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Abstract

The analysis, and eventual approval or rejection, of new
enterprise information technology (IT) initiatives often pro-
ceeds on the basis of informal estimates of return on invest-
ment. Investment in new IT initiatives includes the costs of
hardware, software licenses, application development tai-
lored to the enterprise, and maintenance. Returns are typi-
cally estimated informally in terms of cost savings or rev-
enue increases. This paper makes the case for evaluat-
ing certain IT investments in the same way as investments
in factories and other resources have been evaluated for
decades. Just as industrial factories create value by trans-
forming raw materials into finished products, some IT in-
vestments, which we call “information factories”, create
value by transforming raw information (events) into struc-
tured data (and possibly actions based on that data). The
return on investment is estimated by the difference between
the economic value of the structured data and concomitant
actions (the “finished product”) and that of the data avail-
able within the enterprise, from its partners and customers,
and from the Internet (the “raw materials”). This paper
introduces the concept of the information factory, and ex-
plores design considerations for maximizing the economic
efficiency of information factories.

1. Introduction

As sensors and RFID tags become more widely de-
ployed, and streams of data from commodity exchanges,
wire services, and other sources become more widely and
freely available, new application areas for enterprise com-
puting systems are emerging. Like an automobile factory,
which takes raw materials such as steel and glass as “in-
puts” and creates value by transforming them into cars, an
enterprise computing system can take raw events generated
by myriad sources as inputs and create value by transform-
ing them into more structured information. Such struc-

tured information can result in actions, and for this reason is
sometimes called “actionable” information; the more high-
quality actionable information an enterprise has, the more
quickly and more appropriately it can react to threats and
opportunities in its extended environment.

A stream application that transforms raw events from
data streams in this way enables an enterprise computing
system to serve as an information factory, capable not only
of detecting threats and opportunities but also—at least in
some cases—of reacting to them autonomously. The eco-
nomic value added to an enterprise by a industrial factory,
measured in dollars per unit time, can be estimated from the
rates of its economic input (the raw materials) and output
(the finished products); industrial engineering and job-shop
designs have focused on optimizing this means of adding
economic value. An information factory takes streams of
raw information—stock and commodity prices, foreign ex-
change rates, interest rates, information about events rel-
evant to the enterprise (such as hurricanes), and informa-
tion about events within the enterprise—as input and gen-
erates streams of processed information as output. The na-
ture of these output streams varies widely across industries:
a financial services company’s system may output mes-
sages that cause stocks and commodities to be bought and
sold, an airline’s system may output messages that cause
ticket prices for specific fare classes on various flights to be
changed, and a power company’s system may output mes-
sages that switch particular generators on or off.

Analysis of the ROI (return on investment) for IT ini-
tiatives is often carried out informally and results in dis-
agreements between business executives, such as the CFO,
and the IT department and its CIO. Measurement and ac-
counting techniques for “brick and mortar” resources such
as factories and real estate have been developed and im-
proved over decades, whereas similar techniques for IT in-
vestments are relatively new. This short paper makes the
case that some IT investments can be understood in brick-
and-mortar terms: the benefit provided by an information
factory is similar to the benefit provided by an industrial
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factory, namely the difference in value between the finished
product and the raw material used to construct it.
As the fraction of the world economy built around ser-

vices becomes greater, it becomes more important to under-
stand and evaluate enterprises in terms of their information
factories as well as their traditional factories. An exam-
ple of the integration of traditional and information facto-
ries within enterprises is the changing role of automobile
companies. Increasingly, customers buy cars (produced by
traditional factories) with ongoing services such as OnStar
from General Motors (produced by information factories).
In the case of OnStar, an information factory receives events
from cars and can provide great added value by, for ex-
ample, automatically dispatching emergency services to the
car’s location if the car is in an accident. OnStar processes
raw material—events from the customer’s car—for many
years after the customer buys the car, and the added value
of this processing is quantified in the subscription fee the
customer is willing to pay. As more customers use these
services, the information factory becomes an increasingly
important source of revenue.
Another common example of an information factory is

“straight-through processing” (STP) of transactions on bro-
kerage accounts. Clients buy and sell stocks and com-
modities; these operations produce messages with (gen-
erally) well-defined schemas. Straight-through processing
has many steps: the client’s ID and other security informa-
tion is checked, the proposed transaction is checked against
clients’ rules for their portfolios, the buy/sell orders may be
partitioned into multiple smaller orders, the orders are exe-
cuted, resulting costs of execution are computed, and so on.
As streams of events—STP requests—arrive at a brokerage
house from different types of customers, the mapping of
these streams to available hardware resources is important
in generating the maximum profit by providing better qual-
ity of service for requests from high-revenue customers.
Information factories provide different benefits to vari-

ous types of enterprises, including traditional manufactur-
ers of goods (e.g., apparel, office supplies), financial ser-
vices organizations such as mutual fund companies, com-
panies trading commodities such as electricity, and “Web
2.0” companies like Google and Yahoo. This paper is too
short to discuss the benefits of information factories for each
of these types of enterprises separately and in detail. In-
stead, we briefly discuss some of the key aspects of infor-
mation factories in general and some design considerations
for them.

2. Information Factory Characteristics

The following are the five critical differences between
the industrial factory of the past and the information factory
of the present that influence information factory design.

Response Time The value added by the information fac-
tory depends critically on response time (also called la-
tency), the delay between the arrival of raw information and
the production of actionable output. For example, an ar-
bitrage opportunity may disappear in seconds, so the eco-
nomic value (or utility) of identifying arbitrage opportuni-
ties is directly related to how quickly they are identified.
The difference in utility between a response in one mil-
lisecond and a response in one hour depends on the appli-
cation. In a customer service application, a response need
only occur in time to deal with a customer’s problem while
they are on the phone; a response in one second provides as
much utility as a response in one millisecond. In a supply
chain application dealing with trucking logistics, a response
in one minute may provide as much utility as a response
within milliseconds. Thus, a careful analysis of the utility
of responses as a function of the quality of the response and
the response time is important.

Accuracy The actions taken by an enterprise based on the
output of an information factory may be incorrect. The ap-
propriateness or accuracy of a response has a dramatic ef-
fect on the value added by the response. One way of parti-
tioning some of the incorrect decisions is in terms of false
positives and false negatives: a false positive arises when
the system detects and responds to a threat or opportunity
that does not exist; a false negative arises when the system
either detects a threat or opportunity too late for a useful re-
sponse, or does not detect it at all. Accuracy plays a role in
industrial factories too; for instance, some automobile fac-
tories produce more reliable cars than others. The critical
economic differences in outputs with varying accuracy is,
however, a key characteristic of the information factory.

Adaptability The information factory adapts continu-
ously: new users and new computers are added almost
daily, new network capabilities are added very frequently,
and new applications are added as needs arise. Industrial
factories adapt too, but an automobile factory or a refinery
changes far more slowly than an information factory. This
constant adaptation plays a role in the models used to design
and evaluate information factories.

Compositionality Creating an information factory that
uses the outputs of other information factories as raw ma-
terial and produces value-added streams of information as
finished products is much easier than doing the same with
brick-and-mortar factories. Amazon and eBay offer Web
Services that are used by third parties to create value-added
services. So-called “mashups” [1] are a critical and inte-
gral part of “Web 2.0”. Also, unlike traditional goods and
services, the cost of duplicating information streams to feed
increasing numbers of information factories is very small.
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Thus, the value of Amazon’s finished products, such as the
Web Services it offers, increases rapidly with each orga-
nization that exploits these services to produce even more
services; the incremental cost of supporting more users is
relatively small.

Personalization Information factories provide personal-
ized services to their customers. Compare the personaliza-
tion of an automobile to that of the services offered by Ya-
hoo. In the former case, the efficiency and success of the
factory depends crucially on the product being standard and
relatively depersonalized. By contrast, in the latter case the
value provided by the information factory is in personaliz-
ing its services to the precise needs of each customer at any
given time.

These five differences between traditional factories and
information factories play an important role in understand-
ing the return on an information factory investment.

3. Return on Investment

The creation and continued operation of an information
factory has three phases, which are repeated many times
over the life of the factory: (1) capacity planning, i.e., in-
vestment in resources such as processors, software licenses,
application development, and communication bandwidth to
run the expected application load over a relatively long time
horizon (such as a year); (2) mapping of tasks to resources
[8]; and (3) adaptation of task schedules to optimize re-
source utilization [6, 10]. Capacity planning is carried out
relatively infrequently, perhaps once a year. The analysis
of ROI at this stage deals with the costs of the additional
investments—the new hardware, licenses, and development
and deployment costs. Mapping and re-mapping of stream
processing tasks to resources occurs more frequently, per-
haps once a month. In this case, the investment is fixed:
the supply of resources is inelastic. Schedule adaptation
to maximize economic utility happens continuously. Here
too, the supply of resources remains unchanged. Thus, ROI
is estimated differently for each of the phases. These three
phases occur in traditional manufacturing plants as well as
in information factories, though not necessarily at the same
frequencies. Here too, we can benefit from decades of ear-
lier work on accounting and investment in factories to un-
derstand and optimize information systems.
An information factory can operate in two modes: nor-

mal mode and sense-respond mode. Most enterprise
applications—such as customer relationship management,
supply chain management, enterprise resource planning,
and factory automation—operate primarily in normal mode:
the raw materials and finished products are well defined

and are often structured with predefined schemas. Sense-
response mode, by contrast, identifies threats and opportu-
nities; this mode of operation is used for applications such
as arbitrage, as well as traditional applications such as cus-
tomer relationship management (CRM), supply chain man-
agement (SCM), and enterprise resource planning (ERP).
Traditional applications are monitored to determine when
systems reach critical states that are precursors to threats
such as the inability to provide services to key customers;
impending threats are sensed (detected) and, ideally, the
system responds to them before they escalate.
The value of an information factory’s finished product

depends on whether it operates in normal or sense/response
mode. The value of data produced by systems running in
normal mode has been studied more extensively than that of
data produced by systems running in sense-respond mode.
Inaccurate data is more of a concern in sense-respond mode
than in normal mode, because it may identify a false threat
or opportunity. By contrast, the data sources feeding normal
mode applications are used repeatedly over long periods, so
problems with accuracy can be worked out over time. In
our discussion of stream applications, we deal more with
the sense-respond mode than with the normal mode.
The cost of raw materials is the cost of acquiring data

from within the enterprise, from its customers and partners,
and from sources outside the enterprise. The cost of ac-
quiring data from outside the enterprise—from sources such
as competitors’ web sites and government publications—
includes the cost of repeatedly polling for and extracting
information from new unstructured data (natural-language
text and images). Data from outside the enterprise, in addi-
tion to being more expensive than data from sources within
the enterprise, is also more likely to be inaccurate because
of its comparative lack of structure. The return on invest-
ment for a stream application is estimated using the benefits
realized by the application operating in normal and sense-
respond modes, the costs of acquiring input data, and the
costs of processing the input data through the factory.

4. Stream Applications

The problem addressed by information factories oper-
ating in the sense-respond mode has three main parts: (1)
specifying threats and opportunities (critical states) that are
important to the enterprise and the actions (automated or
otherwise) to be taken in response; (2) detecting these crit-
ical states; and (3) carrying out the response actions. The
second of these, which we call critical state detection, is the
most computationally intensive part of the information fac-
tory and the part where stream applications play a role; the
specification of situations and responses, and the actual exe-
cution of responses, are either primarily handled by humans
or are simple computations (such as placing an automated

Proceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC'06)
0-7695-2558-X/06 $20.00  © 2006



stock trade or triggering the shutdown process on a power
generator). We therefore focus primarily on the design and
implementation of stream applications.
A stream application, in general, is an application that

takes one or more streams of data as inputs and generates a
stream of data as output. The particular type of stream ap-
plication used in an information factory for critical state de-
tection, which we call a detection system, fuses—correlates,
integrates and analyzes—the data that it obtains from mul-
tiple streams and generates notifications of critical states. A
critical state can be defined as one in which measurement
data fits a model of critical states or as an anomaly. At each
point in time, the detection system infers the most likely
states from the data available up to that point and generates
notifications accordingly. The system continually updates
its inferences as time passes and as new events arrive.
A detection system has a set of models, some of which

represent normal situations (no supply chain disruptions,
no arbitrage opportunities, etc.) and some of which rep-
resent critical states (e.g., an impending shortage of a criti-
cal manufacturing part). A model of an arbitrage situation
deals with the evolution of multiple markets over time; a
model of a supply chain disruption may deal with specific
performance indicators relating to a set of suppliers that fit
patterns over time and geographical locations. Models are
based on the history of global states of the environment be-
ing monitored, where the history at time T is a function
that specifies the state s(t) of the system for t ranging from
the point of system initiation (t = 0) to the current time
(t = T ). For example, in an application dealing with finan-
cial markets, the global state may include market indica-
tors (such as the Dow Jones Industrial Average), the current
prices of specific commodities, the volume of shares being
traded, the time and details of the last trade executed, etc.
An anomaly is a situation that does not fit any of the

models in the detection system, and can therefore not be
immediately classified. When an anomaly is detected, fur-
ther analyses must be carried out by humans to determine
whether or not the anomaly indicates a critical state. After
an anomalous situation is analyzed, a model may be added
to the detection system to handle future occurrences of the
situation.

4.1. Graph Representation

A detection system must carry out many simultaneous
computations on the same set of event information in or-
der to evaluate the applicability (or lack thereof) of its var-
ious models to the global state. The computations that a
detection system must perform on the event information
vary widely depending on the models; in general, how-
ever, the computations can be represented by a directed
acyclic graph in which the nodes represent computational

steps and the directed edges represent data flowing between
steps. A node may represent the evaluation of natural lan-
guage text messages (such as newsletters sent by competing
companies to their customers) to determine whether they
are relevant to a critical situation, or the evaluation of im-
ages (such as photographs of a production line) to deter-
mine whether they suggest situations that merit further in-
vestigation. Nodes may also represent incremental statisti-
cal analyses such as regressions and change-detection algo-
rithms, or merely simple Boolean operations such as con-
junction. Some nodes may execute multiple models to de-
termine which one best explains the current data. Thus, the
computational granularity of nodes varies widely.
The sources (nodes without predecessors) of the graph

represent event sources, and the sinks (nodes without suc-
cessors) represent notifications. For example, one source
node may represent a stream of images from a video cam-
era while another source node represents a sequence of mea-
surements sent by a temperature sensor. Similarly, one sink
node may represent a notification that alerts security offi-
cials in a specified location while another sink node repre-
sents a notification that shuts down a production line.

4.2. Incremental Computation with Asynchronous
Noisy Data

Detection systems continuously process information
from multiple streams as data arrives. In general, the state
of a given sensor or information source changes relatively
slowly, so that at each instant in time the global state is ei-
ther unchanged or is changed by only a small amount rela-
tive to the state at the previous instant. Therefore, efficient
algorithms communicate and compute incrementally based
on the changes between the previous state and the present
state.
Data may be noisy. Also, there may be a delay between

the instant at which a measurement is made by a sensor
and the instant at which a message containing that mea-
surement data is sent from a source node. While a source
node represents an event source, it is (usually) not the actual
event source, and must receive communications from out-
side the detection system. Therefore errors—false positives
and false negatives—are possible. The challenge is to de-
sign systems that have tolerable error rates, process streams
of data from all the data sources at the rates at which they
are generated, and respond with adequate response times.
There are various ways to design detection systems to

perform these incremental computations, but they can be
classified into two types: process-on-arrival and snapshot-
based. Likewise, there are various ways to design signal-
ing schemes—algorithms that determine when sensors and
other data sources send messages. The tradeoffs in the de-
sign of signaling schemes have been investigated previously
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[2]; for the purposes of this discussion, we assume the use
of a predicate-driven (or model-driven) signaling scheme,
where computational elements send messages only when
their outputs deviate from pre-specified models.

4.3. On-Arrival vs. Snapshot Processing

One possible architecture for the detection system is
a distributed system—either deployed on an enterprise
computing system or “emulated” within a single shared-
memory machine—with exactly the same structure as that
of the computation graph: it has one processor (or process)
for each node, and the directed edges of the graph represent
message channels between nodes.

In a process-on-arrival system, each process remains idle
until one of its input channels becomes non-empty, at which
point it executes a step by removing a message from one of
its input channels and carrying out the incremental compu-
tation associated with that message. This execution may
result in the generation of messages to other processes.

Each message generated by a data source is assigned
a timestamp. It is assumed that the clocks at the data
sources are synchronized in a lightweight way, such that
the amount of clock drift can be bounded. For snapshot
processing, time is partitioned into a sequence of contigu-
ous intervals, and it is assumed that all messages having
a timestamp within the same interval belong to the same
global state. All messages with timestamps in the interval
[k × D, (k + 1) × D), are treated as though they reflect
the kth global state, and are processed as an atomic unit.
If multiple messages on the same channel have timestamps
that place them in the kth global state, all but the last one
are discarded.

The value of D is determined by the rates of change of
sensor values. AD that is too large may encompass several
changes in the measurements made by one sensor; since
only the last of these measurements will be used to repre-
sent the entire interval, this can result in less accurate esti-
mates of global states. A D that is too small may result in
large numbers of process activations and a consequent per-
formance penalty. We call each time interval in a snapshot
processing computation a computation phase (or simply a
phase).

We have devised multiple algorithms to schedule the ex-
ecution of nodes in a computation graph for snapshot pro-
cessing. For space reasons, we do not describe these al-
gorithms here; a complete description of one of them, in-
cluding some simulation results, can be found in a previous
paper [9]. Descriptions of the others, and further simulation
results, are forthcoming.

4.4. Resource Allocation for Stream Applications

An important consideration for information factories is
resource allocation: how to best utilize the computational
resources available to the enterprise to execute the stream
applications that comprise information factories. In the
model we have described, each stream application consists
of a graph of multiple interacting and repeatedly executed
processing units. Conventional resource allocation methods
are not suitable for stream applications, for the following
reasons:

Frequency of Execution Each repetition of the execution
is triggered by the arrival of new inputs, the frequency of
which can have a fixed rate, follow a specified distribution,
or be completely random. Therefore, methods that asso-
ciate each task with a fixed deadline are not suitable, be-
cause the exact time at which each task execution can start
is not known a priori.

Quality of Service Requirements Stream applications
have varying quality of service requirements; some require
processing and analysis to be done on-the-fly in order to
enable real-time responses, with little tolerance to delay.
They also have elastic deadlines, where the value realized
depends on how quickly the inputs are processed. Thus,
methods that use a priority number to indicate a task’s im-
portance/value are also not suitable.

Optimization for Economic Value Traditional resource
allocation algorithms optimize metrics such as makespan
(the total time required to execute all tasks) or the number
of tasks completed before a specific deadline. However, our
objective is to maximize the net economic value of the tasks
in order to maximize the return on investment for informa-
tion factories. Thus, the existing methods that optimize tra-
ditional metrics are not suitable for our optimization.

We have devised resource allocation heuristics for
stream applications that use microeconomic principles to
maximize the utility of the stream applications (and there-
fore to maximize ROI for information factories). For space
reasons, we do not describe these heuristics here; their com-
plete descriptions, proofs of their correctness and efficiency,
and simulation results are available elsewhere [7].

5. Summary and Future Directions

The central point of this paper is that return on invest-
ment for certain information technology applications can be
analyzed in the same terms used for traditional brick-and-
mortar factories; the return is evaluated as the difference
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between the economic value of the finished products and the
economic value of the incoming raw materials. The finished
product in the case of the information factory is actionable
structured information, and the rawmaterial is unstructured,
partially structured or structured information on the Internet
and within enterprise databases and applications.
We have identified five characteristics that differentiate

the information factory from traditional factories that pro-
cess raw materials: the variation of utility with response
time, the variation of utility with accuracy, adaptability,
compositionality, and personalization. Theories and tools
for evaluating and optimizing traditional factories can be
adapted for information factories, and the process of adap-
tation must take into account these key differences between
information factories and traditional factories.
Snapshot processing deals with accuracy; the raw data

arriving at the factory measures various aspects of the en-
terprise, and this raw data is pieced together to form a se-
quence of global snapshots over time—an approximation
to the overall trajectory of the enterprise. This trajectory
is then analyzed to detect, and enable responses to, threats
and opportunities. We have analyzed several algorithms for
snapshot processing and obtained definitive performance re-
sults.
Resource allocation enables an enterprise computing

system to be used in a way that optimizes the economic
production of the information factory. We have evalu-
ated market mechanisms for mapping stream applications
to resources—much like mapping tasks in manufacturing
plants to work stations—but with one critical difference:
different utilities for different response times and different
types of information.
A great deal of research remains to be done. The eco-

nomic analyses of the accuracy of information produced by
the factory should be studied in depth. Just as certain brands
of cars gain the reputation of being more reliable than oth-
ers, so too can some information streams gain reputations
for reliability. Information considered to be dependable is
used in decision making, while unreliable information is ig-
nored. The economic consequences of accuracy and time-
liness are self-evident with information on the World Wide
Web, but careful analyses of the marketplace for informa-
tion in terms of information factories have yet to be carried
out.
Another area of continuing research [5] is in making

the information factory adapt to changing loads and chang-
ing requirements by dynamically adjusting priorities for its
component tasks. The response time that matters most to
customers is the overall time from the arrival of raw data
to the production of actionable information; in effect, the
response times for intermediate steps are irrelevant. There-
fore, information factories can adapt the scheduling of in-
termediate steps to maximize overall utility.

Much has been written about autonomic computing [4],
the central nervous system of computing [3], and the real-
time enterprise. The key element in these systems is the
information factory, and the key question for many enter-
prises is how much return they can realize on an investment
in information factories. This paper is an initial step toward
exploring answers to this question.
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