Time to learn about NP-completeness!

Craig Weidert

Harvey Mudd College

March 19, 2007
Languages

• A language is a set of strings

• Examples
 • The language of strings of all “a”s with odd length
 • The language of strings with the same number of “a”s and “b”s
Languages

• A language is a set of strings
• Examples
 • The language of strings of all “a”s with odd length
 • The language of strings with the same number of “a”s and “b”s
• If we can figure out whether to accept or reject any particular string as part of a language, we say that that language is **decidable**.
Turing Machines

- One convenient computation model: The Turing Machine
 - Tape containing symbols from an alphabet
 - States
 - Transition rules
- Example: a Turing Machine that decides the language of strings of “a”s with odd length.

```
# a a a a a a a # ...
```
Non-Deterministic Turing Machines

- Instead of having just one transition rule per state per symbol read on the tape, it may have many.
- Allows branching (like running many machines in parallel).
- If any branch reaches the accepting state, then the machine accepts the string.
Time Complexity

- **Big-Oh notation**
 - Counting your toes takes $O(\text{number of toes})$ time.
 - Adding two n bit numbers takes $O(n)$ time.
 - Multiplying two $n \times n$ matrices takes $O(n^3)$ time.

- Language is polynomial time decidable if any string is either accepted or rejected in time proportional to some polynomial in the size of the string.
Polynomial Time Reducibility

- Language A is reducible to language B if there is some mapping from strings to strings such the first string is in language A iff the mapping of that string is in language B.
- Silly Example: the language of strings of odd length can be reduced to the language of strings of even length.
- Complicated Example: From the last talk, 3-SAT can be reduced to Graph 3-Colorability.
Polynomial Time Reducibility

• Language A is reducible to language B if there is some mapping from strings to strings such the first string is in language A iff the mapping of that string is in language B.
• Silly Example: the language of strings of odd length can be reduced to the language of strings of even length
• Complicated Example: From the last talk, 3-SAT can be reduced to Graph 3-Colorability
• If you can perform this reduction in polynomial time, A is polynomial time reducible to B.
P vs NP

- P is the class of languages which can be decided in polynomial time by a deterministic Turing Machine
- NP is the class of languages which can be decided in polynomial time by a non-deterministic Turing Machine
- Equivalently, NP is the class of languages which can be verified in polynomial time
- $P \subseteq NP$
P vs NP

- P is the class of languages which can be decided in polynomial time by a deterministic Turing Machine.
- NP is the class of languages which can be decided in polynomial time by a non-deterministic Turing Machine.
- Equivalently, NP is the class of languages which can be verified in polynomial time.
- $P \subseteq NP$
- $P = NP$?
 - Worth $1,000,000$
NP-Completeness

- Two requirements for a language to be \(\mathcal{NP} \)-complete
 - The language must be in \(\mathcal{NP} \)
 - Any other language in \(\mathcal{NP} \) is polynomial time reducible to that language
NP-Completeness

- Two requirements for a language to be \mathcal{NP}-complete
 - The language must be in \mathcal{NP}
 - Any other language in \mathcal{NP} is polynomial time reducible to that language

- Implications of \mathcal{NP}-completeness
 - Polynomial time algorithm for any \mathcal{NP}-complete language yields a polynomial time algorithm for all languages in \mathcal{NP} and means that $\mathcal{P} = \mathcal{NP}$.
SAT Review

- Variables may either be true or false.
- Variables may be NOTed (with \neg), ORed (with \lor), or ANDed (with \land).
- Example formula: $(a \lor \neg b \lor c \lor \neg d) \land (\neg a \lor c \lor d)$
- SAT is the language which is a collection of formulas such that there is some assignment of variables that makes the formula true.
Cook’s Theorem - SAT is \mathcal{NP}-complete

- SAT $\in \mathcal{NP}$: easy to verify given a correct assignment of variables
- Need to show that any language B in NP can be reduced in polynomial time to SAT
 - Language B can be decided by a non-deterministic Turing Machine in n^k time for some constant k.
 - We can build a huge formula to simulate a Turing Machine running on a string to decide whether it’s in language B.
Tableau

<table>
<thead>
<tr>
<th>#</th>
<th>q_{start}</th>
<th>w_1</th>
<th>w_2</th>
<th>\ldots</th>
<th>w_l</th>
<th>\square</th>
<th>\ldots</th>
<th>\square</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Essentially a simulates of the tape and state of the Turing Machine at different steps
- Doesn’t need to be more than n^k wide
Formula Overview

- Variables for each possible symbol in cell of tableau: \(x_{i,j,c} \)
 - \(i \) and \(j \) correspond to the row and column of the tableau
 - \(c \in [(\text{alphabet of TM}) \cup (\text{states of TM}) \cup \#] \) correspond to different things which may be in cells
- Variable is true if there that particular cell contains that particular symbol
- Will make one massive SAT formula \(\phi \) corresponding to tableau for an instance
- \(\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{transition}} \)
Cell Subformula

\[
\phi_{\text{cell}} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \wedge \left(\bigwedge_{s, t \in C \,(s \neq t)} (\overline{x_{i,j,s}} \vee \overline{x_{i,j,t}}) \right) \right]
\]

In English: “Every cell in the tableau must have exactly one symbol.”
Start and Accept Subformulas

- **Start subformula**

 \[
 x_{1,1}, \# \land x_{1,2}, q_{\text{start}} \land x_{1,3}, w_0 \land \cdots \land x_{1,l}, w_l \land x_{1,l+1}, \sqcup \land \cdots \land x_{1,n^k-1}, \sqcup \land x_{1,n^k}, \# \]

 - In English: “The first row in the tableau must correspond to the input.”

- **Accept subformula**

 \[
 \bigvee_{1 \leq i, j \leq n^k} x_{i,j}, q_{\text{accept}}
 \]

 - In English: “Somewhere in our tableau, we have record of being in an accepting state.”
Transition Subformula

- Ensures that our transitions from one row to another are legal.
- Since TM can only move one cell at a time, enough to look at all 2×3 windows.

<table>
<thead>
<tr>
<th>#</th>
<th>q_{start}</th>
<th>w_1</th>
<th>w_2</th>
<th>\ldots</th>
<th>w_I</th>
<th>\square</th>
<th>\ldots</th>
<th>\square</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
</tbody>
</table>

[Table representation of the transition subformula with a highlighted section showing legal transitions]
Transition Subformula (cont.)

Legal Windows

<table>
<thead>
<tr>
<th>#</th>
<th>q_{even}</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>a</td>
<td>q_{odd}</td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>q_{even}</td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Illegal Windows

<table>
<thead>
<tr>
<th>#</th>
<th>q_{even}</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>a</td>
<td>q_{even}</td>
</tr>
<tr>
<td>#</td>
<td>q_{even}</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>q_{odd}</td>
</tr>
</tbody>
</table>

\(\phi_{transition} = \bigwedge_{1 < i \leq n^k, 1 < j < n^k} (\text{the window centered at } i, j \text{ is ok}) \)

In English: “Make sure that all of the windows in our tableau jive with our transition states.”
Reduction takes Polynomial Time

- $\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{transition}}$
- Size of formula
 - ϕ_{start} is size $O(n^k)$
 - $\phi_{\text{cell}}, \phi_{\text{cell}},$ and ϕ_{accept} are all of size $O(n^k \times n^k)$
- Formation of formula
 - The formation of the formula is very repetitive
Proof Review

- SAT is in \mathcal{NP}
- Any language in \mathcal{NP} is polynomial time reducible to SAT
 - Languages in \mathcal{NP} are decidable by a non-deterministic Turing Machine in polynomial time
 - Can reduce this machine’s running into a formula
 - Formula $\phi = \phi_{\text{start}} \land \phi_{\text{cell}} \land \phi_{\text{transition}} \land \phi_{\text{accept}}$ is satisfiable iff Turing Machine can run to acceptance
 - Reduction in polynomial time
Proof Review

- SAT is in \(\mathcal{NP} \)
- Any language in \(\mathcal{NP} \) is polynomial time reducible to SAT
 - Languages in \(\mathcal{NP} \) are decidable by a non-deterministic Turing Machine in polynomial time
 - Can reduce this machine’s running into a formula
 - Formula \(\phi = \phi_{\text{start}} \land \phi_{\text{cell}} \land \phi_{\text{transition}} \land \phi_{\text{accept}} \) is satisfiable iff Turing Machine can run to acceptance
 - Reduction in polynomial time
- So, SAT is \(\mathcal{NP} \)-complete!
3-SAT \mathcal{NP}-Complete

• Now that we know SAT is \mathcal{NP}-complete, to show that another is \mathcal{NP}-complete, we only have to show that
 • it’s in \mathcal{NP} and
 • that we can reduce SAT to it in polynomial time

• 3-SAT is \mathcal{NP}-Complete
 • 3-SAT is verifiable in polynomial time
 • For every clause $(a_1 \lor a_2 \lor \cdots \lor a_l)$ in SAT, make the clauses
 $(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land \cdots \land (\neg z_{l-3} \lor a_{l-1} \lor a_l)$ in 3-SAT
Presentation based on the proof from Prof. Pippenger’s Complexity Theory class and Cook’s Theorem in Michael Sipser’s “Introduction to the Theory of Computation” 2nd ed. 2006.