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Abstract. We identify the mechanisms needed to construct archivable webs of distributed asyn-
chronous collaborations and experiments. The distinguishing feature of our approach is that the
component tools, software, data, and even participants are distributed over a worldwide net-
work. We perform a requirements analysis of an infrastructure that supports such applications,
and present the Caltech Infospheres Infrastructure as a prototype that satisfies the requirements
identified. In describing this prototype, we highlight the useful mechanisms provided, present an
algorithm for using the Infospheres Infrastructure to perform asynchronous global snapshots for
archiving, and suggest future areas of exploration.

Keywords: distributed systems, archiving, global snapshots, asynchronous collaboration, world
wide web, computational experiments, infospheres, component technologies, composition

1. A Vision: Archived Distributed Computational Experiments

Since its creation, the Internet has been used for information sharing and col-
laboration. In this paper, we describe the design of a software technology that
allows any component of a distributed system to (i) archive a “global snapshot”
of the distributed system, (ii) record events within components of the system, and
(iii) replay a distributed computation by resurrecting the system from an archived
global snapshot and executing the archived events from the snapshot onward. An
annotated collection of archived global snapshots, events, and documents can be
linked into the World Wide Web automatically, allowing distributed systems to be
restarted from their saved states, see these computations unfold, and follow the
links to related computations.

The idea of archiving states and replaying events has been employed previously
in such contexts as data backup, compiler analysis (Mellor-Crummey, 1992), and
application debugging. Our contribution is that of exploring methods for, and
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identifying potential benefits of, archiving states and replaying events in distributed
computations. Specifically, we consider systems composed of autonomous opaque
objects with dynamic interfaces distributed across the Internet.

We begin by describing our vision of a web of archived distributed computations:
first, we provide an overview of software component technology, and then we discuss
some potential applications for the archival of computations in distributed compo-
nent systems. Since component technology is not the focus of this paper, we have
restricted our discussion of it to the details relevant to the archival of distributed
computations.

1.1. Component Technology

Component technology focuses on the representation and use of self-contained soft-
ware packages which can be composed, or attached together, to create complete
applications. Each component has an interface, that specifies the compositional
properties, and sometimes the behavior, of that component. Components can be
composed either through static linking at compile time, or through dynamic linking
over a network at run time. Our focus is on systematic composition of components
that have dynamic interfaces use asynchronous messages (Chandy et al., 1996).
There are several popular commercial component technologies, including CORBA
(OMG, 1995), OpenDoc (MacBride and Susser, 1996), ActiveX (Chappell, 1996),
and Java Beans (Java Beans, 1997).

Software component technology offers the potential for building new applications
quickly and reliably. Rapid application development tools for creating component-
based software are emerging. However, current component infrastructures are com-
plex, requiring application developers to compose components at compile time using
stubs and skeletons(OMG, 1995, Java RMI, 1997). Our focus is on dynamic com-
position of components at run time and methods for reasoning about the behavior
of the resulting “collective” applications.

As an example of a collaboration-based distributed component system, imagine a
group of researchers and observers working together on an experiment with several
components:

• data sets from databases in Houston and Syracuse;

• a program composition tool at Caltech;

• a CFD solver on a supercomputer at Argonne;

• solid-mechanics simulators on a network of workstations at Los Alamos;

• visualization engines in the offices of the researchers; and

• a classroom of students several weeks later, using standard web software to
review the experiment and discuss it with their professor.
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Trends in compositional tool and network connectivity technologies suggest that
such examples will become feasible. In this section, we discuss the software tech-
nology needed to create such a distributed experiment: opaque components with
dynamic interfaces, selected from a worldwide pool of components capable of col-
laboration, that can record their states throughout the collaboration.

1.1.1. Opaque Distributed Software Components. An opaque (or “black box”)
component furnishes a programmer only with its interface specifications, not its ac-
tual implementation. The internal structure and behavior of an opaque component
are completely hidden from other components. We assume that the components
participating in a distributed collaboration of the type described above will be
opaque, because it is unreasonable to require that experimenters have access to the
internal workings of the components they use.

The opacity of components implies that the procedure for archiving distributed
state must itself be distributed. Since no component has access to the implementa-
tion of any other component, no single component can archive the state, or even a
state description, of another component in the system. Therefore, each component
must record its own state and archive it locally, and archived states of the entire
system must be obtained by combining the locally archived states of the individual
components.

1.1.2. Dynamic Interfaces and Dynamic Composition. Component interfaces can
range in dynamism from completely static to completely dynamic. Most component
systems with communication based on remote procedure calls (such as CORBA,
Java RMI, and Microsoft COM and DCOM) support the use of static interfaces,
which can be type checked at compile time. However, there are problems associated
with the use of static interfaces in dynamic distributed environments. Components
with dynamic interfaces can interact more successfully in such environments but,
since the syntax of their interactions cannot be checked at compile time, the compo-
nents must handle faulty communication links and unexpected interface changes at
run time. We have developed a prototype infrastructure that supports composition
of components with dynamic interfaces (Chandy et al., 1997).

In this paper, we consider components with dynamic interfaces in a dynamic en-
vironment, though the central ideas relating to archiving distributed computations
are applicable to components with static interfaces as well. The relevance of dy-
namic interfaces to the archival of distributed computations is that the state of a
component must include its interface. For example, if the interface of a component
is defined in terms of communication channels, and the number and types of those
channels can change during a computation, then the archived state of the com-
ponent must include information describing the channels in addition to any other
information needed by the component.
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1.1.3. Selecting Components from a Worldwide Pool. Ideally, scientists should
be able to develop an application by using components selected from a worldwide
pool. These components may be located at different sites, may be running on
systems with various architectures and operating systems, and might have restricted
availability.

Suppose, for instance, that an aeronautical engineer wants to do a multidisci-
plinary optimization experiment on airfoils. This experiment requires the composi-
tion of a solid mechanics computation dealing with vibrations and a fluid dynamics
computation dealing with airflow. Many sites might offer a component that per-
forms fluid dynamics computations, but these sites might differ in computation
capability, access restrictions, and cost. The engineer should be able to select
whichever component fits his needs, whether it is at Caltech, Los Alamos, or San
Diego. Our vision is that it should be possible to develop an application by using
components at different remote sites as easily as by using only local resources.

A worldwide pool of components is relevant to the archival of distributed compu-
tations because of scaling considerations. If all the components were located on an
intranet serving a small, single-site campus, then a potential solution would be to
take a global snapshot of the entire intranet. However, since the Internet has many
autonomous units, such an approach is not feasible on a global scale. Also, the use
of resources at multiple distributed sites raises issues of security, resource allocation,
and privacy. We will not focus on these issues in this paper, since some solutions to
these problems exist, such as Java’s sandbox model (Gosling, Joy, and Steele, 1996)
and ActiveX’s code signing model (Chappell, 1996).

1.1.4. Modes of Collaboration. There are two types of collaboration between
groups of people using programs, control devices, and measuring instruments:

• synchronous collaboration occurs when all components collaborate at the same
time, usually requiring the continual presence of human beings.

• asynchronous collaboration occurs when components can participate at different
times over the course of a collaboration, only occasionally requiring the presence
of human beings.

Teleconferencing and multi-user whiteboarding are examples of synchronous col-
laboration; these interactions are typically carried out by small groups of people for
durations on the order of minutes to hours. A concurrent version-control system,
with people working together on documents over extended periods of time, exem-
plifies asynchronous collaboration. In such a system, different annotated copies
of documents flow through the system as individuals check in their work and up-
date their workspaces. In this paper, we consider methods of archiving distributed
system states for asynchronous collaboration, though the ideas can be used in syn-
chronous collaborations as well.
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1.2. A World Wide Web of Archived Distributed Experiments

Standard Web technologies can be used to annotate and link the archived states
of distributed computations. Components can automatically generate the proper
representation of their states and cross-reference results with related experiments.
Such a system enables an experimenter to follow the web of links and recreate past
experiments in an order that is meaningful to her. The expansion of the concept of
a “Web document” to include an archived distributed system allows a participant
to recreate an archived distributed experiment as easily as she can bring up a
document, by clicking on a link on her Web browser.

We postpone discussion of methods for taking global snapshots and replaying the
events of distributed systems, and how to use the World Wide Web for archiving
distributed experiments, to section 3.5. For now, we explore potential applications
of this technology.

1.2.1. Application: Computational Science. Consider a collaboration in which
researchers at different sites work together on a computational experiment that
requires the devices and software at different locations to be composed together.
Now consider a scientist, Dana, who joins the team after this particular experiment
and would like to repeat the experiment to reconstruct the sequence of events that
generated its final results. To do so, she must have access to an archive of all the
tools used to conduct the experiment, including all the input and output data and
all the annotations added by the participants.

Ideally, Dana should enter the archived virtual laboratory and find it exactly as
it was when the experiment was conducted. This gives her the option of either
conducting a modification of the experiment herself or witnessing the original ex-
periment as it unfolds before her. As Dana explores the research team history,
she can use the Web to view shared documents and other archived distributed
experiments.

An important aspect of this archived virtual laboratory is that the components
of the laboratory are geographically distributed: input data sets are generated at
one site, a meshing computation is conducted at a different site, and the output
data is post-processed prior to visualization at a third site. What is being archived
is a distributed system consisting of components from all three sites.

After Dana explores one archived experiment, she may study the annotations
of the experimenters and then follow links to related experiments. She can follow
links to later experiments by the same collection of experimenters, explore attempts
by other groups to replicate the experiments with different tools, or jump to a
document discussing the public policy issues raised by the experiments. She can
even reuse data or components from a previous experiment in a new experiment of
her own design.

1.2.2. Application: Maintenance of Large Distributed Systems. Consider several
crews of technicians repairing an electric power distribution network after a grid
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failure. Crews work concurrently at different sites, both in the office and in the field,
making the collection of crews a distributed system much like the power network
itself. It may be desirable to take global snapshots and log events in these systems,
and then link these states into the Web. This archive can then serve as a training
tool for crew members, allowing someone joining the repair effort late to understand
the current situation, or be used to “roll back” the system state to determine the
exact conditions that caused the failure in the first place.

1.2.3. Application: Corporate Technical Support. The Information Technology
(IT) division of a large corporation often has responsibility for thousands of systems
and tools. This complexity makes for a challenging problem-resolution environment.
An archive of distributed computations can serve as a corporate memory. Restoring
an archived distributed state and replaying a distributed computation can help in
training, problem-resolution, and maintenance.

1.2.4. Application: Distributed Education. The use of global snapshots to record
states of a distributed simulation would be extremely useful for educational pur-
poses. For example, if a military combat simulation were recorded in this fashion,
the simulation could be replayed for personnel who were not participating to give
them the benefit of the experiences of the participants. In addition, such recordings
would facilitate detailed tactical analysis, allowing the simulation to be restarted at
specific points and the effects of changing specific tactical actions to be examined.

We believe that there are many more applications of this technology than de-
scribed here, and expect that future research by ourselves and others will investi-
gate these applications in detail. However, such investigations are outside the scope
of this paper.

We continue by analyzing the requirements for a distributed infrastructure which
supports asynchronous collaborations of the type we have described.

2. Requirements Analysis

As discussed previously, an infrastructure to support applications like the above
examples must support the composition of distributed opaque components with
dynamic interfaces. These components must be able to participate in both syn-
chronous and asynchronous collaborations. The infrastructure should assist in lo-
cating and composing components on the Internet. Finally, it should be possible to
archive a distributed experiment and resurrect it with reasonable use of resources,
and these archived distributed computations should be linked into the Web just as
other documents are.
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2.1. Opaque Distributed Software Components

The only visible aspects of an opaque component are (i) its external interface, so
that other components can connect, and (ii) a specification of the component. In
a distributed system, the interface is specified in terms of remote method invo-
cations (Gosling, Joy, and Steele, 1996), object-request brokers (OMG, 1995), or
messages (Hoare, 1978, Chandy et al., 1997). Each approach has advantages and
disadvantages, but the specific form of the interface is less important than the fact
that the component implementations are hidden. The infrastructure must support
at least one of these methods of interface specification.

2.2. Dynamic Interfaces and Interactions

A component must be able to adapt to changing conditions in a computation.
These include the addition of new components to the computation, temporary
unavailability of communications resources, and other common situations which
arise in Internet-based distributed systems. One way to deal with the dynamic
environment is to allow a component to change its interface and connections to
other components, during the course of a computation, so we require that the
infrastructure allow component interfaces and interconnections to be completely
dynamic.

2.3. Modes of Collaboration

All components participating in a synchronous collaboration must be active con-
currently. By contrast, components participating in an asynchronous collaboration
need not be active concurrently; any given component may be quiescent, becoming
activated only when a communication arrives for it. The advantage of asynchronous
collaboration is that the participating components need not hold resources concur-
rently, since they use resources only when they are computing. The disadvantage
is that handling an incoming communication can be expensive, because the com-
munication must be handled by a daemon that activates the quiescent component
and then forwards the communication. Because of this tradeoff, we require the in-
frastructure to support both synchronous and asynchronous interactions, allowing
individual component application developers to choose whichever mode is appro-
priate for their application.

2.4. Persistence

Components must be persistent, because a collaboration involving a set of compo-
nents may last for years. Rather than forcing a component to stay active for the life
of its collaborations, it is advantageous to design the component system such that
the life cycle of a component is a sequence of active phases separated by quiescent
phases. In such a system, when a component is quiescent, its state is serialized
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(and can, for example, be stored in a file) and the component uses no computing
resources. When a component is active, it executes in a process slot or thread and
listens for communications. Components designed in this way are often quiescent
for most of their lifetimes, so the fact that quiescent components use no computing
resources allows many more components to exist on the same machine than could
possibly run simultaneously. The infrastructure must support the storage of per-
sistent state information by individual components. In addition, it is desirable for
the infrastructure to provide some method of efficiently updating persistent state
information, such as by saving only incremental changes.

2.5. A World Wide Web of Archived Distributed Experiments

Web technologies already provide the necessary mechanisms for linking archived
distributed computations so that dynamic content representing the state of a com-
ponent, distributed experiment, or computation can be viewed, hyperlinked, and
indexed for searching. Users can take advantage of web browsers to read web pages
and to follow links to archived information. The infrastructure must provide a
way to generate such pages automatically, as well as a way to restart a distributed
computation from its saved state by clicking on a link in a document.

2.6. Tangential Issues

There are several engineering problems that have little to do with distributed sys-
tems but are nevertheless important. If a computer scientist wanted to resurrect
von Neumann’s experiments with the earliest computers, he could not do so be-
cause the machines used by von Neumann no longer exist. Likewise, he could not
resurrect collaborations that used old versions of operating systems or other tools.

There are also resource reservation and security issues in such a system, especially
if it simultaneously utilizes expensive and rare equipment at multiple sites. If a
collaboration requires 256 nodes of a supercomputer, a researcher clicking on the
link to resurrect that collaboration will probably have to wait to acquire those
nodes. Resurrecting a distributed state may require acquisition of real resources.

Because our focus in this paper is on resurrecting recently archived distributed
computations, we are not discussing these important issues here.

3. The Infospheres Infrastructure

In this section, we briefly describe the Infospheres Infrastructure (also called the II
prototype) (Chandy et al., 1996, Chandy and Rifkin, 1997, Chandy et al., 1997),
and show how it satisfies the requirements identified in section 2.
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3.1. Infospheres Framework

The II framework employs three structuring mechanisms: personal networks enable
long-term collaborations between people or groups; sessions provide a mechanism
for carrying out the short-term tasks necessary within personal networks; and in-
fospheres allow for the customization of processes and personal networks.

As an illustration of these structuring mechanisms, consider a consortium of re-
search institutions working on a common problem. This consortium has a personal
network composed of processes that belong to the infospheres of the consortium
members. This personal network provides a structured way to manage the collec-
tion of resources, communication channels, and processes used in distributed tasks
such as determining meeting times and querying distributed databases. Each ses-
sion of this personal network handles the acquisition, use, and release of resources,
processes, and channels for the life of one specific task.

Infospheres are discussed in detail as part of the user’s guide to our frame-
work (Infospheres, 1997). Here, we focus on the conceptual models for processes,
personal networks, and sessions.

3.2. Conceptual Model: Processes

Processes are the persistent communicating components which manage interfaces
and devices. In our framework, we call these processes djinns.

3.2.1. Process States. A given process can be in one of three states: active,
waiting, and frozen. An active process has at least one executing thread; it can
change its state and perform any tasks it has pending, including communications.
A waiting process has no executing threads; its state remains unchanged while it
is waiting, and it remains in the waiting state until one of a specified set of input
ports becomes nonempty, at which point it becomes active and resumes execution.
Active and waiting processes are collectively referred to as ready processes.

Ready processes occupy process slots and can make use of other resources provided
by the operating system. By contrast, processes in the frozen state do not occupy
process slots and cannot actively make use of any other resources provided by the
operating system. The only resource used by a frozen process is the storage space,
such as a small file or a database entry, which holds process state information.

3.2.2. Freezing, Summoning, and Thawing Processes. Each process has a freeze
method, which saves the state of the process to a persistent store, and a thaw
method, which restores the process state from the store. A typical process remains
in the frozen state nearly all the time, and therefore consumes minimal system
resources. In our framework, only waiting processes can be frozen, and they can be
frozen only at process-specified points. Except for its persistent store, all system
resources held by a process are yielded when its freeze method is invoked.
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A ready process can summon another process. If a process is frozen when it is
summoned, the summons instantiates the frozen process, causes its thaw method
to be invoked, and initiates a transition to the ready state. If a process is ready
when it is summoned, it remains ready. In either case, a summoned process remains
ready until either it receives at least one message from its summoner or a specified
timeout interval elapses.

3.2.3. Process Migration. Frozen processes can migrate from one machine to an-
other, but ready processes cannot. This restriction allows ready processes to com-
municate using our framework’s underlying fast transport layer, that requires static
addresses for communication resources. All processes have a permanent “home ad-
dress” from which summons can be forwarded. Once a process becomes ready at a
given location, it remains at that location until frozen. While a particular process
may be instantiated at any location, its persistent state is always stored at its home
address.

3.3. Conceptual Model: Personal Networks

A personal network consists of an arrangement of processes and a set of directed,
typed, secure communication channels connecting process output ports to process
input ports. Its topology can be represented by a labeled directed graph, where
each node is a process and each edge is a communication channel labeled with its
type and the input and output ports connected by that channel. Since processes
can freely create input ports, output ports, and channels, the topology of a personal
network is completely dynamic.

3.3.1. Communication Structures. Processes communicate with each other by
passing messages. Each process has a set of inboxes and outboxes, collectively
called mailboxes. Every mailbox has an associated type and access control list,
both of which are used to enforce personal network structure and security.

A connection is a first-in-first-out, directed, secure, error-free broadcast channel
from the outbox to each connected inbox. In our framework, connections are asym-
metric: a process can construct a connection from any of its outboxes to any set
of inboxes for which it has references, but cannot construct a connection from an
outbox belonging to another process to any of its inboxes.

3.3.2. Message Delivery. Our framework’s communication layer works by re-
moving the message at the head of a nonempty outbox and appending a copy
to each connected inbox. If the communication layer cannot deliver a message,
it raises an exception in the sender containing the message, the destination in-
box, and the specific error condition. The system uses a sliding window proto-
col (Peterson and Davie, 1996) to manage the messages in transit.
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The communication layer eventually handles every message at the head of an
outbox. The conceptual model uses asynchronous messages rather than remote
procedure calls, because the range of message latencies across the Internet makes
message passing with synchronous remote procedure calls impractical. However,
the structure of our communication layer allows us to consider message delivery
from an outbox to inboxes as a simple synchronous operation even though the
actual implementation is complex and asynchronous.

3.3.3. Dynamic Structures. A process can create, delete, and change its mail-
boxes, in addition to (as mentioned above) being able to create and delete connec-
tions between its outboxes and other processes’ inboxes. The operation of creating
a mailbox returns a global reference to that mailbox that can then be passed in mes-
sages to other processes. Since a process can change its connections and mailboxes,
the topology of a personal network can evolve over time as required to perform new
tasks.

When a process is frozen, all references to its mailboxes become invalid. This in-
validation of mailbox references allows frozen processes to move and then be thawed,
at which point the references to its mailboxes can be refreshed via a summons.

3.4. Conceptual Model: Sessions

A session encapsulates a task carried out by (the processes in) a personal net-
work (Chandy and Rifkin, 1997). It is initiated by some process in the personal
network, and is completed when the task has been accomplished. A later session
with the same processes may carry out another task. Thus, a personal network
consists of a group of processes in a specified topology, interacting in sessions to
perform tasks.

3.4.1. The Session Constraint. We adopt the convention that every session must
satisfy the two part session constraint:

1. As long as any process within the session holds a reference to a mailbox belong-
ing to another process within the session, that reference must remain valid.

2. A mailbox’s access control list cannot be constricted as long as any other process
in the session holds a reference to that mailbox.

The session constraint ensures that, during a session, information flows correctly
between processes. An important corollary to the session constraint is that, because
no valid references to their mailboxes exist, frozen processes cannot participate in
sessions.

A session is usually started by the process initially charged with accomplishing
a task. This process, referred to as the initiator, creates a session by summoning
the processes that will initially participate. It then obtains references to their
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mailboxes, passes these references to the other processes, and makes the appropriate
connections between its outboxes and the inboxes of the participating processes.

There are many ways of satisfying the session constraint. One simple way is
to ensure that every process participating in a given session remains ready until
that session terminates, and that once a process sends a given mailbox reference to
another process in the session it leaves that mailbox unchanged for the duration of
the session. Another approach is to have the initiating process detect the completion
of the task using a diffusing computation or other common termination detection
algorithm, after which it can inform the other session members that the session can
safely be disbanded.

3.4.2. Example of a Session. An example of a session is the task of determining
an acceptable meeting time and place for a quorum of committee members. Each
committee member has an infosphere containing a calendar process that manages
his or her appointments. A personal network describes the topology of these calen-
dar processes. A session initiator sets up the network connections in this personal
network. The processes negotiate to find an acceptable meeting time or to deter-
mine that no suitable time exists. The task completes, the session ends, and the
processes freeze. Note that the framework does not require that processes freeze
when the session terminates, but that this will usually be the case.

3.4.3. Communication Within Sessions. During a session, it is vital that the
processes receive the quality of service required to accomplish their task. There-
fore, communication is routed directly from process to process, rather than through
object request brokers or intermediate processes as in client-server systems. Once
a session is constructed, our framework’s only communication role is to choose the
appropriate protocols and channels. A session can negotiate with the underlying
communication layer to determine the most appropriate process-to-process mecha-
nism. While the current framework supports only UDP, we plan in future releases
to support a range of protocols such as TCP and communication layers such as
Globus (Foster and Kesselman, 1996).

3.5. Archiving Distributed States

We have now described our prototype software infrastructure; next, we describe
an algorithm that can be used by the infrastructure to archive distributed states.
This is a variant of the global snapshot algorithm (Chandy and Lamport, 1985) in
which a clock, or sequence number, is stored with the snapshot state. Within the
snapshots, these logical clocks can be used for timestamping (Lamport, 1978).

3.5.1. The Global Snapshot Algorithm. If all components recorded their com-
plete states (including the states of their mailboxes) at a specified time T , then the
collection of component states would be the state of the distributed system at time
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T . The problem is that the clocks of the components can drift and, as illustrated
by the following example, even a small drift can cause problems.

Two components P and Q share an indivisible token that they pass back and
forth between them. P ’s clock is slightly faster than Q’s clock. Both processes
record their states when their clocks reach a predetermined time T . Assume that
the token is at Q when P ’s clock reaches T , so so P ’s recorded state shows that P
does not have the token. Then, after Q has sent the token to P , Q’s clock reaches
time T . Q’s recorded state then shows that Q does not have the token. Therefore,
the recorded system state — the combined recorded states of P and Q that shows
that no token is anywhere in the system — is erroneous. The basic problem arises
because Q sends a message to P after P records its state but before Q records its
state.

We describe our algorithm in terms of taking a single global snapshot. In prac-
tice, we will need to take a sequence of global snapshots, and extending the single
snapshot algorithm to take sequences of snapshots is straightforward.

Initially, some component records its state; the mechanism that triggers this initial
recording is irrelevant. Perhaps a component records its state when its local clock
gets to some predetermined time T , and the component with the clock that reaches
T first is the first to record its state.

Each message sent by a component is tagged with a single boolean which identifies
the message as being either (i) sent before the component recorded its local state,
or (ii) sent after the component recorded its local state. In our infrastructure, every
message is acknowledged, so each acknowledgment is also tagged with a boolean
indicating whether the acknowledgment was sent before or after the component
recorded its state. When a message tagged as being sent after the sender recorded
its state arrives at a receiver that has not recorded its state, the infrastructure causes
the receiver’s state to be recorded before delivering the message. Acknowledgements
are also tagged, and are handled in the same way. Thus, the algorithm maintains
the invariant that a message or acknowledgment sent after a component records its
state is only delivered to components that have also recorded their states.

The issue of acknowledgments is somewhat subtle, so we describe it in more detail.
Consider a component P sending a message m to a component Q. The message m
is at the head of an outbox of P . The message-passing layer sends a copy of m to
Q’s inbox, to which that outbox is connected. Note that m remains in the outbox
while the copy of m is in transit to Q’s inbox. When the acknowledgment for m
arrives at P , then and only then is message m discarded from P ’s outbox. If the
acknowledgment is a post-recording acknowledgment, then P ’s state is recorded
before the acknowledgment is delivered, and therefore P ’s state is recorded as still
having message m in its outbox.

3.5.2. Repeated Snapshots. The algorithm for taking a single snapshot of an
entire distributed system requires each component to have a boolean indicating
whether that component has recorded its state. Also, each message and acknowl-
edgment has a boolean field indicating whether that message or acknowledgment
was sent before or after the sender of that message or acknowledgment had recorded
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its state. For repeated snapshots, the boolean is replaced by a date represented by a
sequence of integers for year, month, day, time in hours, minutes, seconds, millisec-
onds, and so on, to the appropriate granularity level. The date field of a component
indicates when the component last recorded its state, and this date field is copied
into messages and acknowledgments sent by the component. If a component re-
ceives a message or acknowledgment with a date that is later than its current date
field, it takes a local snapshot, updates its date field to the date of the incom-
ing message, and (if necessary) moves its clock forward to exceed the date of the
incoming message.

3.5.3. Replaying a Distributed Computation. There is a distinction between hav-
ing the saved state of a distributed computation and being able to replay the com-
putation. An archived snapshot helps in a variety of ways but, because some
distributed computations are nondeterministic, it does not guarantee that the dis-
tributed computation can be replayed.

Our components are black boxes, so we cannot tell whether a component is de-
terministic. Re-executing the computation of a nondeterministic component from
a saved state can result in a different computation, even though the component
receives a sequence of messages identical to the sequence it received in the original
computation. Replaying precisely the same sequence of events requires each com-
ponent to execute events in exactly the same order as in the original sequence, so
the replay has to be deterministic. For example, if there is a race condition in the
original computation, then the replay must ensure that the race condition is won by
the same event as in the original. Since components are black boxes, the II cannot
control events within a component. Therefore, we rely on the designers of the com-
ponents to have a record-replay mechanism for recording the event that occurs in
each nondeterministic situation and playing back this event correctly during replay.

During replay, the II ensures that messages are delivered to a component in the
same order as in the original computation, provided all components in the compu-
tation send the same sequences of messages. If the components have deterministic
replay, the computation from the saved state will be an exact replay: a sequence of
events identical to those of the original computation.

The II guarantees that messages are delivered in the same order as in the original
computation in the following way: a mail daemon executes on each computer that
hosts components, logging the outbox, inbox and message id for each incoming
message. Because the contents of the messages are not necessary to properly deal
with nondeterminism in the message-passing layer, they are not recorded by the
mail daemon. During replay, the mail daemon holds messages that arrive in a
different order, delivering them to the appropriate inboxes only after all previous
messages in the original computation have been delivered.

3.5.4. A World Wide Web of Distributed Spaces. The existing Infospheres In-
frastructure supports saving the states of components and summoning components
from these archived states to form new sessions. When a component is summoned
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from an archived state, it resumes computation from that state. It is convenient to
treat each archived component as being unique; for instance, there may be a solid-
mechanics computation component that is persistent (and, for practical purposes,
lives forever), but an experimenter may have a sequence of related components
corresponding to states of that component used at different times in different ex-
periments. Our intent is to provide access to these archived components through a
Web browser, using the standard summoning mechanism.

3.6. Related Work

Frameworks are reusable designs for software system processes, described by a set
of objects and how those objects can be used (Roberts and Johnson, 1996). Our
framework consists of some middleware APIs, a model for using them, and services
and patterns that are helpful not only in inheriting from objects, but extending
them as well. These features allow the reuse of both design and code, reducing the
effort required to develop an application. In this sense, our framework is comparable
to other metacomputing, component, and communication frameworks.

3.6.1. Metacomputing Frameworks. Our framework efforts are similar to recent
metacomputing endeavors in that we use the Internet as a resource for concur-
rent computations. Globus provides an infrastructure to create networked vir-
tual supercomputers for running applications (Foster and Kesselman, 1996). Sim-
ilarly, NPAC at Syracuse seeks to perform High Performance Computing and
Communications (HPCC) activities using a Web-enabled concurrent virtual ma-
chine (Fox and Furmanski, 1996). Legion is a C++-based architecture and object
model for providing the illusion of a single virtual machine to users for wide-area
parallel processing (Grimshaw et al., 1996). Javelin is a Java-based architecture
for writing parallel programs, implemented over Internet hosts, clients, and bro-
kers (Capello et al., 1997). Although our framework could be used for metacomput-
ing applications, we provide neither seamless parallelism nor facilities for developing
high-performance applications. Rather, we provide mechanisms for programmers to
develop distributed system components and personal networks quickly, and we plan
to provide mechanisms for non-programmers to easily customize their components
and personal networks.

3.6.2. Component Frameworks. Many other framework systems also have the
goal of creating distributed system components. CORBA is an architecture for
distributed object computing that allows for language-independent use of compo-
nents through a standardized Object Request Broker (OMG, 1995). Hector is a
Python-based distributed object framework that provides a communications trans-
parency layer enabling negotiation of communication protocol qualities, compre-
hensive support services for application objects, and a four-tiered architecture for
interaction (Arnold et al., 1996). OpenDoc is a component software architecture
that allows for the creation of compound documents (MacBride and Susser, 1996).
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JavaBeans is a platform-neutral API and architecture for the creation and use of
Java components (Java Beans, 1997). Aglets provide a Java-based framework for
secure Internet agents that are mobile, moving state along with the program compo-
nents themselves (Lange and Oshima, 1997). We differ from these efforts because
our emphasis is not on the implementation of the infrastructure itself; rather, it is on
reasoning about global compositional distributed systems with opaque components
that have dynamic interfaces and interact by using asynchronous messages.

3.6.3. Communication Frameworks. The Communicating Sequential Processes
(CSP) model keeps each process active for the entire duration of the computa-
tion (Hoare, 1978). As with the language Fortran M (Foster and Chandy, 1995),
we implement this model, adding such implementation artifacts as dealing with
process setup and removal, and permitting prioritized waits to resolve resource
contention. Unlike Fortran M, sessions provide a hybrid technique for running
communicating distributed processes which are frozen when they are not perform-
ing any work, yet have persistent state that can be revived whenever a new session
is initiated.

3.6.4. Collaborative Technologies. Many software products allow collaboration
using the Internet. Synchronous collaboration includes teleconferencing, provided
by applications such as Netscape CoolTalk, Internet Relay Chat, Internet Phone,
and White Pine Software CU-SeeMe, and shared whiteboards, provided in applica-
tions such as CU-SeeMe, wb (Floyd et al., 1995), and Microsoft NetMeeting. State
of the art research in multicasting and agreement protocols (Shenker et al., 1994)
has made synchronous collaborations more efficient, but much research remains to
be done in asynchronous tools such as concurrent version control.

4. Summary

This paper describes an ongoing project to archive distributed computations and
link these archives into the Web. Our current release of the Infospheres Infrastruc-
ture (1.0 beta 2) has mechanisms for saving the persistent state of components.
This version of our prototype does not support saving multiple versions or global
snapshots, but we have a design in place for this functionality that requires only
modest extensions to our current package.

Our preliminary work on a Web of archived distributed computations suggests
that the technology has potential benefits. However, several areas remain for future
exploration: reducing the storage required for archives by using file differencing and
compression, taking partial snapshots of systems when an entire global snapshot is
not required, taking snapshots of different parts of the system at varying intervals,
and providing support for the deterministic replay of events within a component.
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