
Smith & Maitra 1

Daniel Smith & Shamik Maitra
E158 Intro to CMOS VLSI Design

Prof. Harris

Final Report:

Design and Implementation of a
Binary Neural Network

Smith & Maitra 2

Background:

In a typical neural network, a set of inputs is operated on by a series of nonlinear

elements called neurons. This network of neurons produces a set of outputs based on

these inputs. Neural networks have many practical applications, which mostly stem from

the fact that the strength of a neural network is its ability to identify salient features from

large data sets. Typical applications are data compression, facial recognition, trend

analysis/prediction, etc.

The neurons are usually arranged in architectures that support the function that

they are expected to perform. On a basic level each neuron’s connection to another

neuron or input carries with it some strength, or weight. Whenever an input arrives at a

neuron, it is multiplied by this connection weight.

Typical neurons (in the computational sense) multiply each input by a connection

weight and add up all of these weighted inputs. This sum is usually sent through an

activation function to determine whether or not a neuron will fire (or to what degree).

While such networks exist primarily as software and computer models, some have

been hardwired into circuits as well as IC’s. Several neural net chips exist on the market

today. Some of these chips operate as analog devices by running below threshold on the

transistors thereby gaining continuous properties instead of discrete properties afforded

by CMOS transistor logic. Other chips, however, do use purely the digital capacity of

CMOS to execute a network; and yet others use hybrids between the two to create a more

robust design.

Smith & Maitra 3

Functional Overview:

We accomplished the design and implementation of our neural network through a

good degree of analogizing processes that take place in a neuron to processes that we felt

we could replicate efficiently on a chip. We felt efficiency, in terms of space, was

important because we wanted to fit as many neurons as possible onto this chip.

Since we wanted our neural network to be able to be used for different

applications, we decided to fully connect each layer to the next layer. This means that

each of the five inputs to the network is connected to each of the 5 neurons in the first

layer.

 To accomplish the weighting function performed by typical neurons, we decided

to perform logical operations on each of the inputs to the neuron with known values

(weights, in other words). We accomplished this by storing our binary connection

weights in flops. We decided to implement these “connection weights” at the individual

neuron because it eliminated the need to have one central memory holding all weights for

the whole network. Each input to each neuron has two weights associated with it. The

first weight is NAND-ed with the input, and the output of this operation is XOR-ed with

the second weight.

Smith & Maitra 4

Vdd

Gnd

Wire

The reason for including both of these operations is that they provide us with

more flexibility in how the neuron deals with the input. The above schematic shows the

hardware we are using to weight each input to each input. The following truth table

illustrates the advantages of using two weights instead of one.

As you can see, each independent set of two weights passes a different input to the

neuron’s activation function.

 Our neuron’s activation function is the NOR5. Each neuron weights each of its

five inputs separately and then NOR5-s them all together. Now, given the above scheme

for the four different possible weights that an input can be subject to, we can develop

some insight as to how all the neurons should be weighted in order to produce a desired

output from a given input.

Weight1 Weight0 Input Output

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Smith & Maitra 5
 For example, since the NOR is only high when all inputs to it are low, if we want

to tell it to ignore an input, we tie the weighter corresponding to that input to ground (not

physically but by giving it a weight of 01). Another example would be if we wanted to

turn a neuron into a NOR5, we would just give all the weighters in the neuron the weight

11. This would tell the weighter to pass all five inputs to the neuron on to the NOR5 at

the end. More details about this functionality are given in the simulation section.

 So far we have ignored how the weights are given to the neural network. Each

flop (storing one weight) in addition to having its output connected to a logic gate also

has its output connected to the next flop. In this way, all of the flops all over the chip

form a distributed shift register. The first flop on the chip will accept the weights to be

shifted in, and as the chip (shift register) is clocked, the data will move through until all

150 weights have been shifted into the chip. Since the clock is spread over almost the

entire chip, we are using 2-phase clocking with no overlap to ensure that all weights are

properly shifted in without any data corruption. The downside of this is that to change a

single weight you must shift in all the weights again, however, since there are only 150

weights, this shouldn’t be too laborious using any sort of controller with a clock rate of a

couple of hertz or more.

In short our design uses several abstractions from a continuous model of neural networks.

Through appropriate choices for our weights we can perform various functions with our

neuron. Our network consists of 3 layers (stack of 5 neurons) that are fully connected in

order. That is, the inputs are fully connected to layer 1; layer 1 is fully connected to layer

2; etc. Each neuron’s output is the NOR of the weighted inputs. The weights are input to

the chip by means of a distributed shift register.

Smith & Maitra 6

Chip Floorplan:

This floor plan excludes the pad frame for the chip. The outer dimensions of this

floorplan include all of the facets in the core of our chip. This floorplan shows the biggest
facets in the core. The first layer is dissected to show the neurons, and the first neuron is
dissected to show the components. The weighter is laid out in a data path style. Within
the data path are two flops, one NAND, and one XOR, which are not shown. Also, within
the flop are two latches clocked separately. Thee are also not shown to keep the floorplan
readable.

Layer 2
609.5λ x 1952λ

Layer 3

Neuron 5

Neuron 3

Neuron 4

Neuron 2
529.5λ x 385λ

Weighter 1
Weighter 2
Weighter 3
Weighter 4
Weighter 5

N
O

R
5

150λ

307λ 92λ

90λ

7λ 7λ

Ring Oscillator 162.5λ x 77λ 8λ

Smith & Maitra 7

Chip Pinout:

Description: To input weights put the weights (last weight first) on Data in while
clocking ph_1 and ph_2. The five inputs to the network are inputs In 1 – In 5. The output
of the weight shift register comes on data out. The five outputs of the network are Out 1 –
Out 5. At the bottom, a small ring oscillator is provided for test purposes. Set ring enable
to high to turn on the oscillator. We expect the frequency of the oscillator be around 230
MHz.

Input
ph_1

Output
Ring
output

Input
ring
enable

Output
Data Out

Input
In 5

Input
In 4

Input
In 3

Input
In 1

Input
In 2

Input
Data in

Input
ph_2

Output
Out 1

Output
Out 2

Output
Out 3

Output
Out 4

Output
Out 5

Power
Vdd

Ground
Gnd

Smith & Maitra 8

Leaf Cell Details:
XOR

Smith & Maitra 9

LATCH

NAND2

Smith & Maitra 10
FLOP

Smith & Maitra 11

Flop Layout

Smith & Maitra 12

PSEUDO_NOR5

Description: This facet is a pseudo nmos gate. There’s one weak pullup nmos transistor, far left, which is always on. The rest of the
transistors are four times its size. If any of them turn on, the output (left side) will go low, making a NOR gate.

Smith & Maitra 13

Weighter

Description: This facet takes two ph_1 clocks and two ph_2 clocks to match the layout. The layout had two clocks so that each
weighter can snap together with the weighter above, making the clocks run as four parallel lines over each layer. The input is exported
on the far left in the middle, data in on the left at the top, and data out on the left at the bottom. The output is exported on the right.

Smith & Maitra 14

Neuron

Smith & Maitra 15

Neuron Layout

Smith & Maitra 16

Layer

Smith & Maitra 17

Layer Layout

Note: This is rotated to be horizontal. The inputs come in the top and the outputs come out the bottom. It is five neurons
stacked.

Smith & Maitra 18

Network

Smith & Maitra 19

Network Layout

Smith & Maitra 20

Ring Oscillator

Smith & Maitra 21

Core

Smith & Maitra 22

Core layout

Smith & Maitra 23

Top Level

Smith & Maitra 24

Summary of Design:

This is the summary of how much time we spent actually working with electric for the chip. We actually spent quite a bit of

time on developing the concept of how we could best perform the functions of a theoretical neural network given our limited
hardware, experience, and time. We were unable to actually figure out the transistor count of the pad frame and so those entries are
left blank on our table. Part of what contributes to the slightly high (for a datapath) area per transistor is the fully connected nature of
our network. This involved quite a few big wires, which do wonders at increasing the area of our layout without changing our
transistor count.

 Cells Actual Actual Transistor Area / Design Time Comments
 Cell Size Cell Area Count Transistor Sch (hrs.) Lay (hrs.) Tests (hrs.)

1std_latch 80 x 77 6,160 12 513.3333333 0 0.5 0.5 modification of standard cell to use metal 2 as horizontal
2flop 169 x 77 13,013 24 542.2083333 0.5 1 1 using two modified std_latches back to back to form a flop
3std_nand2 33 x 77 2,541 4 635.25 0 0.5 0.5 modification of standard cell to use metal 2 as horizontal
4XOR 85.5 x 77 6,584 12 548.625 1.5 3 0.5some layout work required to keep within floorplan estimates
5Weighter 435.5 x 77 33,534 64 523.9609375 0.5 6 2 quite a lot of layout work to ensure snap-together-ness
6Psudo-NOR5 46.5 x 380.5 17,693 6 2948.875 0.5 2 0.5 weird size and shape to fit the height of the whole neuron
7Neuron 529.5 x 385 203,858 326 625.3297546 0.75 4 2.5 also had to ensure the ability of neurons to snap together
8Layer 609.5 x 1952 1,189,744 1630 729.9042945 0.5 2.5 0.5 pretty quick, involved zipping together neurons
9Network 1841 x 2001 3,683,841 4890 753.3417178 0.25 2 0 three layers placed side by side, with a few connections

10Ring Oscillator 162.5 x 77 12,513 20 625.625 0.25 0.5 0.5
11Core 1841 x 2086.5 3,841,247 4910 782.3312627 0.25 0.75 1.5
12Top 2754 x 2754 7584516 - 1.25

 Totals: 5 24 10 Total Design Time: 39 hrs.

Smith & Maitra 25

Simulation Details:

Result I: This is the graphical output of the shifttest script (see appendix) on the core
layout. None of the assertions in shifttest failed. This test fills all 150 flops in the network
with random values. It then clocks the chip 150 times to get out all the values again and
checks to make sure that they are all correct. You can see that the output pattern (left half
of the simulation, matches in the input pattern (right half of the simulation. This indicates
that our shift register at least is working properly.

Result II: This is the output of the identtest1 script on the core layout. This test shifts in a
pattern of weights which makes the identity network, each output value equals its
corresponding input values. Prior to the waveforms above, the 150 bits were shifted in.

Input Pattern
Output Pattern

Inputs

Outputs

Smith & Maitra 26

Here we can see that after the shifting, the outputs are indeed matching the inputs to the
network. None of the assertions in idnettest1 failed on this test. There are five different
identity tests, each one of which rotates the output by a different amount. Identtest2
rotates the output by 3 (1 rotation per layer).

Smith & Maitra 27

Design Verification:

 Cells Sub-Cells Complexity Simulates DRC ERC NCC Estimated Actual
 Cell Size Cell Size

1std_latch - N/A x x x x 80 x 80 80 x 77
2flop 1 1 x x x x 80 x 160 169 x 77
3std_nand2 - N/A x x x x 80 x 40 33 x 77
4XOR - 3 x x x x 80 x 160 85.5 x 77
5Weighter 1,2,3,4 4 x x x x 80 x 520 435.5 x 77
6PsudoNMOS NOR5 - 2 x x x x 80 x 240 46.5 x 380.5
7Neuron 5,6 5 x x x x 400 x 600 529.5 x 385
8Layer 7 4 x x x x 2000 x 600 609.5 x 1952
9Network 8 3 x x x x 2000 x 1900 1841 x 2001

10Ring Oscillator - 2 XXX x x x XXX 162.5 x 77
11Core 9,10 2 x x XXX Gem XXX 1841 x 2086.5
12Top 10,11 3 XXX XXX XXX XXX 2754 x 2754

The different components of our system all simulate fine individually and all pass

DRC, ERC, and NCC. However, the ring oscillator, which we placed on the chip as a test

structure to be used once the chip is fabricated doesn’t pass ERC when placed in the

overall core of the chip because of its placement. Since it is crammed beneath our

network, it didn’t make sense to connect it to the power and ground in the core- level

layout. We connected it, instead, to power and ground in the top- level schematic where

power and ground are needed to enable the appropriate input and output pads. Since

power and ground were not connected to Network power and ground in the core, ERC

saw the P wells and N wells not connected to any source of power or ground to properly

bias them against leakage into the substrate. Hence the ring oscillator made our overall

core layout fail ERC. It also failed Electric’s NCC however, Gemini said that it was

equivalent to the schematic we provided for this layer.

Smith & Maitra 28

Additionally, the ring oscillator was unable to simulate properly on IRSIM. We

believe that the reason for this is that it might be a difficult circuit for IRSIM to analyze

in terms of timing, since it is really a loop that doesn’t end and is dependent on the state

of the oscillator system at any given time.

Another point of interest is the top-level cell (facet). It failed DRC because the

pad frame is imported from Caltech Interchange Format to Electric and is hence

described in terms of pure layers. This does not fit with Electric’s schema for performing

DRC. ERC was never able to go through to completion without crashing Electric on the

Top- level layout, and NCC was impossible to run as well since we were not provided

with a schematic for the pad frame.

When we proposed the project, we hadn’t proposed to put a ring oscillator on the

core and so there is no estimated size for this. The size of the top- level layout was what

we were designing for, and our design fits comfortably inside it with enough room to

insert a test structure such as our ring oscillator.

On the basis of simulations and the checkers in electric and IRSIM, however, we

are fairly confident that our design is sound and will be able to perform its functions in a

satisfactory manner.

Smith & Maitra 29

Test Plan:

The plan for the testing procedure of our chip after fabrication is as follows:

1. Use the ring oscillator structure on the chip with the enable tied to Vdd and

measure the output with an oscilloscope. We expect to see a (probably

deformed) square wave output at approx 230 MHz. We are using a 9-stage

oscillator that has a pretty high frequency, but it is still within the upper limits

of the measuring capacity of the oscilloscopes available to us in the

electronics lab at Harvey Mudd College.

2. Upon confirmation that the chip is not defective (as confirmed by step 1), the

shift register’s functionality should then be tested by physically performing

the functions of the program shifttest which is included in Appendix A.

Shifttest shifts into the large register a random sequence of 150 weights, and

tests them to make sure that they are shifted out properly and uncorrupted.

3. Once the functionality of the shift register is assured, the first step will be to

try to replicate the results of the program identtest1 (see Appendix A). This

program shifts in the appropriate weights to allow the network to replicate an

input pattern. It should be noted that the chip is entirely combinational once

the weights have been shifted in. The clock’s sole purpose is for the purpose

of moving data through the shift register.

This is a good starting point because it is a relatively simple pattern to

diagnose troubles in individual neurons’ circuitry. If the given input vector

doesn’t match the given output vector, there is a problem. The neuron, but not

the layer at fault can be pinpointed using one-hot encoded vectors. Further

Smith & Maitra 30

application of the proper weights and vectors should allow the tester to

diagnose the neuron/layer at fault. If necessary, weights in other neurons may

be adjusted to accommodate the failure of a few neurons. We can treat the

output of the neuron as an “ignore” by weighted its respective input at all

connected neurons with 01.

4. Once appropriate neurons are determined to be functional, executing1 any of

the following programs on the chip will more thoroughly test functionality of

the combinational logic on the chip: identtest2, identtest3, identtest4,

identtest5 (see Appendix A). These all cause each layer to barrel shift the

input pattern by a fixed amount. Identtest2 barrel shifts the input by 1 place at

each layer for a total shift of three slots. Likewise, identtest3 barrel shifts the

input pattern by 2 places at each layer for a total of 6 places. This pattern of

incrementing the shift amount per layer continues through identtest5.

5. Finally, upon successful completion of these tests, we may look at more

logically complex functions. It should not be hard to write a program to teach

the neural network to accomplish a task using a Boltzmann learning

algorithm. This involves providing an input and desired output, and randomly

switching weights to decrease the overall “Energy” function of the system.

More investigation is definitely required to do this kind of training. However,

provided in Appendix B is a Matlab description of a Neural Network that was

written to describe this particular network. So, if one wanted to simulate the

results provided by such a training program without actually having to load

Smith & Maitra 31

weights onto the chip, they should run the set of weights given by their

training program into the provided Matlab code and try different test vectors

to see whether or not the training program has given an accurate set of weights

to perform the particular application.

1 It should be noted that by program execution, we mean to actually hook up a processor to shift in the
appropriate weights given in the program and then physically providing the necessary inputs to the chip and
measuring the outputs.

Smith & Maitra 32

Appendix A:Test Files

-------------------------------------inv---
l Network_data_in
c
h Network_data_in
c

------------------------buff--
l Network_data_in
c
l Network_data_in
c

------------------------one---
h Network_data_in
c
l Network_data_in
c

------------------------zero--
h Network_data_in
c
h Network_data_in
c

------------------------checkbuff---------------------------------------
assert Network_data_out 1
c
assert Network_data_out 1
c

------------------------checkinv---------------------------------------
assert Network_data_out 0
c
assert Network_data_out 1
c

------------------------checkone---------------------------------------
assert Network_data_out 0
c
assert Network_data_out 0
c

------------------------checkzero---------------------------------------
assert Network_data_out 1
c
assert Network_data_out 0
c

------------------------initclock---------------------------------------
clock ph_1 1 0 0 0
clock ph_2 0 0 1 0

------------------------shifttest---------------------------------------

Smith & Maitra 33

@ initclock

@ zero
@ zero
@ zero
@ zero
@ zero

@ one
@ zero
@ inv
@ zero
@ inv

@ buff
@ inv
@ zero
@ inv
@ one

@ inv
@ buff
@ inv
@ zero
@ zero

@ zero
@ one
@ buff
@ inv
@ zero

@ zero
@ buff
@ buff
@ zero
@ inv

@ zero
@ buff
@ zero
@ buff
@ zero

@ buff
@ one
@ one
@ zero
@ inv

@ zero
@ buff
@ buff
@ one
@ one

@ zero

Smith & Maitra 34

@ zero
@ one
@ buff
@ zero

@ zero
@ buff
@ zero
@ one
@ one

@ zero
@ buff
@ zero
@ inv
@ inv

@ zero
@ zero
@ inv
@ inv
@ buff

@ zero
@ inv
@ inv
@ buff
@ buff

@ inv
@ one
@ inv
@ inv
@ inv

@ checkzero
@ checkzero
@ checkzero
@ checkzero
@ checkzero

@ checkone
@ checkzero
@ checkinv
@ checkzero
@ checkinv

@ checkbuff
@ checkinv
@ checkzero
@ checkinv
@ checkone

@ checkinv
@ checkbuff
@ checkinv
@ checkzero

Smith & Maitra 35

@ checkzero

@ checkzero
@ checkone
@ checkbuff
@ checkinv
@ checkzero

@ checkzero
@ checkbuff
@ checkbuff
@ checkzero
@ checkinv

@ checkzero
@ checkbuff
@ checkzero
@ checkbuff
@ checkzero

@ checkbuff
@ checkone
@ checkone
@ checkzero
@ checkinv

@ checkzero
@ checkbuff
@ checkbuff
@ checkone
@ checkone

@ checkzero
@ checkzero
@ checkone
@ checkbuff
@ checkzero

@ checkzero
@ checkbuff
@ checkzero
@ checkone
@ checkone

@ checkzero
@ checkbuff
@ checkzero
@ checkinv
@ checkinv

@ checkzero
@ checkzero
@ checkinv
@ checkinv
@ checkbuff

@ checkzero

Smith & Maitra 36

@ checkinv
@ checkinv
@ checkbuff
@ checkbuff

@ checkinv
@ checkone
@ checkinv
@ checkinv
@ checkinv

---------------------------layerident1--------------------------------
@ inv
@ zero
@ zero
@ zero
@ zero

@ zero
@ inv
@ zero
@ zero
@ zero

@ zero
@ zero
@ inv
@ zero
@ zero

@ zero
@ zero
@ zero
@ inv
@ zero

@ zero
@ zero
@ zero
@ zero
@ inv

------------------------------layerident2-----------------------------
@ zero
@ inv
@ zero
@ zero
@ zero

@ zero
@ zero
@ inv
@ zero
@ zero

@ zero

Smith & Maitra 37

@ zero
@ zero
@ inv
@ zero

@ zero
@ zero
@ zero
@ zero
@ inv

@ inv
@ zero
@ zero
@ zero
@ zero

--------------------------layerident3----------------------------------
@ zero
@ zero
@ inv
@ zero
@ zero

@ zero
@ zero
@ zero
@ inv
@ zero

@ zero
@ zero
@ zero
@ zero
@ inv

@ inv
@ zero
@ zero
@ zero
@ zero

@ zero
@ inv
@ zero
@ zero
@ zero

-----------------------------layerident4--------------------------------
@ zero
@ zero
@ zero
@ inv
@ zero

@ zero
@ zero

Smith & Maitra 38

@ zero
@ zero
@ inv

@ inv
@ zero
@ zero
@ zero
@ zero

@ zero
@ inv
@ zero
@ zero
@ zero

@ zero
@ zero
@ inv
@ zero
@ zero

-------------------------layerident5----------------------------------
@ zero
@ zero
@ zero
@ zero
@ inv

@ inv
@ zero
@ zero
@ zero
@ zero

@ zero
@ inv
@ zero
@ zero
@ zero

@ zero
@ zero
@ inv
@ zero
@ zero

@ zero
@ zero
@ zero
@ inv
@ zero

-----------------------netident1--------------------------------------
@ layerident1
@ layerident1
@ layerident1

Smith & Maitra 39

------------------------netident2-------------------------------------
@ layerident2
@ layerident2
@ layerident2

-------------------------netident3------------------------------------
@ layerident3
@ layerident3
@ layerident3

-------------------------netident4-------------------------------------
@ layerident4
@ layerident4
@ layerident4

-------------------------netident5--------------------------------------
@ layerident5
@ layerident5
@ layerident5

-------------------------identtest1-------------------------------------
@ initclock
@ netident1

l Network_in_1 Network_in_2 Network_in_3 Network_in_4 Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

h Network_in_1
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

h Network_in_2
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

h Network_in_3
s
s
assert Network_out_1 1
assert Network_out_2 1

Smith & Maitra 40

assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 0

h Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 0

h Network_in_5
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

l Network_in_1
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

l Network_in_2
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

l Network_in_3
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 1

l Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0

Smith & Maitra 41

assert Network_out_4 0
assert Network_out_5 1

l Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

l Network_in_1 Network_in_3 Network_in_5
h Network_in_2 Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 0

h Network_in_1 Network_in_3 Network_in_5
l Network_in_2 Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 1

--------------------------identtest2------------------------------------
@ initclock
@ netident2

l Network_in_1 Network_in_2 Network_in_3 Network_in_4 Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

h Network_in_1
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 0

h Network_in_2
s
s

Smith & Maitra 42

assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 1

h Network_in_3
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 1

h Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 1

h Network_in_5
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

l Network_in_1
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 1

l Network_in_2
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 0

l Network_in_3
s
s
assert Network_out_1 0

Smith & Maitra 43

assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 0

l Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 0

l Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

l Network_in_1 Network_in_3 Network_in_5
h Network_in_2 Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 1

h Network_in_1 Network_in_3 Network_in_5
l Network_in_2 Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 0

-----------------------------identtest3---------------------------------
@ initclock
@ netident3

l Network_in_1 Network_in_2 Network_in_3 Network_in_4 Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

h Network_in_1

Smith & Maitra 44

s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

h Network_in_2
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 0

h Network_in_3
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 0

h Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

h Network_in_5
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

l Network_in_1
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

l Network_in_2
s

Smith & Maitra 45

s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 1

l Network_in_3
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 1

l Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

l Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

l Network_in_1 Network_in_3 Network_in_5
h Network_in_2 Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 1

h Network_in_1 Network_in_3 Network_in_5
l Network_in_2 Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 0

---------------------identtest4---
@ initclock
@ netident4

Smith & Maitra 46

l Network_in_1 Network_in_2 Network_in_3 Network_in_4 Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

h Network_in_1
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 1

h Network_in_2
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 1

h Network_in_3
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 1

h Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 1

h Network_in_5
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

Smith & Maitra 47

l Network_in_1
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 0

l Network_in_2
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 0

l Network_in_3
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 0

l Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 0

l Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

l Network_in_1 Network_in_3 Network_in_5
h Network_in_2 Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 0

h Network_in_1 Network_in_3 Network_in_5
l Network_in_2 Network_in_4

Smith & Maitra 48

s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 1

---------------------------identtest5-----------------------------------
@ initclock
@ netident5

l Network_in_1 Network_in_2 Network_in_3 Network_in_4 Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

h Network_in_1
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 0

h Network_in_2
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 0

h Network_in_3
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

h Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

Smith & Maitra 49

h Network_in_5
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 1
assert Network_out_5 1

l Network_in_1
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 1

l Network_in_2
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 1

l Network_in_3
s
s
assert Network_out_1 1
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

l Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

l Network_in_5
s
s
assert Network_out_1 0
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 0
assert Network_out_5 0

l Network_in_1 Network_in_3 Network_in_5

Smith & Maitra 50

h Network_in_2 Network_in_4
s
s
assert Network_out_1 1
assert Network_out_2 0
assert Network_out_3 0
assert Network_out_4 1
assert Network_out_5 0

h Network_in_1 Network_in_3 Network_in_5
l Network_in_2 Network_in_4
s
s
assert Network_out_1 0
assert Network_out_2 1
assert Network_out_3 1
assert Network_out_4 0
assert Network_out_5 1

--------------------testall-----------------------------------
@ shifttest
print **
print shift test complete
print **

@ identtest1
print **
print identtest1 complete
print **

@ identtest2
print **
print identtest2 complete
print **

@ identtest3
print **
print identtest3 complete
print **

@ identtest4
print **
print identtest4 complete
print **

@ identtest5
print **
print identtest5 complete
print **

Smith & Maitra 51

Appendix B: Matlab Simulation

 We wrote a simulation of our network in matlab. The hope was that we would be
able to train this simulation in matlab and then write the learned weights onto the chip,
thus getting around the fact that our chip has no hardware learning. Unfortunately, we
were not able to easily adapt any of matlab’s neuron net training functions to our
network. We had hoped that we could train the network through some sort of stochastic
model, or through genetic programming, however we were unable to implement the
training due to time constraints. We are providing the simulation here for future use.

Notes: The simulation represents each two bit weight in the hardware as an integer
ranging from 0 to 3. The most significant bit of the integer is the bit that is NANDed in
hardware, the least significant bit is the bit that is XORed. Thus for an input a:

Weight Output
0 1
1 0
2 ~a
3 A

To create a network, use:
net = newbin(#inputs, layervector);
where layervector is of the form [#inputs #inputs #inputs …]

To create the network we defined in hardware, you call:
net = newbin(5,[5 5 5]);

To simulate, use:
results = sim(net, [in1_1 in1_2; in2_1 in 2_2; in3_1 in3_2; in4_1 in
4_2; in5_1 in5_2]);
The values separated by spaces are different trials, the values separated by semicolons are
different inputs.

This simulation is built in the neural nets package in matlab. The weights for the
first layer are stored in the matrix net.IW{1}. The weights for subsequent layers are
stored in net.LW{layer, layer+1}. This is because these weights specify the weights
connecting that layer to the next layer.

To use this simulation, place the following files in one directory and start matlab
from that directory (unix).

Smith & Maitra 52

File: ourweight.m
function output = ourweight(weights, inputs)
%produce an output using our special little weight function

if isstr(weights)
 switch(weights)
 case 'deriv'
 output = 'undefined';
 otherwise
 error('unrecognized code.')
 end
 return
end

[wrows wcols] = size(weights);
[irows icols] = size(inputs);
for row=1:wrows
 for col = 1:icols
 oredWeights = 0;
 for i=1:wcols
 switch(weights(row, i))
 case 0
 weightedOutput = 1;
 case 1;
 weightedOutput = 0;
 case 2;
 weightedOutput = not(inputs(i, col));
 case 3;
 weightedOutput = inputs(i,col);
 otherwise
 msg = sprintf('invalid weight: %f', weights(row,i))
 error(msg);
 end
 oredWeights = oredWeights | weightedOutput;
 end
 output(row,col) = not(oredWeights);
 end

File:netnor.m
function n = netnor(varargin)

n = varargin{1};
if isstr(n)
 switch n
 case 'deriv',
 n = 'undefined';
 otherwise
 error('Unrecognized code.')
 end
 return
end

for i=2:length(varargin)

Smith & Maitra 53

 n = n | varargin(i);
end
%n = not(n);

File: newbin.m

function net = newbin(numInputs, layers)
%create a binary neural network
%net = newbin(numInputs, layers)
%s layers is a 1 by n matrix where each element is the size of a layer
numLayers = length(layers)
if isa(layers,'cell') & (prod(size(layers)) == length(layers))
 layers = [layers{:}];
end

%structure
net = network(1,numLayers);
net.biasConnect = zeros(numLayers,1);
net.inputConnect(1,1) = 1;
[j,i] = meshgrid(1:numLayers,1:numLayers);
net.layerConnect = (j == (i-1));
net.outputConnect(numLayers) = 1;
net.targetConnect(numLayers) = 1;

%simulation
net.inputs{1}.range = repmat([0 1], numInputs,1);
for i=1:numLayers
 net.layers{i}.size = layers(i);
 net.layers{i}.transferFcn = 'purelin';
end

net.performFcn = 'mse';

%Adaption
%I dunno figure this out laters

%training
%neh

%Initialization
net.initFcn = 'initlay';
for i=1:numLayers
 net.layers{i}.initFcn = 'initwb';
 net.layers{i}.netInputFcn = 'netnor';
end
net.inputWeights{1,1}.initFcn='initzero';
net.inputWeights{1,1}.weightFcn='ourweight';
for i=2:numLayers
 net.layerWeights{i,i-1}.initFcn='initzero';
 net.layerWeights{i,i-1}.weightFcn='ourweight';
end
net = init(net);

