieBot ()

>>> zephyr.update ()

The first line creates a new ZombieBot object. Since we didn’t provide any inputs to the
constructor, the default values are used and zephyr the zombie is at position (0, 0, 0) and
heading in direction (0, 0, 1). The second line tells zephyr to update itself. Python checks to
see if the ZombieBot class contains an update method. It does, so that method is invoked.
That method then calls the turn method with a random angle between -5 and 5 degrees.
Python checks to see if the ZombieBot class has its own turn method. Since it doesn’t,
Python goes to the superclass, GenericBot, and looks for a turn method there. There
is one there and that’s what’s used! Next, the update method calls the forward method.
Since there’s no forward method defined in ZombieBot, Python again goes to the superclass
and uses the forward method there.

The very nice thing here is that ZombieBot inherits many things from the superclass
from which it is derived and only changes – or overrides – those methods that it needs to
customize for zombies.

Now, we can do something similar for the player’s robot:

c la s s PlayerBot(GenericBot ):

def __init__(self , position = vector(0, 0, 0),

heading = vector(0, 0, 1)):

GenericBot.__init__(self , position , heading)

self.body = cylinder(pos = self.location +

vector(0, 0.5, 0),

axis = (0, 6, 0), radius = 1,

color = (1, 0, 0))

self.head = box(pos = vector(0, 7, 0) + self.location ,

length = 2, width = 2, height = 2,

color = (0, 1, 0))

self.nose = cone(pos = vector(0, 7, 1) +

self.location ,

radius = 0.5, axis = (0, 0, 1),

color = (1, 1, 0))

self.wheel1 = cylinder(pos = self.location +

vector(1, 1, 0),

axis = (0.5, 0, 0), radius = 1,

color = (0, 0, 1))

self.wheel2 = cylinder(pos = self.location +

vector(-1, 1, 0),

axis = (-0.5, 0, 0),

radius = 1, color = (0, 0, 1))

self.parts = [self.body , self.head , self.nose ,

self.wheel1 , self.wheel2]
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def update(self):

i f scene.kb.keys: # i s t h e r e an e v e n t w a i t i n g t o be
# p r o c e s s e d ?

s = scene.kb.getkey () # g e t k e y b o a r d i n f o r m a t i o n
i f s == "l":

self.turn (5)

e l i f s == "k":

self.turn(-5)

self.forward ()

The PlayerBot class also inherits from the GenericBot class. It again calls the
GenericBot’s constructor for help initializing some attributes and then defines its own
attributes. It uses the turn and forward methods from the superclass, but it changes the
update method to get input from the user. We won’t dissect the details of how VPython
deals with keyboard input, but you can use this code and modify or augment it to handle
other keyboard inputs from the player.
Recall that a short awhile ago we noted that all Python shapes have a rotate method.
That’s because all of these shapes – boxes, spheres, cylinders, cones, and others – inherit
from a shape superclass that defines a rotate method. Therefore, they all “know” how
to rotate because they inherited that “knowledge” from their parent class. That parent
class has many features – methods and attributes – that its children need, just like our
GenericBot class has features that are used by its children – the derived classes ZombieBot
and PlayerBot.

Finally, here’s our game! In this file, we import the VPython (visual) graphics package;
the robot.py file containing the GenericBot, ZombieBot, and PlayerBot classes, and the
random and math packages. The main function instantiates a large flat VPython cylinder
object, that we name ground, that is the surface on which the bots will move. It’s radius is
given by a global variable GROUND_RADIUS. We then instantiate a single PlayerBot named
player and call a helper function called makeZombies that instantiates many zombies (the
number is given by the global variable ZOMBIES) and returns a list of ZombieBot objects
at random positions on our cylindrical playing area. Finally, the main function enters an
infinite loop. At each iteration, it calls the PlayerBot’s update method to move. This
method checks to see if the user has pressed the keyboard to turn the robot and also moves
forward one step. We check to see if the player’s location is beyond the radius of the playing
area, and if so turn the robot 180 degrees so that it’s next step will hopefully be inside the
player area. Now, each zombie is updated by calling it’s update method. Here too, if the
zombie has stepped out of the playing area, we rotate it at random (180 degrees plus or
minus 30 degrees). Voilá!

from visual import *

from robot import *

import random

import math

GROUND_RADIUS = 50

ZOMBIES = 20
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def main ():

ground = cylinder(pos = (0, -1, 0), axis = (0, 1, 0),

radius = GROUND_RADIUS)

player = PlayerBot ()

zombies = makeZombies ()

while True:

rate (30)

player.update ()

i f mag(player.location) >= GROUND_RADIUS:

player.turn (180)

for z in zombies:

z.update ()

i f mag(z.location) >= GROUND_RADIUS:

z.turn(random.uniform (150, 210))

def makeZombies ():

zombies = []

for z in range(ZOMBIES ):

theta = random.uniform(0, 360)

r = random.uniform(0, GROUND_RADIUS)

x = r * cos(math.radians(theta ))

z = r * sin(math.radians(theta ))

zombies.append(ZombieBot(position = vector(x, 0, z)))

return zombies

6.9 Conclusion

This is all really neat, but why is object-oriented programming such a big deal? As we
saw in our Rational example, one benefit of object-oriented programming is that it allows
us to define new types of data. You might argue, “Sure, but I could have represented a
rational number as a list or tuple of two items and then I could have written functions for
doing comparisons, addition, and so forth without using any of this class stuff.” You’re
absolutely right, but you then have exposed a lot of yucky details to the user that she or
he doesn’t want to know about. For example, the user would need to know that rational
numbers are represented as a list or a tuple and would need to remember the conventions for
using your comparison and addition functions. One of the beautiful things about object-
oriented programming is that all of this “yuckiness” (more technically, “implementation

I suppose that
“yucky” is yet
another
technical term.

details”) is hidden from the user, providing a layer of abstraction between the use and the
implementation of rational numbers.

Layer of abstraction?! What does that mean? Imagine that every time you sat in
the driver’s seat of a car you had to fully understand various components of the engine,
transmission, steering system, and electronics just to operate the car. Fortunately, the
designers of cars have presented us with a nice layer of abstraction: the steering wheel,
pedals, and dashboard. We can now do interesting things with our car without having to
think about the low-level details. As a driver, we don’t need to worry about whether the
steering system uses a rack and pinion or something entirely different. This is precisely
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what classes provide for us. The inner workings of a class are securely “under the hood,”
available if needed, but not the center of attention. The user of the class doesn’t need
to worry about implementation details; she or he just uses the convenient and intuitive
provided methods. By the way, the “user” of your class is most often you! You too don’t
want to be bothered with implementation details when you use the class—you’d rather be
thinking about bigger and better things at that point in your programming.

Object-oriented design is the computer science version of modular design, an idea that
engineers pioneered long ago and have used with great success. Classes are modules. They
encapsulate logical functionality and allow us to reason about and use that functionality
without having to keep track of every part of the program at all times. Moreover, once we
have designed a good module/class we can reuse it in many different applications.

Finally, in our Robot and Zombies game, we saw the important idea of inheritance.
Once we construct one class, we can write special versions that inherit all of the methods
and attributes of the “parent” or superclass, but also add their own unique features. In
large software systems, there can be a large and deep hierarchy of classes: One class has
children classes that inherit from it which in turn have their own children classes, and so
forth. This design methodology allows for great efficiencies in reusing rather than rewriting
code.

Takeaway message: Classes—the building blocks of object-oriented designs and pro-
grams—provide us with a way of providing abstraction that allows us to concentrate on using
these building blocks without having to worry about the internal details of how they work.
Moreover, once we have a good building block we can use it over and over in all different
kinds of programs.

164 Draft 157 for use at HMC and Stevens, 2012-09-03
© 2012 Alvarado, Dodds, Kuenning, and Libeskind-Hadas
DO NOT CIRCULATE OUTSIDE HMC AND STEVENS



Chapter 7

How Hard is this Problem?

It is a mistake to think you can solve any major problems just with potatoes. –
Douglas Adams

7.1 The Never-ending Program

Chances are you’ve written a program that didn’t work as intended. Many of us have had
the particularly frustrating experience of running our new program and observing that it
seems to be running for a very long time without producing the output that we expected.
“Hmmm, it’s been running now for nearly a minute. Should I stop the program? Or,
perhaps, since I’ve invested this much time already I should give the program another
minute to see if it’s going to finish,” you say to yourself. Another minute passes and you
ask yourself if you should let it run longer or bail out now. Ultimately, you might decide
that the program is probably stuck in some sort of loop and it isn’t going to halt, so you
press Control-C and the program stops. You wonder though if perhaps the program was
just a moment away from giving you the right answer. After all, the problem might just
inherently require a lot of computing time.

Wouldn’t it be nice to have some way to check if your program is eventually going
to halt? Then, if you knew that your program wasn’t going to halt, you could work on

The answer to
that question is
“yes!” Of
course that
would be nice!

debugging it rather than wasting your time watching it run and run and run.
In fact, perhaps we could even write a program, let’s call it a “halt checker,” that would

take any program as input and simply return a Boolean: True if the input program even-
tually halts and False otherwise. Recall from Chapter 3 that functions - that is programs
- can take other functions as input. So there is nothing really strange about giving the
hypothetical halt checker function another function as input. However, if you’re not totally
comfortable with that idea, another alternative is that we would give the halt checker a
string as input and that string would contain the code for the Python function that we
want to check. Then, the halt checker would somehow determine if the function in that
string eventually halts.

For example, consider the following string which we’ve named myProgram:

myProgram = 'def foo():

return foo()'
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This string contains the Python code for a function called foo. Clearly, that function runs
forever because the function calls itself recursively and there is no base case to make it stop.
Therefore, if we were to run our hypothetical haltChecker function it should return False:

>>> haltChecker(myProgram)

False

How would we write such a halt checker? It would be easy to check for certain kinds
of obvious problems, like the problem in the program foo in the example above. It seems
though that it might be quite difficult to write a halt checker that could reliably evaluate
any possible program that we would give it. After all, some programs are very complicated
with all kinds of recursion, for loops, while loops, etc. Is it even possible to write such a
halt checker program? In fact, in this chapter we’ll show that this problem is impossible to
solve on a computer. That is, it is not possible to write a halt checker program that would
tell us whether any other program eventually halts or not.

How can we say it’s impossible!? That seems like an irresponsible statement to make.
After all, just because nobody has succeeded in writing such a program yet doesn’t allow
us to conclude that it’s impossible. You’ve got a good point there – we agree! However,
the task of writing a halt checker truly is impossible – it doesn’t exist now and it will never
exist. In this chapter we’ll be able to prove that beyond a shadow of a doubt.

7.2 Three Kinds of Problems: Easy, Hard, and Impos-
sible.

Computer scientists are interested in measuring the “hardness” of computational problems
in order to understand how much time (or memory, or some other precious resource) is
required for their solution. Generally speaking, time is the most precious resource so we
want to know how much time it will take to solve a given problem. Roughly speaking, we
can categorize problems into three groups: “easy”, “hard”, or “impossible.”

An “easy” problem is one for which there exists a program – or algorithm – that is fast
enough that we can solve the problem in a reasonable amount of time. All of the problems
that we’ve considered so far in this book have been of that type. No program that we’ve
written here has taken days or years of computer time to solve. That’s not to say that
coming up with the program was always easy for us, the computer scientist. That’s not
what we mean by “easy” in this context. Rather, we mean that there exists an algorithm
that runs fast enough that the problem can be solved in a reasonable amount of time. YouRecall that an

“algorithm” is a
computational recipe. It

is more general than a
“program” because it

isn’t specific to Python
or any other language.

However, a program
implements an

algorithm.

might ask, “what do you mean by reasonable?” That’s a reasonable question and we’ll come
back to that shortly.

In contrast, a “hard” problem is one for which we can find an algorithm to solve it, but
every algorithm that we can find is so slow as to make the program practically useless. And
the “impossible” ones, as we suggested in the introduction to this chapter, are indeed just
that – absolutely, provably, impossible to solve no matter how much time we’re willing to
let our computers crank away on them!
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7.2.1 Easy Problems

Consider the problem of taking a list of N numbers and finding the smallest number in
that list. One simple algorithm just “cruises” through the list, keeping track of the smallest
number seen so far. We’ll end up looking at each number in the list once, and thus the
number of steps required to find the smallest number is roughly N . A computer scientist
would say that the running time of this algorithm “grows proportionally to N .”

In Chapter 5 we developed an algorithm, called selection sort, for sorting items in as-
cending order. If you don’t remember it, don’t worry. Here’s how it works in a nutshell:
Imagine that we have N items in a list– we’ll assume that they are numbers for simplicity
– and they are given to us in no particular order. Our goal is to sort them from small-
est to largest. In Chapter 5, we needed that sorting algorithm as one step in our music
recommendation system.

Here’s what the selection sort algorithm does. It first “cruises” through the list, looking
for the smallest element. As we observed a moment ago, this takes roughly N steps. Now
the algorithm knows the smallest element and it puts that element in the first position in
the list by simply swapping the first element in the list with the smallest element in the
list. (Of course, it might be that the first element in the list is the smallest element in the
list, in which case that swap effectively does nothing – but in any case we are guaranteed
that the first element in the list now is the correct smallest element in the list.)

In the next phase of the algorithm, we’re looking for the second smallest element in the
list. In other words, we’re looking for the smallest element in the list excluding the element
in the first position which is now known to be the first smallest element in the list. Thus,
we can start “cruising” from the second element in the list and this second phase will take
N − 1 steps. The next phase will take N − 2 steps, then N − 3, and all the way down to 1.
So, the total number of steps taken by this algorithms is N + (N − 1) + (N − 2) + . . .+ 1.
There are N terms in that sum, each of which is at most N . Therefore, the total sum is
certainly less than N2. It turns out, and it’s not too hard to show, the sum is actually
N(N+1)

2 which is approximately N2

2 .

A computer scientist would say that the running time of this algorithm “grows propor-
tionally to N2.” It’s not that the running time is necessarily exactly N2, but whether it’s
1
2N

2 or 42N2, the N2 term dictates the shape of the curve that we would get if we plotted
running time as a function of N . You might hear a

computer scientist say:
“The running time is
big-Oh of N2” – written
O(N2). That’s CS-talk
for what we’re talking
about here.

As another example, the problem of multiplying two N ×N matrices using the method
that you may have seen in an earlier math course takes time proportional to N3. All three of
these algorithms – finding the minimum element, sorting, and multiplying matrices – have
running times of the form Nk where k is some number: We saw that k = 1 for finding the
minimum, k = 2 for selection sorting, and k = 3 for our matrix multiplication algorithm.
Algorithms that run in time proportional to Nk are said to run in polynomial time because
Nk is a polynomial of degree k. In practice, polynomial time is a reasonable amount of
time. Although you might argue that an algorithm that runs in N42 steps is nothing to
brag about, in fact using polynomial time as our definition of “reasonable” time is, um, er,
reasonable – for reasons that will be apparent shortly.
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7.2.2 Hard Problems

Imagine now that you are a salesperson who needs to travel to a set of cities to show your
products to potential customers. The good news is that there is a direct flight between
every pair of cities and, for each pair, you are given the cost of flying between those two
cities. Your objective is to start in your home city, visit each city exactly once, and return
back home at lowest total cost. For example, consider the set of cities and flights shown in
Figure 7.1 and imagine that your start city is Aville.

Aville

Beesburg Ceefield

Deesdale

Eetown

1

1

1

142
2

3 2

15

9

Figure 7.1: Cities and flight costs.

A tempting approach to solving this problem is to use an approach like this: Starting
at our home city, Aville, fly on the cheapest flight. That’s the flight of cost 1 to Beesburg.
From Beesburg, we could fly on the least expensive flight to a city that we have not yet
visited, in this case Ceefield. From Ceefield we would then fly on the cheapest flight to a
city that we have not yet visited. (Remember, the problem stipulates that you only fly to
a city once, presumably because you’re busy and you don’t want to fly to any city more
than once - even if it might be cheaper to do so.) So now, we fly from Ceefield to Deesdale
and from there to Eetown. Uh oh! Now, the constraint that we don’t fly to a city twice
means that we are forced to fly from Eetown to Aville at a cost of 42. The total cost of this
“tour” of the cities is 1 + 1 + 1 + 1 + 42 = 46. This approach is called a “greedy algorithm”
because at each step it tries to do what looks best at the moment, without considering the
long-term implications of that decision. This greedy algorithm didn’t do so well here. For
example, a much better solution goes from Aville to Beesburg to Deesdale to Eetown to
Ceefield to Aville with a total cost of 1 + 2 + 1 + 2 + 3 = 9. In general, greedy algorithms
are fast but often fail to find optimal or even particularly good solutions.

It turns out that finding the optimal tour for the Traveling Salesperson Problem is very
difficult. Of course, we could simply enumerate every one of the possible different tours,
evaluate the cost of each one, and then find the one of least cost. If we were to take this
approach in a situation with N cities, how many different tours would we have to explore?
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Running Size N
time 10 20 30 40
N 0.00000001 0.00000002 0.00000003 0.00000004
N2 0.00000010 0.00000040 0.00000090 0.00000160
N3 0.00000100 0.00000800 0.00002700 0.00006400
N5 0.00010000 0.00320000 0.02430000 0.10240000
N ! 0.0036 77.1 years 8400 trillion years 2.5× 1031 years

Table 7.1: Time to solve problems of various sizes using algorithms with different running
times on a computer capable of performing one billion operations per second. Times are in
seconds unless indicated otherwise.

Notice that there are N − 1 first choices for the first city to visit. From there, there are
N − 2 choices for the next city, then N − 3 for the third, etc. Therefore there are a total of
(N − 1)× (N − 2)× (N − 3) . . .× 1. That product is called “N − 1 factorial” and denoted
(N − 1)!. The exclamation point is appropriate because that quantity grows very rapidly.
While 5! is a modest 120, 10! is over 3 million and 15! is over one trillion. Computers are
fast, but examining one trillion different tours would take a long time on even the fastest
computer.

Table 7.1 demonstrates just how bad a function like N ! is in comparison to polynomial
functions like N , N2, N3, and N5. In this table, we are imagining a computer that is We’re using N ! rather

than (N − 1)! here for
simplicity. They only
differ by a factor of N ,
which is negligible in the
grand scheme of things.

capable of performing one billion “operations” per second so that our algorithm for finding
the minimum element in a list in time proportional to N can find the minimum in a list of
one billion items in one second. We’re being pretty generous here, and assuming that this
computer can also enumerate one billion traveling salesperson tours in one second, but this
will only make our case against the brute-force enumeration of traveling salesperson tours
even stronger!

Ouch! N ! is clearly very bad! One might be tempted to believe that in a few years,

That’s a lot of
exclamation
marks!

when computers get faster, this will no longer be a problem. Sadly, functions like N ! grow
so fast that a computer that is 10 or 100 or 1000 times faster provide us with very little
relief. For example, while our N ! algorithm takes 8400 trillion years for a problem of size
30 on our current one billion operations per second computer, it will take 8.4 trillion years
on a computer that is 1000 times faster. That’s hardly good news!

The Traveling Salesperson Problem is just one of many problems for which algorithms
exist but are much too slow to be useful – regardless of how fast computers become in
the future. In fact, the Traveling Salesperson Problem is in a group – or “class” – of
problems called the NP-hard problems. Nobody knows how to solve any of these problems
efficiently (that is, in polynomial time like N or N2 or Nk for any constant k). Moreover,
these problems all have the property that if any one of them can be solved efficiently (in
polynomial time) then, amazingly, all of these problems can be solved efficiently.

Metaphorically, we can think of the NP-hard problems as a giant circle of very big
dominoes – one domino for the Traveling Salesperson Person and one for every NP-hard
problem. We don’t know how to knock any of these dominoes over (metaphorically, how to
solve any of them efficiently) but we know that if any one of them falls over all of the rest
of them will fall (be solvable by an efficient algorithm) as well.
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Unfortunately, many important and interesting problems are NP-hard. For example, the
problem of determining how a protein folds in three dimensions is NP-hard. That’s truly
unfortunate because if we could predict how proteins fold we could use that information to
design better drugs and combat a variety of diseases. As another example, imagine that we
have a number of items of different size that we want to pack into shipping containers of
some given size. How should we pack our items into shipping containers so as to minimize
the number of containers used? This problem too is NP-hard. Many games and puzzles
are also NP-hard. For example, the problem of determining whether large Sodoku puzzles
are solvable is NP-hard as are problems related to solving Minesweeper games and many
others.

The good news is that just because a problem is NP-hard does not mean that we can’t
find reasonably good - albeit probably not perfect - solutions. Computer scientists work on
a variety of strategies for dealing with NP-hard problems. One strategy is something called
approximation algorithms. An approximation algorithm is an algorithm that runs fast (in
polynomial time) and finds solutions that are guaranteed to be within a certain percentage of
the best possible solution. For example, for certain types of Traveling Salesperson Problems
we can quickly find solutions that are guaranteed to be no more than 50% more expensive
than the best possible tour. You might reasonably ask, “How can you guarantee that a
solution is within 50% of optimal when you have no way of efficiently finding the optimal
solution?” This is indeed surprising and seemingly magical, but in fact such guarantees can
be made. This topic is often studied in an “Algorithms” course.

That’s a
shameless sales

pitch for
another course

if there ever
was one!

There are many other approaches as well to dealing with NP-hard problems. One ap-
proach is called heuristic design. A heuristic is essentially a “rule of thumb” for approaching
a problem. For example, for the Traveling Salesperson Problem, you might use the “greedy”
heuristic that we mentioned earlier, namely, start by visiting the city that you can get to
most cheaply. From there, visit the cheapest city that you get to that you haven’t visited
yet. Continue in this fashion until you’ve visited each city once and then fly back home.
That’s a simple rule and it often finds reasonably good solutions, although it sometimes
does quite badly as we saw earlier. In contrast to an approximation algorithms, heuristics
don’t make any promises on how well they will do. There are many other approaches for
dealing with NP-hard problems and this is an active area of research in computer science.
For an example of an interesting biologically inspired technique for dealing with NP-hard
problems, see the side bar.

7.3 Impossible Problems!

So far, we’ve talked about “easy” problems – those that can be solved in polynomial time
– and “hard” problems – those that can be solved but seemingly require impractically huge
amounts of time to solve. Now we turn to problems that are downright impossible to solve,
no matter how much time we are willing to spend.

First, we’d like to establish that there even exist impossible problems. We’ll do this, in
essence, by showing that the number of computational problems is much larger than the
number of different programs. Therefore, there must be some problems for which there
exist no programs. This is a strange and beautiful idea. It’s strange because it ultimately
will allow us to establish that there are problems that can’t be solved by programs but it
doesn’t actually tell us what any of those problems are! This is what a mathematician calls
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an existence proof : We show that something exists (in this case uncomputable problems)
without actually identifying a concrete example! The idea is also beautiful because it uses
the notion of different sizes of infinities. In a nutshell, it turns out that there are an infinite
number of different programs that we could write but there is a larger infinite number of
different computational problems. “Larger infinities!?” we hear you exclaim. “Have you
professors totally lost your minds?” Perhaps, but that’s not relevant here. Let’s dive in to
our adventure in infinities, large and small.

7.3.1 “Small” Infinities

Imagine that we gave you three jelly beans. Of course, you are good at counting and you

Sorry, you’ll
just have to
imagine that.
After all, if we
actually gave
them to you,
you’d probably
eat them.

instantly recognize that you have three jelly beans, but pardon us for a moment as we
look at this another way. You have three jelly beans because you can match up your jelly
beans with the set of counting numbers {1, 2, 3}. A mathematician would say that there is
a bijection – or “perfect matching” – between your set of three jelly beans and the set of
counting numbers {1, 2, 3}.

More precisely, a bijection is a matching of elements from one set (e.g., our set of jelly
beans) to another set (e.g., our set of numbers {1, 2, 3}) such that every element in the first
set is matched to a distinct element in the second set and every element in the second set is
matched to something from the first set. In other words, a bijection is a “perfect matching”
of elements between our two sets. We say that two sets have the same cardinality (or “size”)
if there is a bijection between them.

That seems pretty obvious and more than a bit pedantic. But here’s where it gets
interesting! Once we accept that two sets have the same cardinality if there exists a bijection
between them, it’s natural to see what happens when the two sets are infinite. Consider, for
example, the set of counting numbers {1, 2, 3, 4, . . .} and the set of even counting numbers
{2, 4, 6, 8, . . .}. Both sets are clearly infinite. Moreover, it seems that the set of counting
numbers is about twice as large as the set of even counting numbers. Strangely though,
the two sets have the same cardinality: We can establish a bijection – a perfect matching –
between the two! Here it is:

Counting Number Even Counting Number
1 2
2 4
3 6
...

...
42 84
...

...

Notice that the mapping here associates each counting number x with the even counting
number 2x. Let’s see if it’s truly a bijection. Is every counting number associated with
a distinct even counting number? Yes, because each pair of counting numbers is matched
to two different even numbers. And, is every even counting number matched in this way
to some counting number? Yes, because any even counting y number is matched to the
counting number y/2. So, strangely, these two sets have the same cardinality!

By similar arguments, the set of all integers (the counting numbers, the negatives of the
counting numbers, and 0) also has a bijection with the counting numbers, so these two sets
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also have the same size. Amazingly, even the set of all rational numbers (numbers that are
of the form p

q where p and q are integers) has a bijection with the counting numbers. That’s
truly strange because on the face of it, it seems that there are way more rational numbers
than counting numbers. But such is the reality of infinity!

“Larger” Infinities

Any set that has the same cardinality as the counting numbers is said to be countably
infinite. So, as we noted above, the set of even counting numbers, the set of integers, and
the set of all rational numbers are all countably infinite. If that’s the case, aren’t all infinite
sets countably infinite?

Surprisingly, the answer is “no”!

The story begins in Germany in the last years of the nineteenth century. A brilliant
mathematician name Georg Cantor gave a beautiful argument that shows that the set of real
numbers – the set of all numbers, including the rational and irrational numbers – contains
a “larger” infinity of elements than the set of counting numbers.

Cantor’s proof made many mathematicians in his day very uncomfortable and, in fact,
many went to their graves feeling that there must be a problem somewhere in Cantor’s
logic. Cantor’s proof is not only rock-solid but it is one of the most important results in
all of mathematics. Moreover, as we’ll see shortly, it’s the very basis for showing that there
exist uncomputable problems.

Cantor’s proof is based on the method of proof by contradiction. (See the sidebar on
proofs by contradiction.) The approach is to assume that something is true (e.g., that
the set of real numbers is countably infinite) and derive from that a contradiction (e.g.,
1 = 2 or something equally obviously false). We are therefore forced to conclude that our
initial assumption (e.g., that the set of real numbers is countably infinite) must also be false
(because if we assume it’s true we are lead to conclude something that is definitely false).

Cantor not only showed that the real numbers are uncountably infinite, he showed that
even the set of real numbers between 0 and 1 are uncountably infinite! Here’s how his
proof goes: Assume that the set of real numbers between 0 and 1 is countably infinite.
(Note that he’s setting up the proof by contradiction. He’s hoping to eventually conclude
that something absurd follows from this assumption, therefore forcing to conclude that the
assumption is false!) Then, there must exist a bijection – a perfect matching – between the
set of counting numbers and the set of real numbers between 0 and 1 and. We don’t know
what that bijection looks like, but it would need to match every counting number with some
real number between 0 and 1.

A real number between 0 and 1 can be represented by a decimal point followed by an
infinite number of digits. For example, the number .5 can be represented as 0.5000 . . .. The
number 1

3 can be represented as .333 . . .. The fractional of π would be with .141592654 . . ..
So a bijection between the counting numbers and the real numbers between 0 and 1 could
be represented by a table that looks “something” like this. We say “something” because
we don’t know what the actual association would be between counting numbers and real
numbers would be, except for the fact that it is necessarily a bijection so we must associate
a distinct real number with every counting number and every real number must appear
somewhere on the right-hand column of the listing.
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Counting Number Real Number
1 .500000 . . .
2 .333333 . . .
3 .141592 . . .
...

...
42 .71828 . . .
...

...

Now, Cantor says: “Aha! Well now that you have given me the bijection, I’m going to look
at that bijection and highlight the first digit of the real number matched with counting
number 1, the second digit of the real number matched with counting number 2, the third
digit of the real number matched with counting number 3, and so forth, all the way down
the list. This is going down the diagonal of the listing of real numbers indicated in boldface
in the table below.

Counting Number Real Number
1 .500000 . . .
2 .333333 . . .
3 .141592 . . .
...

...
42 .71828 . . .
...

...

“Now,” says Cantor, “Watch this! I’m going to write down a new number as follows: My
new number differs from the real number matched with 1 by changing its first digit (e.g.,
changing 5 to 6). Similarly, my new number differs from the real number matched with
2 by changing its second digit (e.g., changing 3 to 4). It differs from the real number
matched with 3 by changing its third digit (e.g., changing from 1 to 2), etc. In general,
for any counting number n, look at the real number matched to n in your bijection. My
number will differ from that real number in the nth digit. For example, for the hypothetical
bijection that begins as in the table above, the real number that I construct would begin
with .642 . . ..”

“What’s with that number?” you ask. “Well,” says Cantor, “You promised me that
you had a bijection between the counting numbers and the real numbers between 0 and 1,
and that real number that I just constructed is certainly between 0 and 1. So where is it in
the table that represents your bijection?” He’s got a good point. Where is it? You might
argue, “Be patient, it’s matched with some very large counting number way down that
list.” But if so, you must be able to tell Cantor what counting number that is. Perhaps,
Cantor’s new number is matched with the counting number 109. But in that case, by the
way that Cantor constructed his new number, it would differ from that number in the
billionth digit. That’s a problem because we asserted that we had a bijection between the
counting numbers between 0 and 1 and therefore every real number in that range, including
Cantor’s new number, must appear in that bijection.

So, the conclusion is that no matter what bijection we try to establish between the
counting numbers and the real numbers between 0 and 1, Cantor can always use his di-
agonalization method (changing the digits along the diagonal) to show that our putative
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matching fails to be a bijection. In other words, no bijection exists between the counting
numbers and the real numbers between 0 and 1 and we have shown that the real numbers
are not countably infinite!

A fine point: Our attorneys have advised us to say one more thing here. Note that some
real numbers have two different representations when we use an infinite decimal expansion.
For example 0.3 is the same as 0.2999 . . .. Indeed, the problem is with an infinite number
of 9’s. Every real number whose decimal expansion eventually has an infinite sequence of
9’s can be represented by changing the digit before the first of those 9’s and then replacing
all of the 9’s by zeroes. So, it might be that Cantor’s new number in his diagonalization
proof is actually not different from all numbers in our bijection table, it just looks different
because it has a different representation. The solution to this problem is to always agree to
use the “nicer” representation of numbers when we have the choice - that is, never use the
representation that has an infinite number of consecutive 9’s. After all, this is just an issue
of representing numbers and we can always represent a number that contains an infinite
sequence of 9’s with its alternate representation! Now, when Cantor diagonalizes, he must
be careful not to construct a number with an infinite sequence of consecutive 9’s, because
we decided to avoid that representation. One easy solution to this is to simply have Cantor
avoid ever writing the digit 9 in the new number he constructs. In particular, if he was
changing the digit 8 in one of the real numbers in the table, rather than letting him change
it to 9 (which might lead to an infinite sequence of 9’s), have him change it to any digit
other than 8 or 9. This will still give him the contradiction that he seeks, and avoids the
legal tangle that our attorneys have been worrying about.

I wonder how
much they

billed us for
that?

7.3.2 Uncomputable Functions

We’ve just seen that the set of real numbers between 0 and 1 is such a large infinity that
it’s elements can’t be matched up perfectly with the counting numbers. But what does this
have to do with computer science?

Our goal is to show that there exist problems that are not solvable by any program.
We’ll do this using Cantor’s diagonalization method. Here’s the plan: First we’ll show that
the set of all programs is countably infinite; that is, there is a bijection between the counting
numbers and the set of all programs in your favorite language. Then, we’ll show that the

Your “favorite”
language is

officially
Python, but

this would
work just as
well for any

programming
language.

set of problems does not have a bijection with the counting numbers (it’s a larger infinite
set), and thus there is no matching between programs and problems.

Let’s start with the set of programs. A program is, after all, nothing more than a string
of symbols that we interpret as a sequence of instructions. Here’s our plan: We’ll list out all
possibles strings in alphabetical order from short ones to longer ones. Each time we list one
out, we’ll check if it’s a valid Python program. If it is, we’ll match it to the next available
counting number.

There are 256 different symbols that are used in a standard computer symbol set. So,
we’ll first list the 256 strings of length 1. None of them are valid Python programs. Then
we’ll move on and generate 256 × 256 strings of length 2. None of these are valid Python
programs. Eventually, we’ll come across a valid Python program and we’ll match that with
the counting number 1. Then, we’ll march onwards, looking for the next valid Python
program. That program will be matched with 2, and so forth.
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While this process is laborious, it does show that we can find a bijection between counting
numbers and Python programs. Every counting number will be matched to a distinct
Python program and every Python program will eventually be generated this way, so it
will be matched to some counting number. So, there is a bijection between the set of
counting numbers and the set of Python programs. The set of Python programs is, therefore,
countably infinite.

Now let’s count the number of problems. The problem with problems is that there are
so many different kinds of them! So, to make our life easier, let’s restrict our attention to
a special kind of problem where we take a counting number as input and return a Boolean:
True or False. For example, consider the problem of determining if a given counting
number is odd. That is, we’d like a function called odd that takes any counting number as
input and returns True if it’s odd and False otherwise. That’s an easy function to write
in Python. Here it is:

def odd(X):

return X % 2 == 1

A function that takes any counting number as input and returns a Boolean is called a
counting number predicate. Counting number predicates are obviously a very, very special
kind of problem.

It will be convenient to represent counting number predicates as infinite strings of “T”
(for True) and “F” (for False) symbols. We list all the possible inputs to the predicate
along the top and, for each such input, we put a “T” if the predicate should return True for
this input and we put a “F” otherwise. For example, the odd predicate would be represented
as shown in Figure 7.2.

Inputs to Predicate
1 2 3 4 5 6 7 . . . 42 . . .
T F T F T F T . . . F . . .

Table 7.2: Representing the odd counting number predicate as an infinite list of “T” and
“F” symbols, one for each possible input to the predicate.

Table 7.3 shows a list of several counting number predicates. The first one is the predicate
for determining if it’s input is odd. The next one is the predicate that determines if its input
is even, the next one is for primes, etc. Incidentally, all of these predicates have relatively
simple Python functions.

Now, suppose you claim to have a bijection between the counting numbers and counting
number predicates. That is, you have a listing that purportedly perfectly matches the
counting numbers to the counting number predicates. Such a bijection might look something
like Table 7.4. In this table each row shows a counting number on the left and the predicate
with which it is matched on the right. In this example, the counting number 1 is matched to
the odd predicate, the counting number 2 is matched to the even predicate, etc. However,
this is just an example! Our plan is to show that no matter how we try to attempt to match
counting numbers to predicates, the attempt will necessarily fail.

Once again Cantor reappears to foil your plan. “Aha!” he says. “I can diagonalize your
predicates and create one that’s not on your list.
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Inputs to Predicate
Predicate Name 1 2 3 4 5 6 7 . . . 42 . . .

odd T F T F T F T . . . F . . .
even F T F T F T F . . . T . . .

prime F F T F T F T . . . F . . .
true T T T T T T T . . . T . . .

forty-two F F F F F F F . . . T . . .
...

Table 7.3: A few sample counting number predicates predicates and the values they return
for small non-negative integers.

Inputs to Predicate
Counting Number 1 2 3 4 5 6 7 . . . 42 . . .

1 T F T F T F T . . . F . . .
2 F T F T F T F . . . T . . .
3 F F F T F T F . . . F . . .
4 T T T T T T T . . . T . . .
5 F F F F F F F . . . T . . .
...

Cantor F F T F T . . .

Table 7.4: Applying Cantor diagonalization to the integer predicates. The table shows an
attempted bijection of counting numbers to predicates. Cantor diagonalization is used to
construct a predicate that is not in this list.

And sure enough, he does exactly that, by defining a predicate that returns values
different from everything you listed. How? For the predicate matched to the counting
number 1, he makes sure that if that predicate said “T” to 1 then his predicate would
say “F” to 1 (and if it said “F” to 1 his predicate would say “T” to 1). So his predicate
definitely differs from the predicate matched to the counting number 1. Next, his predicate
is designed to differ from the predicate matched to the counting number 2 by ensuring that
it says the opposite of that predicate on input 2, and so forth down the diagonal! In this
way, his new predicate is different from every predicate in the list. This diagonalization
process is illustrated in Table 7.4

So, Cantor has established that there is at least one predicate that’s not on your list
and thus the counting number predicates must be uncountably infinite, just like the real
numbers.

What have we shown here? We’ve shown that there are more counting number predicates
than counting numbers. Moreover, we showed earlier that the number of programs is equal
to the number of counting numbers. So, there are more integer predicates than programs
and thus there must be some integer predicates for which there exist no programs.

Said another way, we’ve shown that there exist some “uncomputable” problems. That’s
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surprising and amazing, but the key words there are “there exist.” We haven’t actually
demonstrated a particular problem that is uncomputable. That’s our next mission.

7.4 An Uncomputable Problem

In the last section we proved that there exist functions that can’t be computed by any
program. The crux of the argument was that there are more problems than programs, and
thus there must be some problems with no corresponding programs.

That’s surprising and amazing, but it would be nice to see an example of an actual
problem that cannot be solved by a program. That’s precisely what we’ll do in this section!

7.4.1 The Halting Problem

At the beginning of this chapter we noted that it would be very useful to have halt checker
program that would take another program (like one that we are working on for a homework
assignment) as input and determine whether or not our input program will eventually halt.
If the answer is “no”, this tells us that our program probably has a bug!

To make things just a bit more realistic and interesting, we note that our homework
programs usually take some input. For example, here’s a program that we wrote for a
homework assignment. (Exactly what the objective of this homework problem was now
escapes us!)

def homework1 (X):

i f X == "spam": return homework1(X)

e l se : return "That was not spam!"

Notice that this program runs forever if the input is ’spam’ and otherwise it halts. (It
returns a string and it’s done!)

So, imagine that we now want a function called haltChecker that takes two inputs: A
string containing a program, P, and a string, S, containing the input that we would like to
give that program. The haltChecker then returns True if program P would eventually halt
if run on input string S and returns False otherwise.

We’d really like to have this haltChecker. We searched on the Internet and found
one for sale! Here’s what the advertisement says: “Hey programmers! Have you written

Evidently, you
can buy just
about anything
on the Internet.

programs that seem to run forever when you know that they should halt? Don’t waste your
precious time letting your programs run forever anymore! Our new haltChecker takes any
program P and any string S as input and returns True or False indicating whether or not
program P will halt when run on input string S. It’s only $99.95 and comes in a handsome
faux-leather gift box!”

“Don’t waste your money!” one of our friend advised us. “We could write the
haltChecker ourselves by simply having it run the program P on string S and see what
happens!” That’s tempting, but do you see the problem? The haltChecker must always
return True or False. If we let it simply run program P on input string S, and it hap-
pens that P runs forever on S, then the haltChecker also runs forever and doesn’t work
as promised. So, a haltChecker would probably need to somehow examine the contents of
the program P and the string S, perform some kind of analysis, and determine whether P

will halt on input S.
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But it’s true that we shouldn’t waste our money on this product because we’re about
to show that the haltChecker cannot exist. Before doing that, however, our lawyers have
advised us to point out that it is possible to write a haltChecker that works correctly for
some programs and their input strings, because certain kinds of infinite loops are quite easy
to detect. But that is not good enough! We want one that is absolutely positively 100%
reliable. It must render a decision, True or False, for any program P and input S that we
give it.

A hypothetical haltChecker would need to take two inputs: a program and a string.
For simplicity, let’s assume that the program is actually given as a string. That is, it’s
Python code in quotation marks. The haltChecker will interpret this string as a program
and analyze it (somehow!). So, we might do something like this with our hypothetical
haltChecker:

>>> P = ' def homework1 (X):

if X == "spam": return homework1(X)

else: return "That was not spam!" '
>>> S = 'spam'
>>> haltChecker(P, S)

False

>>> haltChecker(P, 'chocolate ')
True

We will show that a haltChecker cannot exist using a proof by contradiction again.
That is a general and powerful technique for showing that something can’t exist.

Here’s a metaphorical sketch of what we’re about to do. Let’s imagine that someone
approaches you and tells you, “Hey, I’ve got this lovely magic necklace with a crystal oracle
attached to it. If you ask it any question about the wearer of the necklace that can be
answered with True or False, it will always answer the question correctly. I’ll sell it to you
for a mere $99.95.”

It sounds tempting, but such a necklace cannot exist. To see this, assume by way of
contradiction that the necklace does exist. You can force this necklace to “lie” as follows:
First you put the necklace on. Then, your friend asks the oracle necklace: “Will my friend
accept this handful of jelly beans?” If the oracle necklace says True then your friend can
ask you “Would you like this handful of jelly beans?” You now answer False and the oracle
has been caught giving the wrong answer! Similarly, if the oracle necklace says False then,
when your friend asks you if you would like the jelly beans, you say True and you have
again caught the oracle in a lie. So, we are forced to conclude that an always accurate
oracle necklace cannot exist.

Necklaces? Oracles? Jelly Beans? “You professors need a vacation,” we hear you say.
Thank you for that, it is indeed almost vacation time, but let’s see first how this necklace
metaphor bears on the haltChecker.

OK then. Here we go! Assume by way of contradiction that there exists a haltChecker.
Then, we’ll place that haltChecker function in a file that also contains the program paradox

below:

def paradox( P ):

i f haltChecker(P, P):

while True:
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print 'Look! I am in an infinite loop!'
e l se : return

Take a close look at what’s happening here. This paradox program takes a single string
P as input. Next, it gives that string as both inputs to the haltChecker. Is that OK?!
Sure! The haltChecker takes two strings as input, the first one is interpreted as a Python
program and the second one is any old string. So, let’s just use P as both the program
string for the first input and also as the string for the second input.

Now, let’s place the code for the paradox function in a string and name that string P

like this:

>>> P = ' def paradox( P ):

if haltChecker(P, P):

while True:

print 'Look! I am in an infinite loop!'
else: return '

Finally, let’s give that string P as the input to our new paradox function:

>>> paradox(P)

What we’re doing here is analogous to you foiling the hypothetical oracle necklace; in this
case the hypothetical oracle is the haltChecker and you are the invocation Paradox(P).

Let’s analyze this carefully to see why. First, notice that this paradox program ei-
ther enters an infinite loop (the while True statement loops forever, printing the string
“Look! I am in an infinite loop!” each time through the loop) or it returns, thereby
halting.

Next, notice that when we run the paradox function on the input string P, we are
actually running the program paradox on the input string containing the program paradox.
It then calls haltChecker(P, P) which must return True or False. If haltChecker(P, P)

returns True, it is saying “It is true that the program P that you gave me will eventually
halt when run on input string P.” In this case, it is actually saying, “It is true that the
program paradox that you gave me will eventually halt when run on the input program
paradox.” At that point, the paradox program enters an infinite loop. In other words,
if the haltChecker says that the program paradox will eventually halt when run on the
input paradox, then the program paradox actually runs forever when given input paradox.
That’s a contradiction; or perhaps we should say, that’s a paradox!

Conversely, imagine that haltChecker(P, P) returns False. That is, it is saying, “The
program P that you gave me will not halt on input P.” But in this case, P is paradox, so
it’s actually saying “The program paradox will not halt on input paradox.” But in that
case, we’ve designed the paradox program to halt. Here again, we have a contradiction.

We could easily write the paradox program if we only had a haltChecker. However,
we just saw that this leads to a contradiction. Thus, we’re forced to conclude that our
one assumption – namely that a haltChecker exists – must be false. In the same way,
we concluded that an oracle necklace cannot exist because if it did then we could devise a
logical trap just as we have done here!
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7.5 Conclusion

In this chapter we’ve taken a whirlwind tour of two major areas of computer science: com-
plexity theory and computability theory. Complexity theory is the study of the “easy” and
“hard” problems – problems for which algorithmic solutions exist but the running time
(or memory or other resources) may vary from modest to outrageous. In fact, complexity
theory allows us to classify problems into more than just two categorize “easy” and “hard”,
but into many different categories that ultimately provide deep and surprising insights into
what makes some problems solvable by efficient algorithms while others require vastly more
time (or memory).

Computability theory explores those problems that are “impossible” to solve, such as
the halting problem and many others. In fact, computability theory provides us with some
very powerful and general theorems that allow us to quickly identify that problems are
uncomputable. Among these theorems is one that says that virtually any property that we
would like to test about the behavior of a program is uncomputable. In the case of the
halting problem, the behavior that we sought to test was halting. Another behavior might
be interested in testing is that of having a virus that writes values into a certain part of
your computer’s memory. Results from computability theory tell us that testing an input
program for that property is also uncomputable. So, if your boss ever tells you, “your next
project is to write a completely reliable virus detector,” you might want to read a bit more
about computability theory so that you can show your boss that it’s not just hard to do
that, it’s downright impossible.

Thanks for
reading!
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7.5. CONCLUSION

Genetic Algorithms: A Biologically-Inspired Approach
for Dealing with NP-hard Problems.

One technique for dealing with NP-hard problems is borrowed from biology. The idea is to
“evolve” reasonably good solutions to our problem by simulating evolution on a population
of possible solutions to our problem. Returning to our Traveling Salesperson example, let’s
call the cities in Figure 7.1 by their first letters: A, B, C, D and E. We can represent a
tour by a sequence of those letters in some order, beginning with A and with each letter
appearing exactly once. For example, the tour Aville to Beesburg to Deesdale to Eetown
to Ceefield and back to Aville would be represented as the sequence ABDEC. Notice that
we don’t include the A at the end because it is implied that we will return to A at the end.

Now, let’s imagine a collection of some number of orderings such as ABDEC, ADBCE,
AECDB, and AEBDC. Let’s think of each such ordering as an “organism” and the
collection of these orderings as a “population”. Pursuing this biological metaphor further,
we can evaluate the “fitness” of each organism/ordering by simply computing the cost of
flying between the cities in that given order.

Now let’s push this idea one step further. We start with a population of organisms/order-
ings. We evaluate the fitness of each organism/ordering. Now, some fraction of the most fit
organisms “mate”, resulting in new “child” orderings where each child has some attributes
from each of its “parents.” We now construct a new population of such children for the
next generation. Hopefully, the next generation will be more fit - that is, it will, on average,
have less expensive tours. We repeat this process for some number of generations, keeping
track of the most fit organism (least cost tour) that we have found and report this tour at
the end.

“That’s a cute idea,” we hear you say, “but what’s all this about mating Traveling
Salesperson orderings?” That’s a good question - we’re glad you asked! There are many
possible ways we could define the process by which two parent orderings give rise to a child
ordering. For the sake of example, we’ll describe a very simple (and not very sophisticated)
method; better methods have been proposed and used in practice.

Imagine that we select two parent orderings from our current population to reproduce
(we assume that any two orderings can mate): ABDEC and ACDEB. We choose some
point at which to split the first parent’s sequence in two, for example as ABD|EC. The
offspring ordering receives ABD from this parent. The remaining two cities to visit are E
and C. In order to get some of the second parent’s “genome” in this offspring, we put E
and C in the order in which they appear in the second parent. In our example, the second
parent is ACDEB and C appears before E, so the offspring is ABDCE.
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Let’s do one more example. We could have also chosen ACDEB as the parent to split,
and split it at AC|DEB, for example. Now we take the AC from this parent. In the other
parent, ABDEC, the remaining cities DEB appear in the order BDE, so the offspring
would be ACBDE.

In summary, a genetic algorithm is a computational technique that is effectively a sim-
ulation of evolution with natural selection. The technique allows us to find good solutions
to hard computational problems by imagining candidate solutions to be metaphorical or-
ganisms and collections of such organisms to be populations. The population will generally
not include every possible “organism” because there are usually far too many! Instead, the
population comprises a relatively small sample of organisms and this population evolves
over time until we (hopefully!) obtain very fit organisms (that is, very good solutions) to
our problem.

A Quick Primer on Proofs by Contradiction

In case you haven’t seen the technique of proof by contradiction before, let’s take a brief
aside to demonstrate it with a famous mathematical result that goes back to the days of
ancient Greece.

The Greeks wondered if all numbers are rational - that is, whether every number can
be expressed as the ratio of two integers like 1

2 , − 3
7 , etc. According to legend, Hippasus

of Metapontum discovered that
√

2 is not rational – it cannot be written as a ratio of two
integer. The ancient Greeks, also according to legend, treated this result as an official secret
and Hippasus was murdered when he divulged it.

Here’s the proof. Assume that
√

2 is rational. Then it can be written as a ratio of two
integers, p

q . Every fraction can be written in lowest terms (that is, canceling out common

factors), so let’s assume that p
q is in lowest terms. In particular, that means that p and q

cannot both be even, since if they were we would have cancelled out the multiples of 2 from
each of p and q when putting the fraction in lowest terms.

OK, so now
√

2 = p
q . Let’s square both sides to get 2 = p2

q2 and now let’s multiply both

sides by q2 to get 2q2 = p2. Since 2q2 is even, this means that p2 is even. If p2 is even,
clearly p must be even (since the square of an odd number is always odd!). Since p is even,
let’s rewrite it as p = 2` where ` is also an integer. So now, 2q2 = p2 = (2`)2 = 4`2. Since
2q2 = 4`2, we can divide both sides by 2 and we get q2 = 2`2. Aha! So q2 is even! But this
means that q is even. That’s a contradiction because when we wrote

√
2 = p

q we stipulated

that p
q is in lowest terms, and thus p and q could not both be even.

We’ve just established that if
√

2 = p
q in lowest terms then both p and q must be even

and thus p
q is not in lowest terms. That’s like saying if it’s raining then it’s not raining. In

that case, it can’t be raining! And in just the same way in our case,
√

2 cannot be written
as a fraction.

In a nutshell, a proof by contradiction shows that something is false by first assuming that
it’s true and then deducing an absurd (namely false) outcome. This forces us to conclude
that our assumption was false, thereby proving what we seek to prove!
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