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MOTIVATION

Realistically reproducing the audio of an event in
virtual space requires that sounds be separated and
localized accurately. Such applications, however,
may require microphones to be placed far away
from each other and include significant background
noise.

We propose a method for simultaneously separat-
ing and localizing sounds by performing Bayesian
maximum a posteriori inference in an approxi-
mate probabilistic model of sound propagation and
inter-microphone phase differences.
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PRIOR WORK

The DUET method [Rickard, 2007] uses phase dif-
ferences in the STFTs of adjacent microphones

to partially separate sounds, assuming only one
source dominates each time-frequency bin. MESSL
'Mandel et al., 2009] extends DUET by using these
phase differences to infer a consistent angle of inci-
dence for each source, obtaining a more consistent
separation. DALAS |[Dorfan et al., 2015] combines
angle estimates from multiple distant microphones
to obtain location estimates, but does not use tem-
poral or frequential structure of the sounds to help
separate them.

Let T" be a set of time bins, F' a set of frequency bins, L a set of candidate locations where sounds could
originate, and M a set of microphone pairs placed at known locations in 2D space. We hypothesize a set
S of sources, and model each observed time-frequency bin as being assigned a latent dominating source

and location that determines its phase difference.
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Forward model:

1. Random-valued multidimensional arrays a (representing source activity over time and frequency)
and [ (representing source location) are sampled from smooth factorized Gaussian process priors.

2. « and 8 are combined into a nonnegative source-location activity array A.

3. A is propagated through time for each microphone pair by adding time delays based on the distance

from each source, yielding A’.

4. Dominating sources s and locations ¢ are sampled proportional to (normalized) values in A’ for

each microphone pair and time-frequency bin.

5. Phase differences ¢ are drawn from a mixture between a von Mises distribution (centered on the
ideal delay for location ¢’s angle of incidence) and a uniform distribution (to approximate noise).

Inference: Given phase differences ¢, we approximate the MAP values for o and 8 using gradient ascent

on the likelihood log P(«, B|¢) = log P(¢|a, B) + log P(a, 5) — log(¢). The value of 5 then gives location

estimates, and the distribution P(s|a, 8, ¢) gives approximate time-frequency masks for each source.
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Two sound sources, five microphone pairs along
left side of a 32 m by 32 m square. Top row:
Spectrograms for center microphone pair colored
by source, over four seconds (horizontal axis) up
to 22050 Hz (vertical axis). Bottom row: location
estimates, where shading represents confidence and
crosses represent predicted point locations.
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Five sound sources, five microphone pairs, over a
32 m by 32 m square. Left: spectrograms colored
by source, right: location estimates. Only LGAP
is able to separate and localize all five sources.
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Metrics for each method: — LGAP, Indep.
Tied, — DALAS, — MESSL (All mics), — MESSL
(Best mic), — Ideal Mask (from ground truth).
Bin precision/recall measure separation perfor-
mance across bins, power precision/recall measure
separation weighted by source power, and location
squared error measures accuracy of location esti-
mates.

CONCLUSIONS

LGAP maintains both high precision and high re-
call and obtains reliably accurate location esti-
mates. Apart from smoothness, the method does
not depend on source statistics, and can combine
information from distant microphones. It thus has
the potential to be used for a variety of applica-
tions, especially for sounds that are distributed
across large real-world environments.
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