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Motivation
Realistically reproducing the audio of an event in
virtual space requires that sounds be separated and
localized accurately. Such applications, however,
may require microphones to be placed far away
from each other and include significant background
noise.

We propose a method for simultaneously separat-
ing and localizing sounds by performing Bayesian
maximum a posteriori inference in an approxi-
mate probabilistic model of sound propagation and
inter-microphone phase differences.

Prior Work
The DUET method [Rickard, 2007] uses phase dif-
ferences in the STFTs of adjacent microphones
to partially separate sounds, assuming only one
source dominates each time-frequency bin. MESSL
[Mandel et al., 2009] extends DUET by using these
phase differences to infer a consistent angle of inci-
dence for each source, obtaining a more consistent
separation. DALAS [Dorfan et al., 2015] combines
angle estimates from multiple distant microphones
to obtain location estimates, but does not use tem-
poral or frequential structure of the sounds to help
separate them.

Model
Let T be a set of time bins, F a set of frequency bins, L a set of candidate locations where sounds could
originate, and M a set of microphone pairs placed at known locations in 2D space. We hypothesize a set
S of sources, and model each observed time-frequency bin as being assigned a latent dominating source
and location that determines its phase difference.
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Figure 1: Directed factor graph diagram [Dietz, 2010] of the LGAP model. Circles represent
random variables, diamonds represent deterministic functions of parent variables, and unmarked
symbols denote hyperparameters. Along edges, small black squares represent directed factors (i.e.
conditional probability distributions of children given parents), small white diamonds represent
function application, and the small black circle represents a choice “gate” (see Dietz [2010]). Plate
notation indicates sets of independent variables, and array-valued variables are labeled below with
their index sets. N denotes a multivariate normal distribution, Cat denotes a categorical (multinomial)
distribution, and vM /U represents the von Mises-Uniform mixture described in Section 2.3.

the delay parameters. This approach avoids the aliasing problem, as the mapping from true delay to
phase difference is one-to-one. From this premise they identify the parts of the spectrogram of the
signal which best fit models being constructed of the mixture using an Expectation-Maximization
(EM) method. Although the original algorithm focuses on a single microphone pair and assumes
each time-frequency component is independent, MESSL has been extended to incorporate local
smoothness using a Markov random field [Mandel and Roman, 2015] and to work with more than
one microphone pair [Bagchi et al., 2015]. However, these extensions focus on the use of MESSL
for separating speech mixtures in small environments, and were not designed for use in large noisy
environments with distant microphones.

The Distributed Algorithm for Localization and Separation (DALAS) extends MESSL to work with
spatially-separated microphones in a known configuration [Dorfan et al., 2015]. The first step in
this approach is to run an incremental distributed expectation-maximization (IDEM) algorithm to
find the maximum likelihood estimate of the location distribution of the sources, using the known
configuration of microphones to model the possible phase differences associated with each spatial
position. Next, it associates each peak of the localization distribution with a source, and matches
each source to its closest microphone pair. Finally, a spectral mask is created using thresholding and
the node values are then filtered to give the separated sources. This technique has the advantage of
working with spatially separated microphones over a large area. However, it was not designed for
noisy environments, and assumes that every time-frequency component is independent, ignoring the
temporal and frequential structure of each sound source.

2 Probabilistic Model

We cast source separation and localization as a Bayesian inference problem. We model each
time-frequency bin as being assigned a latent dominating source and location that determines the
distribution of each observed phase difference. These assignments are in turn drawn proportional to a
smooth latent activity array A, which causes the assignments for nearby observations to be correlated.
To account for arrival time differences between microphones, this latent activity is corrected for each
microphone using a propagation function before being used to determine the dominating locations.
Using this model, which we call Latent Gaussian Activity Propagation (LGAP), sounds can then be
separated by performing Bayesian inference on the latent source and location assignments.

Let T be a set of time bins, F a set of frequency bins, L a set of candidate locations, and M
a set of microphone pairs. A directed factor graph diagram [Dietz, 2010] of the LGAP model
is shown in Figure 1. We assume the sound was generated by a small set of sources S, and let
A ∈ R|T |×|F |×|S|×|L| be an array-valued random variable such that At,f,s,` is proportional to the
likelihood of hearing a sound from source s at location `, time t, and frequency f . We also assume that
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Forward model:
1. Random-valued multidimensional arrays α (representing source activity over time and frequency)

and β (representing source location) are sampled from smooth factorized Gaussian process priors.
2. α and β are combined into a nonnegative source-location activity array A.
3. A is propagated through time for each microphone pair by adding time delays based on the distance

from each source, yielding A′.
4. Dominating sources s and locations ` are sampled proportional to (normalized) values in A′ for

each microphone pair and time-frequency bin.
5. Phase differences φ are drawn from a mixture between a von Mises distribution (centered on the

ideal delay for location `’s angle of incidence) and a uniform distribution (to approximate noise).

Inference: Given phase differences φ, we approximate the MAP values for α and β using gradient ascent
on the likelihood logP (α, β|φ) = logP (φ|α, β) + logP (α, β)− log(φ). The value of β then gives location
estimates, and the distribution P (s|α, β, φ) gives approximate time-frequency masks for each source.
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Two sound sources, five microphone pairs along
left side of a 32 m by 32 m square. Top row:
Spectrograms for center microphone pair colored
by source, over four seconds (horizontal axis) up
to 22050 Hz (vertical axis). Bottom row: location
estimates, where shading represents confidence and
crosses represent predicted point locations.

Five Sources

Five sound sources, five microphone pairs, over a
32 m by 32 m square. Left: spectrograms colored
by source, right: location estimates. Only LGAP
is able to separate and localize all five sources.
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Metrics for each method: LGAP, Indep.
Tied, DALAS, MESSL (All mics), MESSL
(Best mic), Ideal Mask (from ground truth).
Bin precision/recall measure separation perfor-
mance across bins, power precision/recall measure
separation weighted by source power, and location
squared error measures accuracy of location esti-
mates.

Conclusions
LGAP maintains both high precision and high re-
call and obtains reliably accurate location esti-
mates. Apart from smoothness, the method does
not depend on source statistics, and can combine
information from distant microphones. It thus has
the potential to be used for a variety of applica-
tions, especially for sounds that are distributed
across large real-world environments.
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