Scrolling Marquee Display

Final Project Report
December 9, 2000
E155

Dan Smith and Katherine Wade

Abstract:

A Scrolling Marguee Display is avisually appealing way to display more information than can be fit upon
the single screen. This project will create a scrolling Marquee Display using a 2X16 LCD that will
display up to ten messages that scroll across the screen. The messages will be input to the FPGA, “video
game high score” - style, using a 16 button keypad. The FPGA will debounce the keypad entries and pass
them to the HC11, which will control the LCD functions. Users will be able to create, delete, and edit the
16-character long messages, which will then be scrolled across the LCD screen for their viewing
enjoyment.

Introduction

We would like to make a nifty scrolling marquee that displays messages. However, most commercial
scrolling marquees use lots of LEDs, which is difficult to control using the small-scale equipment
available in the Microprocessors laboratory. Instead, we are using an LCD display with built-in character
display capabilities to serve the same purpose. The messages will still be scrolled across the display asin
aregular marquee. The LCD device we are using can be easily controlled with an HC11.

Overview:
LCD HC11 FPGA
4+— +— The FPGA Polls and

debounces the keypad entry,
and sends it viathe serial port

The HC11 receives the keypress data from ? tothe HC11

the FPGA.. It also controls the LCD display Kevoad

and manages the queue of messages, which &yp

are stored in the HC11’'s memory.

Optrex DMC 16249 LCD

We received the Optrex DM C-16249 2x16 LCD display. Hereiswhat it looks like:

Control Data

< >« >
0000000000000

HELLO WORLD!
XXX XXX XX XXX XXX XX

On the LED display, 14 pins are used to display text. Thefirst six of these, Pins 1 — 6, are the control
bits used to power the LCD and enable reading and writing. The other 8 pins, 7-14, are used to send
datato the LCD.

The HC11 will control the LCD directly. A parallel port (Port B) will be used to send the 8-bit
datato pins 7-14, and additional pins from the HC11 will be wired directly to the appropriate control
bits.

The pin holes on the LCD were filled with jumper pins and soldered to the LCD board. Thisway
we can put the LCD on our breadboard for ease of wiring. If the jumper pins are not desired for
future use, they can be unsoldered and removed.

Schematics

The FPGA will communicate with the HC11 viathe SPI. To do this, we only need three wires
connecting the two devices. One of the wires will send the MOSI (master out, slave in) data from the
FPGA to the HC11, and the other wire will send the clock signal that will coordinate the receiving of
each bit of the serial information (SCK), and the third will be slave select (~SS) that tells the HC11
when datais being sent. MOSI, ~SS, and SCK will be output pins on the FPGA and can be easily
wired to the HC11EVB'’ s input pins. In this configuration, the FPGA acts as a master, and the HC11
acts asthe slave.

The 16-button keypad will be placed on the solderless breadboard and wired to the FPGA as was done
inlab 4. Therow pinswill beinputsto the FPGA, and the column pinswill be outputs so that the
FPGA can poll the keypad. Polling consists of each column being alternately pulled low while the
other columns are pulled high. The row pinswhich are input to the FPGA are attached to fairly high
resistors, so that their values are by default high if no current is passed through them. If akey is
pressed, the row corresponding to that keypress will be pulled low. The FPGA logic will look at the
combination of row and column inputs and determine which key was pressed.

Overall Breadboard Schematic:

HC11
FPGA
/' /'
coLs /Mﬂs/’ oS
ROWS e Parallel bus (Port
B) for data bits Parallel bus (Port
> x A) for control
bits
Oo0dofoaod
Oo0dofoaod . ¥
0000 +5V HI WORLD
e —— /NN
BREADBOARD

Microcontroller Design

The hcll isresponsible for controlling the LCD display based on the key presses
on the keypad. It receives messages serially from keypad (with the keypad as master, the
hcll as dave) using the SPI interface. These messages are received as a binary encoding
of the value that was pressed on the keypad. It sends messages out to the LCD display via
paralel ports A and B.

The hcll stores a queue of messages that are edited using the keypad. We decided
to represent this queue with atwo dimensiona array. Since the LCD display shows 16
characters on screen, we decided to make each messages exactly 16 bytes. We also
decided to fix the size of the queue to be 32 messages long, or 320 bytes. Empty messages
in the queue are represented by all NULLSs.

COOO Hello World
Co010 0000000000000000

(0000000000000000

C200

Message Queue

We broke the operation of the hc11 into three different modes. These modes are normal mode,
message control mode, and message entry mode. In normal mode, the messages are displayed on the
screen until akey is pressed, at which point the program enters message control.

nor mal Mode()

| oop forever
{
scrol | Messages()
i f(checkl nput ())
MessageCont rol ()

Message control mode allows the user to edit, delete, and create new messages

MessageControl ()
{

Loop until done is pressed
{
di spl ayMessage(sel ect ed nessage)
i nput = getl nput ()
swi tch(input)
up: increnment selected nessage
down: decrenent sel ected nessage
new. new)

edit: edit(sel ected nessage)
renove: renove(sel ected nessage)

The remove() function just converts the selected message to NULLs. The
new() function finds an empty dot in the array, converts all the characters to

gpaces, and then calls edit() on that position.
new()
{

find enpty message
convert to spaces
edit(enmpty nessage)

The edit() function is the third mode of operation: message entry. The edit function gets
keystrokes from the user and modifies the message. It keeps a cursor position on the message and allows

the user to change the current character, or move left or right.
edit()

| oop until done is pressed
{
di spl ayMessagewi t hCur sor (cur sor position)
i nput = getl nput ()
swi tch(input)
up: increnment selected nessage[cursor position]
down: decrenent sel ected nmessage[cursor position]
left: increment cursor positions
right: decrenent cursor position

FPGA Design

Describe the function of the hardware in your FPGA, including inputs, outputs, and major hardware
modules. Describe the key logic, using datapath or FSM diagrams as needed. This section should give
the reader enough information to understand the Verilog code and/or FPGA schematics in the appendix.

So far we have coded modules in Verilog to take care of the polling, debouncing, and SPI communication.
The code for these modules can be found in Appendix A.

FPGA Logic Diagram:

FPGA
From clock
FPGA
board
clkslow
dow clock l
\ 4
keypressed keyout serialclk ToHC11
From 4 keypad ——P g
keypad
eyp _7L> key _ss
rows 7 MOS] ® ToHC11
— 1
4
shiftclk, 8
MQOSI load
key
columns
shift
\ 4
Explanation of %%é(@/&ad

The main.v module is the controlling module that calls all the other ones. It takesin the global
inputs of clk, reset, and rows, and outputs the global outputs cols, MOS, ~SS, and serialclk.

The clkdiv.v module takes the FPGA’ s internal clock and slows it down by a factor of 2*11. This
clock isthen used in the keypad module to debounce the signal by sampling it at greater than 5
ms. This slowed-down clock is outputted to the keypad.v module as slowclk.

The keypad.v module outputs the cols data, pulling each column alternately low. It also takesin
the rows data, and decodes the rows and cols data together to determine if a key was pressed
(keypressed) and what it was (key). Each keypressis sampled and debounced using slonclk.

The shift.v module is a 8-bit shift register which takesin a clk, load, and indata, and outputs
MOSI. When load is enabled, the indata is loaded directly into the shift register in parallel. The
clk then shifts the data through the registers. The MSB is outputted as outdata.

The keyout.v module takes in clk, reset, keypressed, key, and outputs MOSl, ~SS, and serialclk.
It stores key in shift.v and then generates clocks for the serial output and the shift register. The
shift register clock is the opposite of the seria output clock, delayed by one clock cycle. The
serialclk, ~SS, and the MOS are outputted to the FPGA in SPI format.

Results

We were able to complete our project as proposed. The marquee could store up to 32 messages,
with each message being 16 characters long. The marquee could scroll the messages, and supported the
add, delete, edit, and new message operations described above. The edit message mode supported the
character ‘a-z’, “ A-Z', and some special characterslike® *, “#, ‘1", etc. Scrolling through all these
characters to find the one you wanted was a little cumbersome. It was suggested to us that instead of using
one keypad and entering in messages video game style, we could instead use two keypads and enter in the
letters“ A-Z’ directly (26 buttonsfor *A-Z’, 6 control buttons).

One of the difficult parts of the project was trying to get the FPGA to communicate serialy with
the HC11 using the FPGA as a master. The Verilog code to send data using this technique ended up being
more difficult than we thought. However, we were able to get it working.

We were unable to write the code in C as we hoped, because we did not get the C compiler
working in time. However, after we had written the code in assembly, we did get the C compiler to work.
We were unable to use the compiler for our project because we had aready written the assembly code,
however, we hope that students will be able to use what we' ve learned about the compiler for future
projects.

References
Check the following links for up-to-date information about LCDs.

[1] FiI’'s FAQ Link-In Corner: LCD Program and Pinout FAQ,
http://ww. repairfag.org/filipg/LINKF_LCD progr.htm

[2] Optrex DM C-16249 Documentation, ht t p: / / www. opt r ex. coni pdf s/ Dcrman_f ul | . pdf

Parts List

List al of the components you used other than standard resistors, capacitors, and parts available in the
MicroP' s lab.

Part Source Vendor Part # Price
Optrex DMC 16249 MicroPs lab

2x 16 LCD

16-button keypad MicroPs lab

10

Appendix A: Pinouts

11

Serial Interface:

FPGA HC11
MQOSI 45 PD3
SCK 46 PD4
~SS 47 PD5
LCD Interface:
LCD HC11 OTHER
Vss GND
Vce Vce
Vee GND
RS PA4
R/W PA5
E PA3
DBO PBO
DB1 PB1
DB2 PB2
DB3 PB3
DB4 PB4
DB5 PB5
DB6 PB6
DB7 PB7

Keyboard Interface:

Keyboard FPGA
RowO P38
Rowl P39
Row2 P40
Row3 P44
Col0 P18
Coll P19
Col2 P20
Col3 P23

12

Appendix B: Report on GCC Compiler

13

Report on gcc

We tried using a C compiler for the HC11 instead of writing in assembly. We were unable to get
it to work before writing our assembly code, however after we were done we realized that we were not
point the compiler at avalid location for the stack. After giving it a good location for the stack, the
compiler worked.

The compiler is aport of gcc, afree compiler written by the gnu
project. It does not yet support C++, but the C compiler works. It also comes with a simulator, a debugger,
and an assembler. The simulator works fine. The debugger is supposed to work with both the simulator
and buffalo, but we only got it working with the simulator. The assembler might be useful for linking in
assembly functions with C code but it does not use the same syntax as as11 and we couldn't get it working.

The compiler is availible on the web from http://home.worldnet.fr/~stcarrezzm68hcl11_port.html.
| compiled it under linux, but the author has binaries for windows availible from his webpage. Y ou need
to get both the binutils and gec for a basic setup, but I'd recommend the debugger. Y ou might also want
the newlib library, which has some useful functions. Follow his instruct for installing the stuff, for linux it
was very straightforward.

In order to get the code to put the code, data, and stack in the right locations, you need to put a
file called memory.x in the directory which you are compiling in. The format of memory.x is shown below
(I copied this from one of his examples, but modified it to use locations which work with buffalo).

To compile code into .s19 so you can download it to the hcll, you do the following:

? compilethe.c codeinto an .o file

m68hc11-elf-gce -mshort -g -Wall -Os file_name.c
? link the .o file(s) into a .€lf file
m68hcl11-elf-gcc --mshort -WI,-m,m68hcllelfb file_name.elf file_name(s).o
? trandlate the .elf fileinto .s19
m68hc11-elf-objcopy --output-target=srec --only-section=.text
--only-section=.rodata --only-section=.vectors file_name.elf file_name.s19

If you want to run the simulator or the debugger, you just need the .elf file. The -WI,-
m,m68hcl1elfb option istelling the linker to use the memory.x file you specified, instead of just putting
the code into default locations which won't work the hcl1's we have, so if you don't do thisit'll simulate
fine but won't work on the board. the --only-section parts of the objcopy don't seem to matter, but the
author used them in his examples, so...

We didn't test the compiler very thoroughly, but it seemed to work. We did notice that it seemed
to be using unsigned comparisons (<, >), so be careful with comparisons.

14

memory.x file:

/* Fixed definition of the avail abl e menory banks.

See generic enulation script for a user defined configuration.

MEMORY
page0d (rwx) : ORIGIN = 0x0, LENGTH = 30
text (rx) : ORIGN = 0xC200, LENGTH = Ox1E00
dat a © ORI G N = 0x0000, LENGTH = 0x200

/* Setup the stack on the top of the data nenory bank. */
PROVI DE (_stack = 0xC200 - 1);

Sample Makefile:

#MVakefil e
Dan Smth
witten to conpile .elf and .s19 files fromc code

#progr anms

BASE = n6811-el f-

CC = $(BASE) gcc

OBJCOPY = $(BASE) obj copy

#conpi | er options

CFLAGS = -nshort -g -Vall -GCs
LFLAGS = -nshort -W,-m n68hcllelfb
OFLAGS = --output-target=srec --only-section=.text --only-

section=.rodata --only-section=.vectors

#change this to build sonething el se
TARCGET = greatest.elf

STARGET greatest.sl9

OBJECTS = greatest.o

al | : $(TARGET)

$(TARGET) : $(OBJECTS) nenory. x
$(CC) $(LFLAGS) -0 $(TARGET) $(COBIECTS)
$(OBJCOPY) $(OFLAGS) $(TARGET) $(STARGET)

%o0: %cC
$(CO) $(CFLAGS) -c $<

cl ean:
rm*.o
rm*.elf
rm*.sl19

15

*/

Appendix C: Verilog Files

16

modul e main (clk, reset, rows, cols, nosi, serialclk, slaveselect)

i nput clk; /1 FPGA internal clock
i nput reset; /1 FPGA internal reset (big red button)

input [3:0] rows;
output [3:0] cols;

out put nosi ; //the keypress bits for serial output
out put serial cl k; //the clock used to control the serial transfer
out put sl avesel ect; //goes |ow during the transm ssion, high otherw se

wire slowcl k; //the sl owed-down FPGA cl ock

wire[3:0] key; //the key that was pressed

cl kdiv myclkdiv(clk, reset, slowclk); / /sl ow down the clock

keypad nykeypad(slowclk, reset, rows, cols, key, keypressed); //poll the keypad

keyout nykeyout(clk, reset, key, keypressed, nosi, serialclk, slaveselect);
//output the pressed key serially

endnodul e

FEEETEEETEE it
modul e cl kdiv(clk, reset, slowclk);

i nput clk; /1 FPGA internal clock
i nput reset; /1 FPGA internal reset (big red button)
out put sl owcl k; //the sl owed-down FPGA cl ock

reg[11: 0] count;

/1 This synthesizes to an asynchronously resettable counter.
//The reset line is tied to the global set/reset line of the FPGA
al ways@ posedge cl k or posedge reset)

if (reset) count = 0;

el se count = count +1;

assign slowcl k = count[11];
endnodul e

LTI bbb iy
modul e keypad(slowcl k, reset, rows, cols, key, keypressed);

i nput sl owcl k; /] sl owed- down cl ock
i nput reset; /1 FPGA internal reset (big red button)

input [3:0] rows;
output [3:0] cols;

output [3:0] key; //contains the binary value of the pressed key
out put keypressed; //a key was pressed
reg keypressed; //for FSM

reg [3:0] cols;
reg [3:0] key;

/] scanni ng FSM
al ways @ posedge sl owcl k or posedge reset)
if (reset) begin
keypressed <=0;
cols <= 4'b0111;
end else if (& ows) begin
/I no key pressed on this colum, so keep scanning
keypressed <= 0;
cols <= {cols[0], cols [3:1]}; //shift cols right
end else if (~keypressed) begin
keypressed <= 1;
end
//otherwise wait until all keys are rel eased before continuing

|/ keypad conversi on
al ways@rows or cols)

17

case ({rows, cols})

8'b0111_0111: key <= 'hG;
8'b1011_0111: key <= 'hD;
8'b1101_0111: key <= 'hE;
8'b1110_0111: key <= 'hF;
8'b0111_1011: key <= 'h3;
8'b1011_1011: key <= 'h6;
8'b1101_1011: key <= 'h9;
8'b1110_1011: key <= 'hB;
8'b0111_1101: key <= 'h2;
8'b1011_1101: key <= 'hb;
8'b1101_1101: key <= 'h8§;
8'b1110_1101: key <= 'hoO;
8'b0111_1110: key <= 'hi;
8'b1011_1110: key <= 'h4;
8'b1101_1110: key <= 'h7;
8'b1110_1110: key <= 'hA;
default: key <= 'hO;
endcase

endnodul e

FEETTLEETEE i b rrny
modul e shift (clk, reset, load, indata, outdata)

//this is a basic 8-bit shift register

input clk, reset

i nput | oad;

input [7:0] indata ;
out put outdata ;

reg [7:0] data;

al ways @ posedge cl k or posedge reset)
begi n
if(reset ==
data <= 8'b1010_1010;
else if (load == 1)
data <= indata; //if loading, imediately |oad everything in
el se
begi n //otherw se, shift everything through
data[7] <= data[6];
data[6] <= data[5];
data[5] <= data[4];
data[4] <= data[3];
data[3] <= data[?2];
data[2] <= data[1];
data[1] <= data[O0];
data[0] <= 1;
end
end

assign outdata = data[7]; //the 7th bit is the MOSI out.
endnodul e

IR NN NNy
modul e keyout (clk, reset, key, keypressed, nosi, serialclk, slaveselect)

input clk, reset; /lserial clock

input [3:0] key; //the key that was pressed

i nput keypressed;

out put nosi ; //the keypress bits for serial output

out put serial cl k; //clock that controls the serial transfer

out put slaveselect; //low during transm ssion, high otherw se.

reg [7:0] shiftreg; //shift register that holds the serial output
reg [3:0] bitcounter;

reg shiftclk;

reg serial cl k;

reg previ ousl ynot pressed;

reg | oad;

18

al ways @ posedge cl k or posedge reset) /lat every clock tick

if(reset)
begi n
serialclk <= 0;
shiftclk <= 0;
load <= 1;
bi tcounter <= 4'h8;
previ ousl ynot pressed <= 1;
end
el se if(keypressed)
begi n
i f (previouslynotpressed)
begi n
load <= 1;
shiftcl k <= 1; //the shifting clock is high
serialclk <= 0; //the serial clock outputted to the
//HC11 is |ow
bitcounter <= 0; //we initialize the bit we start
//transmtting to O
previ ousl ynot pressed <= 0;
end
el se
begi n
| oad <= 0;
if(bitcounter < 4'h8) //if we haven't yet
//transmtted bit 8,
begi n
shiftclk <= ~shiftclk;
//toggle shift clock
serialclk <= ~serial cl k;
//toggl e serial clock
if(shiftclk)
bi tcounter <= bitcounter + 1;
end
el se
begi n
//otherwi se, we're on bit 8.
//end. transm ssion.
shiftclk <= 0;
/1shift clock stays |ow
serialclk <= 0;
//the serial clock goes low (we aren't
//transmtting everything)
end
end
end
el se
begi n
previ ousl ynot pressed <= 1;
shiftclk <= 0;
serialclk <= 0;
bi t counter <= 4'h8;
load <= 1;
end
assign sl avesel ect = ~(keypressed & (bitcounter < 4'h8) | serialclk);

//slave sel ect goes |ow when we transnit data

shift outRegister(shiftclk, reset, load, {4'bl111, key}, nosi);
//shift out the data with 1's in the bits we don't use.

endnodul e

Appendix D: Assembly Code

19

queue.asm

hkhkkkhkhhkhkhkhhhhkhhhhhdhdhdhdhdhhdhdhddhdddhhdhddhhdddrhdhdrdhdhdrdhdrdrddrxrdixx

Dan Smith

11/ 28/ 00

el55 final project

mai n event | oop

description - this program nmaintains a queue of nessages

it allows editing of the nmessages. It displays the nmessages

to an |l cd display and receives the nmessages froman FPGA. This
file contains the message control aspects.

* Ok X kX X

hkhkkkhkhhkhkhkhhhhkhhhhdhdhdhdhdhdhhdhdhdhddhdhddhhdhddhhdddhdhdrdhdrdrddrrdrrxd*x

*constants

*| ocati ons, sizes

QUEUE_LCC EQU $C000

QUEUE_END EQU $C200

MESSAGE_SI ZE EQU $10

NG MESS SI ZE EQU $fffO0

NUM_MESSAGES EQU $1f

STACK_LCC EQU $C380

PROGRAM LOC EQU $C400

SCRATCH LOC EQU $C390 ;used for scratch space in nenory

*keys

UP EQU $FD
DOWN EQU $F6
LEFT EQU $F3
Rl GHT EQU $F9
NEXT EQU $F5
PREV EQU $F2
DONE EQU $F8
DELETE EQU $F7
ADD EQU $F4
EDT EQU $F1
*chact acters

SPACE EQU ' '
NULL EQU #0

FIRST CHAR EQU '
LAST CHAR EQU ' z'

hkhkkkhkhhkhhkhhhhkhhhhhhhdhhdhdhhdhdhdhddhdddhhdddhhdddrhdhdrdhdrdrdhdrdrddrrdxixx

* initial queue

org QUEUE LCC
fcc "Marquee
fcc "D splay
fcc "Katherine

fcc " &Dban"
fcc "E155 is fun&EZ!'!"
PREDEF: fcc "\ 0\ O\O\O\O\O\O\O\O\O\NO\O\O\ONON 0"

hkhkkhkhhhkhkhhhhkhhhhdhdhdhdhdhdhhddhdhddhdddhdhdhddhhdddhdhdrdhdrdrddrrddrrdixx

* initialization code
* clear the queue, initialize the i/o devices
org PROGRAM LCC

20

I ds #STACK LCC

jsr INITSPI
jsr INITDR
jsr CLEAR

jsr CLEAR QUEUE
| dx #QUEUE_LOC
queue

;initialize the serial interface
;initialize the display
;clear the display
; cl ear the queue

;load the X register with a pointer to

hkhkkkhkhhkhkhkhhhhkhhhhhdhdhhdhdhhhhdhddhdhddhdhdhddhhdddrhdhhdhdhdrddrrddrxd*x

*mai n | oop

* scroll through messages, on a keypress go the the next nessage

MAI N:

pshx ; push x onto the queue for subroutine calls

jsr DI SPLAY_MESSAGE

jsr WAl TASEC

pul x

i nx ;shift the display by 1 (scrolling)

clra

cnpa 0, X ;check to see if the next value is nul

bne CONT1 ;if the next value is not null go on

 dx #QUEUE LCC ; g0 back to the beginning of the queue
CONT1: pshx

j sr TESTDATA ;after this, Awll be 0 if no input

pul x

cnpa #$0

beq MAIN ;if there is no input, display again

pshx

j sr NMESSAGE_CONTROL ; ot herwi se

pul x

bra MAIN

Rk R S R R R R R R O O O R

*mai n | oop hel per functions

*cl ear the queue
CLEAR_QUEUE

| dy #PREDEF

| dab #NULL
LOOP4: stab 0,Y

i ny

cpy #QUEUE_END

bne LOOP4

rts

;start the end of the predefined nmessages
;wite null to the queue

hhkkkhkhhkhkhhhhhkhhhdhkhdhdhdhdhdhhdhdhddhdhddhhdhddhhdhddhdhdrdhdrdrdhdrdrddrxd*x

*message control |oop

*create, delete, edit nessages

*sequence

* display the current nessage
read input (wait for it)

swi tch(i nput)
create a new nmessage

edit the current nessage
go to the next nessage

*
*
*
* delete current nessage
*
*
*
*

go to the previous nessage

return to main | oop

21

MESSAGE_CONTRCL:

l dx #QUEUE LCC ;start at the beginning of the queue
LOOP1: pshx
jsr DI SPLAY_MESSAGE ; di spl ay the message
j sr GETDATA ;wait for input
pul x
cnpa #NEXT ;g0 to the next nessage
bne CASEAl
j sr NEXT_MESSAGE
bra LOCP1
CASEAL: cnpa #PREV ;g0 to the previ ous nmessage
bne CASEA2
j sr PREV_NMESSAGE
bra LOCP1
CASEA2: cnpa #DELETE ; del ete a nessage
bne CASEA3
j sr DELETE_MESSAGE
bra LOCP1
CASEAS3: cnpa #EDI T ;edit a nmessage
bne CASEA4
jsr ED T_MESSAGE
bra LOCP1
CASEA4: cnpa #ADD ;add a message
bne CASEA5
jsr NEW MESSAGE
bra LOCP1
CASEAS5: cnpa #DONE ;return to main | oop
bne CASEA6
rts
bra LOCP1
CASEAG: bra LOCP1 ;default case

khkkkhkhkhkhkhkhhkhdhkhhkhdhkhdhhhhrhdrkhkhx*x

*message contro

hel per functions

*go to the next nessage
* X = message
NEXT_VESSAGE
| dab #MESSAGE_SI ZE
abx
clra ;check to see if we have reached the end
cnpa 0, X
bne CONT2
 dx #QUEUE LCC ;if we have, go to the beginning
CONT2: rts
*go to the previous nessage
* X = message
PREV_ESSAGE
cpx #QUEUE_LCC ;check to see if we have reached the
begi nni ng
bne CONT3

22

rts ;if we have, don't go anywhere
CONT3:

xgdx ; g0 back a nmessage

addd #NG_MESS_SI ZE ;

xgdx ;

rts

*nessage creation

NEW MESSAGE
jsr FIND TAIL ;find the end of the queue
cnpa #3$0 ;see if the queue is ful
bne CONT4 ;if the queue is not full, branch
pshx ;di splay an error
jsr ERROR
pul x
rts

CONT4: pshx ; set message might corrupt X
| daa #SPACE
jsr SET_MESSAGE ;set the nessage to spaces
pul x
jsr EDIT_MESSAGE ;edit the newy created nessage
rts

*nmessage del etion
* X = message
DELETE_MESSACE

pshx

jsr MWE_TAIL ;move the [ast nonenpty message to
* ;the deleted | ocations

pul x

jsr FIND TAIL ;find the tai

cpx #QUEUE LOC ;if the queue is enpty return

beq CONT12 ;

xgdx ;

addd #NG _MESS S| ZE ;find the Iast nonenpty nessage

xgdx ;

| daa #NULL

pshx

jsr SET_MESSAGE ;set the last message to NULL

pul x
CONT12: res

*find the tail of the queue (the first enpty message

*if the queue is full, store 0 in accunmul ator A
*ot herwi se store 1
*tail is stored in X
*returnin A
FI ND_TAI L:
 dx #QUEUE LCC ;start a nessage bel ow t he queue
xgdx
addd #NG_MESS S| ZE
xgdx
| daa #NULL ;we want to check for NULL
* ;at each nessage
LOOP2: | dab #MESSAGE_SI ZE ;increnment the pointer

23

abx

note, we want to check to see if we are at the |ast nessage

the reason is because we cant to | eave the | ast message all NULLs
cpx #QUEUE_END

bne CONT5
| daa #0 ;if the queue is full return O
rts
CONTS5: cnpa 0, X
bne LOOP2 ;if this isn't the end of the queue, go *
;on
| daa #1 ;return 1
rts

*nove | ast message in queue to a location pointed to by the X index
register

*used for delete.

* X = message

MOVE_TAI L:
pshx
jsr FIND TAIL
pul y ;getting tricky, we want Y to have the old
* ;location and X to have the tail of the |ist
cpx #QUEUE_LCC ;check to see if tail = head (enpty queue)
beq CONT6 ;if they're equal just return
xgdx ;
addd #NG_MESS S| ZE ;
xgdx ;g0 to the |last nonenpty nessage

sty SG%KH}G:Ecmmweytox
cpx SCRATCH LCC

beq CONT6 ;if they're equal, just return

| dab #MESSAGE Sl ZE ;initialize counter
LOOP6: ldaa O0,X ;get a byte fromthe tai

staa 0,Y ;put it in the location

i nx ;

i ny ;00 to the next byte

decb ; decrenent counter

bne LOOP6 ; | oop
CONT6: res

R b Sk S Sk kS R SRR bk S S I kS I R bk S S
*nmessage editing
*this function assunes the X index register is already pointing
*at the message in nenory. It just diplays the cursor and changes
*the characters
* sequence
di spl ay nessage
di spl ay cursor
get input
switch (input)

nove cursor |eft

move cursor right

i ncrenment character

decrenent character

return to message contro

EE R I

24

* X = message

EDl T_MESSAGE
stx SCRATCH LCC ;
ldy SCRATCH LOC ;copy XtoY
pshy
pshx
jsr DI SPLAY_MESSAGE ; di spl ay the message
jsr HOMVE
jsr CUR_ON ;turn on the cursor
pul x
pul'y
LOOP7: pshy
pshx
j sr CGETDATA ;wait for input
pul x
pul'y
cnpa #UP ;g0 up a character
bne CASEB1
jsr UP_CHAR
bra LOOP7
CASEBL: cnpa #DOWN ; go down a character
bne CASEB2
jsr DOMN_CHAR
bra LOOP7
CASEB2: cnpa #LEFT ;go left
bne CASEB3
jsr PREV_CHAR
bra LOOP7
CASEBS: cnpa #RI GAT ;go right
bne CASEB4
jsr NEXT_CHAR
bra LOOP7
CASEB4: cnpa #DONE ;return to message contro
bne CASEB5
pshx
jsr CUR_OFF
pul x
rts
bra LOOP7
CASEBS: bra LOOP7 ;default case
rts

hkhkkkhkhkhkhkhkhhhdhkhhhhhdhhhkhkdhkhkhx*x

*edit message hel per functions

*rotate character pointed at by Y up

*Y = char
UP_CHAR
i nc
| daa
deca

0,Y ;g0 up a character
0,Y ;

25

| oop

cnpa #LAST_CHAR ;check to see if we're at the | ast character

bne CONT8

| daa #FI RST_CHAR ;

staa 0,Y ; junp to the first character
CONTS: ldaa O0,Y ; wite the character to the LCD

pshx

pshy

jsr WRI TED

jsr CUR_LEFT

pul'y

pul x

rts

*rotate character down

*Y = char
DOMN_CHAR
dec 0,Y ; go down a character
| daa 0, Y ;
i nca ;
cnpa #FIRST_CHAR ;check to see if we're before the first char
bne CONT9
| daa #LAST_CHAR ;
staa 0,Y ;junp to the last character
CONTO: | daa 0, Y ;wite the character to the LCD
pshx
pshy
jsr WRI TED
jsr CUR_LEFT
pul'y
pul x
rts

*go to the next character (in nmenory and displ ay)

*Y = char
* X = start of nessage
NEXT_CHAR:
pshx ;save for later
| dab #MESSACE_SI ZE
decb
abx ; X now hol ds the end of the nessage
stx SCRATCH LCC ;
pul x
cpy SCRATCH LOC ;check to see if Y is the end of the nessage
bne CONT10

stx SCRATCH LOC

dy SCRATCH LOC ;go the the beginning of the nessage
pshx

pshy

j sr HOVE ;move the cursor hone

pul'y

pul x

rts

CONT10: i ny ;increnment the pointer
pshx

pshy
jsr CUR_RI GHT ;move the cursor left

26

pul'y
pul x
rts

*go to the previous character (in nenory and displ ay)

*Y = char
*X = start of nessage
PREV_CHAR

stx SCRATCH LCC ;
cpy SCRATCH LOC ;check to see if Y is the start of the nessage

bne CONT11

rts ;just stay at beginning if at begi nning, no
wr ap* ; around
CONT11: dey ; decrenent the pointer

pshx

pshy

jsr CUR_LEFT ;move the cursor right

pul'y

pul x

rts

hhkkkhkhhkhkhkhhhhhhhhhdhdhhdhdhhhhddddhdddhhdhddhhdhddhdhhdhdrdrdhdrrddrxd*x

*generic hel per functions

*di spl ay a message
* X = pointer to nmessage
DI SPLAY_MESSAGE
| dab #MESSACE S| ZE ;initialize counter
i ncb
pshx
pshb
jsr HOMVE ;g0 to the beginning of the display
pul b
pul x
LOOP3:
[daa O, X
pshx
pshb
jsr VR TED
pul b
pul x
i nx ;increnment the pointer
decb ; decrenent the counter
bne LOOP3 ;1oop until counter=0
rts

*set a nessage to the value accumul ator A
*used to clear a message or initizialize it to sone character
* A = value to set
* X = pointer to nmessage
SET_MESSAGE
| dab #MESSACE S| ZE ;b is a counter
LOOP5: staa 0, X
i nx
decb
bne LOOP5

rts

27

*di spl ay an error nessage

ERRM FCC " ERROR " ;the acual error nessage
ERROR: | dx #ERRM ;

j sr DI SPLAY_MESSAGE ;di splay the string above

j sr WAl TASEC ; delay for 1 second

j sr WAl TASEC

j sr WAl TASEC

| dx QUEUE LCC ;reinitialize X
rts

*wait one-third of a second

WAl TASEC: | dab #10 ; 10 overfl ows

DELAY1: | daa #10000000 ; clear the TOF to start the delay
staa $1025 ; store in TFL&

SPI N1: tst $1025 ; do 10 overflows for approx. 1/3 sec
bpl SPINL ; is flag 0? branch on bit 7 is clear
decb ; decrenment counter

bne DELAY1 ; if we haven't counted to O yet, delay again
rts

28

Interface.asm

*LCD Assenbly Subroutines

*Kat heri ne Wade

*11/ 30/ 00

EE R I S I Sk S I R I S b S

*this code is based upon Jason Fong and Ferndando Mattos' code from | ast

year.
R R I S S S O Sk S R

PORTA EQU $1000 *LCD Control Register
PORTB EQU $1004 *LCD Data Regi ster

DDRD EQU $1009 *SPlI Configurati on Register
SPCR EQU $1028 *SPI Control Register

SPSR EQU $1029 *SPlI Status Register

SPDR EQU $102A *SPI Data Regi ster

ZERO EQU $0000 *for conparison purposes
DELAY EQU $0002 *holds the anpbunt to wait

khkkkhkhhkhkhkhhhhkhhhhhdkhhhhhdhhhdrhdrrkd*k

*this org is coomented out so that this code will be put foll ow ng
*the queue code in nenory by the assenbl er
* ORG $c000

hkhkkkhkhhkhkhkhhhhkhhhhdhdhdhdhdhdhhdhdhddhdhddhhdhddhhdddrhdhdrdhdhhdhdrdrddrrdixx

*initialize the serial port as a slave
INITSPI: | daa #%©0000100

staa DDRD

| daa #%©1001100

staa SPCR

clra

rts

hkhkkkhkhkhhkhkhhhhhhhhkhhhdhhhhdhhdhdhhdhddhdddhdrdddrdrddrxrdxix*x

I NIl TDR | daa #%$38 //initializes the LCD driver
jsr VWRI TEC
| daa #$38
jsr VWRI TEC
| daa #$38
jsr VR TEC
| daa #$06
jsr VR TEC
| daa #$0C
jsr VR TEC
rts

khkkkhkhkhkhkhkhhhhkhhhdhhdhhhhhdrrhdrkd*k

*port A
*bit 3 = enabl e
*bit 4 = register select (0 for control)
*hit 5 = RRW(0 for witing data)
VWRI TEC. | dab PORTA //wites to the LCD control, control data in
acc. A
andb #941000111
stab PORTA
staa PORTB
| dab PORTA

29

andb
orab
stab
| dab
andb
stab
| dab
andb
orab
stab

#9%11001111
#%90001000
PORTA
PORTA
#%11000111
PORTA
PORTA
#%11100111
#%©0100000
PORTA

| daa #10
st aa DELAY

jsr
rts

VWAI'T

//wait 10 ns

hkhkkkhkhkhkhkhkhhkhhkhhhhkhhhhkhdhdhhhdrrhdx*x

*port A
*bit 3
*bit 4
*bit 5

WRI TED: | dab
andb
orab
stab
st aa
| dab
andb
orab
stab
| dab
andb
orab
stab
| dab
andb
orab
stab
| daa
st aa

jsr
rts

R R o S S R R R I R S R o R S

WAl T1: |dy
LOOPWL.: dey
cpy
bne
| dy
LOOPW2: dey
cpy
bne
| dy
LOOPWB: dey
cpy
bne
rts

enabl e
regi ster select (1 for data)
RW(0 for witing data)
//wite char data to LCD, char

PORTA
#9%11010111
#%©0010000
PORTA
PORTB
PORTA
#9%11011111
#%©0011000
PORTA
PORTA
#9%11010111
#%©0010000
PORTA
PORTA
#9%11110111
#%©0110000
PORTA

#2

DELAY
VWAI T

#40 [/ waits

#ZERO
LOOPWL
#40

#ZERO
LOOPWVR2
#40

#ZERO
LOOPVB

VWAl T: | daa DELAY
LOOPW cnpa #ZERO

beq

RETURN

[/wait 2ns

for 1 s

data in acc.

//wait for variable anmount of seconds

A

jsr WAIT1

deca

jmp LOOPW
RETURN:

RTS
SW

ER R b S R R R R S Rk o

CLEAR: | daa #$01 //clears the LCD
jsr WRITEC
rts

hkhkkkhkhkhkhkhkhhkhhkhhhhkhdhhkhdhdhrhdrrhdx*x

CUR ON: | daa #$0D //turns cursor on
jsr WRITEC
res

ER R S b S o R R R R R R kS

CUR COFF: | daa #$0C //turns cursor off
jsr WRITEC
rts

hkhkkkhkhkhkhkhkhhhhkhhkhhkhdkhhhhhdhhdhdrhdrrxd*k

CUR LEFT: |daa #$10 /I moves cursor |eft
jsr WRI TEC
res

khkkkhkhhkhkhkhhhhkhhhdhkhhhhkhhhdrrhdrrd*k

CUR RIGHT: |daa #$14 /I move cursor right
jsr WRI TEC
rts

Rk R R o R Rk I O S R Sk b S S S

HOVE: | daa #$02 // move cursor hone
jsr WRITEC
rts

hkhkkkhkhhkhkhkhhhdhhhhdhhhhdhhhhdhhhdhdhhdhdrhddrhdrrddrrd*x

*wait for data fromthe serial port
CHECKDATA: | daa SPSR
anda #%40000000
cnpa #$80
bne CHECKDATA
rts

Rk R S b S R R R R S S R R S b S S SRR e o

*check for data fromthe serial port
*regA = 0 if no data
*regA = 0x80 if data
TESTDATA:
| daa SPSR
anda #%40000000
rts

hkhkkkhkhhkhkhkhhkhhkhhhdhkhhhdhhdhhdhhdhdrhdhdrrddrx*

*wait for data fromthe serial port
*put in it register A

31

GETDATA:

j sr CHECKDATA
| daa SPDR
rts

32

