
Event-Driven Architectures for Distributed Crisis Management
K. Mani Chandy, Brian Emre Aydemir, Elliott Michael Karpilovsky and Daniel M. Zimmerman

Computer Science 256-80
California Institute of Technology

Pasadena, California, USA
{mani, emre, elliottk, dmz}@cs.caltech.edu

ABSTRACT
This paper describes an approach for developing distributed
applications that help deal with rapidly changing situations
such as terrorist attacks, hurricanes and supply chain dis-
ruptions. Important characteristics of such applications are
that they must handle unexpected events and that they are
often modified on-the-fly, by multiple people who may be-
long to different organizations, to deal with changing situ-
ations.

Abstract and concrete models for specifying, reason-
ing about, and implementing such systems are presented.
In the abstract model, an application is a set of state tran-
sition rules over the global state of a distributed system.
In the concrete model, an application is a set of message-
driven processes and each computation is a sequence of
atomic operations in which a process receives a message,
changes its state, and sends messages. An implementa-
tion of the concrete model using XML as the message and
state format, with state transitions specified using XSLT,
is briefly described. A key feature of this implementation
is that messages and process states are represented using a
format that allows applications to be easily observed and
modified during their execution.

KEY WORDS
distributed software systems and applications, information
systems, distributed agents, crisis management

1 Introduction

Task forces that manage very dynamic situations, such as
crises, are fluid collections of individuals and institutions.
For example, the task force handling the aftermath of an
airplane crash may include the FBI, local police, the Red
Cross, the airline, news services and relatives of passen-
gers. Often, the participants in a task force cannot be deter-
mined until the crisis occurs. Likewise, the specific com-
ponents required for a given application needed by the task
force may not be predictable and may change as a crisis
unfolds. Events that occur in rapidly-changing situations
are often unanticipated. Therefore, processes for dealing
with such events may need to be created and modified as
the situation unfolds.

We first describe some characteristics of applications
that support the activities of such task forces, which we call

dynamic applications, and argue that the differences be-
tween dynamic and conventional applications merit using
a different programming model and implementation tech-
nology for dynamic applications. We then propose both
an abstract programming model and a concrete program-
ming model for such applications. Finally, we give a brief
overview of our current system implementation and com-
pare our model to some related architectures and concepts.

2 Characteristics of Dynamic Applications

Several characteristics differentiate dynamic applications
from conventional applications. In this section we briefly
describe the most significant of these characteristics, ad-
dressing first those associated with the computational struc-
ture of dynamic applications and then those associated with
their design and execution.

2.1 Computational Structure

Many conventional distributed applications use a service
oriented architecture in which a client requests a service
from a server, gets the response from the server and then
makes requests to other servers following a sequence of
steps often modeled using workflow or business process
modeling. In some cases, each server in a business pro-
cess carries out one step and passes results on to the next
server in a predefined flow.

Such request-response protocols are well suited for
conventional applications, but are inadequate for dynamic
applications. The state of a crisis evolves unpredictably,
and task forces typically do not have central authorities that
determine how events should be processed. For this reason,
it is not possible to specify, implement and test flow graphs
for handling events pertinent to a particular situation before
it occurs.

To properly deal with rapid deployment and evolu-
tion, processes in a dynamic application should be notified
automatically when events of interest occur; the process-
ing of these events may, in turn, generate new events. An
execution trace of such a dynamic system can produce a
causality graph that shows how one event causes others.
This graph emerges from the computation, unlike in con-
ventional applications where the flow graph specifies the
computation.



2.2 Application Development

Development of a dynamic application is a continuous ac-
tivity. As a situation unfolds, new components may be re-
quired or existing components may need to be modified
while the system is executing. Conventional application
development, on the other hand, employs rigorous steps
with careful testing procedures and sequences of planned
releases, and each release consists of a static collection of
components. The continuous development process makes
runtime monitoring, testing, debugging and administration
more important for dynamic applications than for conven-
tional applications. Therefore, the programming model
for dynamic applications should allow users to inspect and
modify running components, a capability that is not as im-
portant for users of conventional applications.

The hardware and operating systems available for use
by a dynamic application may not be known until the ap-
plication is required to deal with an emerging situation.
Therefore, the components in a dynamic application should
be specified in a notation that can be mapped to a variety
of runtime environments. By contrast, releases of conven-
tional applications have the luxury of specifying particular
versions of hardware architectures, operating systems, and
other supporting software components.

3 Abstract Model

In this section we present an abstract model for the specifi-
cation and execution of dynamic applications. The abstract
model captures the central aspect of dynamic applications:
the ability to respond to conditions over global state. De-
tecting meaningful global snapshots of distributed systems
is difficult [2], and the abstract model helps to separate con-
cerns about what conditions need to be detected from de-
tails about how the detection occurs.

A dynamic application consists of a set ofvariables
and a set ofwhen-thenrules. Thewhen-thenrules are the
sole means of specifying the application’s behavior.

A variable can be eitherexternalor internal, and must
have a unique name. There is a special variable calledtime,
which is neither internal nor external; its value changes
continuously to accurately reflect the progress of time in
the physical world.

External variables represent current values of real-
world quantities, such as the temperature at Los Angeles
International Airport or the Dow Jones Industrial Average.
Each external variable is associated with a sensor; if mul-
tiple sensors report the same real-world quantity, such as
temperature sensors located on different runways of the air-
port, each sensor is associated with a different external vari-
able.

Internal variables are the results of computations
within the application, and their values are based on the
values of other (external and internal) variables. An ex-
ample of an internal variable is the five-day moving-point

average reading of a particular temperature sensor at Los
Angeles International Airport.

The complete set of variables and their values at any
point of an execution are collectively called thestateof the
application at that point. The sequence of all prior applica-
tion states at any point in the execution is called itshistory
at that point.

The set of variables can change during the execution
of an application. For example, at some point during the ex-
ecution, an external variable reflecting the volume of blood
plasma available at a specific hospital might exist. At a
later point, a new external variable such as the number of
patients with typhoid admitted to the same hospital could
be added. Still later, a new internal variable that quantifies
whether the volume of plasma at the hospital is danger-
ously low given the history of patient admittances could be
computed.

All changes to the values of internal and external vari-
ables are discrete. For instance, even though the tempera-
ture of a boiler may change continuously over time, the
temperature variable changes only in discrete increments
based on updates from a temperature sensor. A change in
the value of a variable is called anevent.

The execution of the application is governed by a set
of when-then rules. Each of these rules has the form,
“when history-predicatethen state-change-specification.”
Similar to the set of variables, the set ofwhen-then rules
can change during the execution of an application.

The history-predicate is a Boolean condition on the
history of the dynamic application, such as, “the one-week
moving-point average of blood plasma usage in Los Ange-
les County exceeds three-quarters of the one-week moving-
point average of blood plasma inventory available in Los
Angeles County.” Thewhenclause can specify an arbitrary
predicate on the history of (global) states. For instance,
the predicate can refer to the blood supplies of all hospitals
around the world. The abstract model does not deal with
how the predicate is evaluated instantaneously.

The state-change-specification defines changes to the
internal state variables. For instance, thethen part of the
rule may specify that an alert message be sent to the pub-
lic health director for Los Angeles County; in this case,
the variable is the sequence of messages sent to the public
health director and the state change is to append a message
to this sequence.

A when-then rule is executed as follows. The predi-
cate in thewhen clause is evaluated. If it isfalse, nothing
further happens. If it istrue, the state variables are changed
as specified in the correspondingthen clause. We require
that thethen clauses of all rules withwhen clauses that
are simultaneouslytrue do not interfere with each other;
for example, it is not allowed for onethen clause to set
a Boolean variable totrue while another clause simultane-
ously sets the same variable tofalse.

The execution of a dynamic application is event-
driven. Whenever an event occurs, all thewhen-thenrules
in the application are executed concurrently and instanta-



neously. This may cause a number of other events to occur,
as internal variables are changed by the rule executions. As
a result of the concurrent and instantaneous execution of
rules, all computations in the abstract model are determin-
istic. Clearly, this type of execution cannot be implemented
using real machines.

4 Concrete Model

In this section, we describe a concrete model that approxi-
mates applications described with the abstract model as im-
plementable, message-based distributed systems. The con-
crete model hides implementation details to simplify rea-
soning about system behavior.

An implementation cannot be faithful to the abstract
model because thewhen-thenrules cannot all be executed
concurrently and instantaneously: time is required to evalu-
ate the predicates on, and make changes to, the global state.
The concrete model assumes neither the instantaneous exe-
cution of rules nor simultaneous access to the entire global
state. It is possible for an implementation to be faithful to
the concrete model.

Applications in the concrete model, like those in the
abstract model, are formulated withwhen-thenrules; how-
ever, in the concrete model, thewhen clauses and thethen
clauses name only the local variables of a process. Un-
like the abstract model, the concrete model allows nonde-
terministic computations.

Starting a design with the abstract model allows de-
signers to restrict attention to internal and external vari-
ables and rule sets. At a later design step, designers de-
velop a concrete model that approximates the execution of
instantaneous globalwhen-then rules by specifying pro-
cesses, messages and communication. At this design step,
designers focus their attention on mapping globalwhen-
then rules to local process operations.

4.1 Sensors, Actuators, and Event Proces-
sors

A dynamic application system consists of three types of
component: sensors, which generate streams of events
based on properties external to the application; actuators,
which listen to streams of events and perform actions ex-
ternal to the application; and event processors, which listen
to streams of events and generate new event streams of their
own. A sensor that monitors the state of a boiler may gen-
erate events containing the temperature and pressure of the
boiler. An actuator associated with a furnace may receive
events that instruct it to change the rate of gas flow and ac-
tually perform that action in the physical world. An event
processor might receive events about the temperature of a
boiler and calculate a running average, generating events
when the running average exceeds a particular threshold.

Sensors, actuators and event processors are collec-
tively calledprocesses. Processes do not share state, and

interact only by receiving and generating events. In dis-
tributed systems terms, an event is a message and an event
stream is the sequence of messages sent along a channel.
The streams of events sent by sensors and event processors
correspond to changing values of state variables in the ab-
stract model.

4.2 Process Structure

The different types of process in a dynamic application are
described in different ways. We do not discuss the sen-
sors or actuators in detail, because they are entirely depen-
dent on factors external to the dynamic application; a tem-
perature sensor, for example, may be a piece of hardware
that varies the voltage on its output with the temperature it
senses, while an actuator may be a mechanical device that
opens or closes a particular valve in a network of pipes.
For the purposes of this discussion we concentrate on the
event processors, as they are the components that are un-
der the direct control of users of the distributed applica-
tion; we assume only that sensors will generate appropri-
ate event streams, that actuators will consume appropriate
event streams and that sensors and actuators have unique
identifiers.

Each type (or class) of event processor in an appli-
cation is specified by a set of variables, astate transition
function that maps an incoming event and current state to
a next state and anevent generation functionthat maps an
incoming event and current state to a sequence of generated
events.

An event processor instance is specified by an event
processor class, an initial state and a unique identifier. The
initial state is specified when the instance is constructed.
The unique identifier is used for communication with other
event processors via an event dissemination mechanism.
We do not give a detailed description of the event dissem-
ination mechanism here; all that is important for the pur-
poses of this discussion is that it is capable of communi-
cating events between event processors using their unique
identifiers as an addressing mechanism.

The operation of an event processor is as follows. It
is inactive until it receives an event. When it receives an
event, it changes its state according to its state transition
function and generates a sequence of events specified by
its event generation function.

An event processor can set atimeoutvalue when it
makes a state transition. If the event processor does not
make another transition within a time duration equal to the
timeout value, it receives a timeout message. If it does
make a transition within the duration, the timeout is can-
celled and it does not receive a timeout message.

Each event processor has a set of input ports and a
single output port. Each input port has a unique name. A
message (copy of an event) in the system is addressed to a
specific port of a specific process. Each state of the process
is associated with a nonempty set of input ports and an op-
tional linear priority ordering of these ports. A message ar-



riving on any port in the set causes a state transition, while
a message that arrives on any other port does not cause a
transition. When a message arrives on any port in the set,
the process checks the ports in priority order for messages
and accepts the message from the first nonempty port that
it finds.

5 Implementation

Our implementation of a system faithful to the concrete
model stores the states of event processors as XML docu-
ments, specifies their state transitions using XSLT and uses
XML messages to encapsulate events. XML and XSLT
were chosen for their portability: it is possible to imple-
ment a system capable of parsing XML documents and
transforming them according to XSLT specifications using
any one of several different programming languages and
computing platforms, and all such implementations can in-
teroperate as long as they are written to work with the same
underlying communication infrastructure. We chose Java
as the implementation language, using the Apache Xalan-
Java XSLT engine [1] to process the state transitions.

The system implementation represents each event
processor as a state-based automaton and is responsible
for the execution of large numbers of these state-based au-
tomata in a single Java virtual machine. These automata
communicate with each other, and with automata in other
virtual machines, using an information dissemination net-
work to distribute the previously mentioned XML mes-
sages. For the purposes of this discussion we assume that
the dissemination network is capable of delivering mes-
sages from one automaton to another using some address-
ing scheme, but we do not describe it in detail; in particular,
we do not specify any particular ordering for message de-
livery, or any other quality of service characteristics except
for the fact that all messages sent are eventually delivered
to the correct destinations.

The implementation performs several distinct tasks:
it receives messages from and submits messages to the dis-
semination network; it determines the order in which mes-
sages will be delivered to automata; it implements the time-
out mechanism, which allows each automaton to request a
“wakeup call” message if no messages arrive for it from
the dissemination network within a specified amount of real
time; and it executes state transitions on the automata. In
addition, it maintains enough information in persistent, sta-
ble storage (such as on a disk array) to ensure that the sys-
tem can be restarted with minimal lost information in the
event of a transient system failure.

Execution of the current implementation proceeds as
follows. When a message arrives from the dissemination
network for one of the automata in the system, or when a
message is generated by a timeout condition, it is placed in
a named queue corresponding to the automaton and port to
which it is addressed. Automata in the system have multi-
ple named input ports on which messages can be received,
and can select in any given state the set of input ports they

are listening to and the priority order, if any, assigned to
those ports. When there are messages on one or more of
the ports that an automaton is listening to, the system se-
lects the message on the highest-priority port (or a random
port, chosen fairly from the ports the automaton is listening
to, if no priorities have been set). It then loads the automa-
ton into memory, using its state from persistent storage, and
executes the appropriate state transition of the automaton
based on the type of the message. The state transition may
change the state variables of the automaton and may also
cause new messages to be generated. The system submits
any generated messages to the dissemination network for
delivery and saves the new state of the automaton back to
persistent storage.

The execution of state transitions is carried out us-
ing an XSLT engine. The states of the automata are stored
in an XML format in persistent storage, and each automa-
ton has two XSLT documents associated with each of the
message types it can receive. When a typed message trig-
gers a transition, one XSLT document maps the incoming
message and the current state to a new state, analogous to
the state transition function in the concrete model, and the
other maps the incoming message and the current state to
a set of outgoing messages, analogous to the event genera-
tion function in the concrete model. The type of a message
is a unique identifier used to select the correct XSLT docu-
ment to use for that message and is not a type in the sense
of type theory or the Java type system.

In order to perform all its tasks efficiently, the im-
plementation is designed to operate with a large degree of
concurrency. There are two pools of Java threads in the
system; one thread pool is responsible for writing received
messages to persistent storage and providing delivery no-
tifications, and the other is responsible for executing the
XSLT engine on appropriate documents to carry out au-
tomaton state transitions. The synchronization mechanisms
used allow the simultaneous handling of multiple messages
and state transitions, while ensuring that no automaton is
placed in an inconsistent state.

6 Usage Example

Consider a rapidly changing situation such as the after-
math of an earthquake. The earthquake causes gas line
disruptions as well as a fire near a lab in which scientists
work with radioactive material. An officer decides to add
a when-then rule to the abstract model, which states that
if a fire comes within two miles of such a lab then a code
red alert is sent to all fire fighting units within ten miles.
The alert is to be sent every two minutes until the condition
(fire within two miles) ceases to exist. After identifying a
set ofwhen-thenrules, the officer develops a design using
the concrete model. Next, we discuss how this is done.

A dynamic application system has two searchable di-
rectories. The first, a directory of event streams, serves
essentially the same function as UDDI [13] for Web Ser-
vices: it describes the semantics of the event streams avail-



able for use by the dynamic application and contains the
unique identifiers of the generators for those streams. For
example, the directory has enough information for a hu-
man to determine whether the string “China” refers to the
country or to a type of porcelain. The second, a directory
of event processor classes, contains enough information to
allow users to determine whether existing event processors
classes are suitable for their needs and, if so, to instantiate
those classes appropriately.

The officer searches the event stream directory and
finds one or more event streams that identify locations of
fires. She finds an event class for sending periodic alerts to
all mobile units within a specified distance of a location, as
well as a class that sends alerts when an event (such as a
fire or chemical spill) is within a specified distance of a lo-
cation. She creates instances of both classes and connects
the instances by feeding the stream of events generated by
one instance into the other instance. She specifies the initial
states of instances using an XML file, and connects the in-
stances by invoking commands from a command line; she
may instead use some other user interface, if available, to
create the connections and specify the initial states.

If she doesn’t find the classes she needs, her next step
is to create a new class. She creates the XML file that
declares the variables and the XSLT files that specify the
state transition and message generation functions for her
new class; she may instead use an assistive user interface,
if one is available, to automatically generate the files that
correspond to her specifications. Once this is done, she in-
serts a description of the class into the class directory and
constructs a specific instance of the class with the appropri-
ate parameters and input event streams.

7 Related Work

The idea of starting with an abstract model based on rules
(similar to when-then rules) and then refining the model
to deal with processes and local variables appears in the
UNITY formalism [3]. The abstract and concrete models
proposed here are heavily influenced by stepwise refine-
ment in UNITY. A dynamic application within the abstract
model can be successively refined, where refinements orga-
nizewhen-then rules into groups that name variables that
either are not modified in other groups or are modified only
according to specified protocols. Each group of rules and
its associated variables corresponds to a process in the con-
crete model.

The abstract model differs from UNITY in two sig-
nificant ways. First, all rules are executed instantaneously
and concurrently in the abstract model, whereas the actions
in UNITY are executed sequentially in a weakly fair or-
der. Second, the abstract model deals with time explicitly,
whereas UNITY has no concept of time other than an or-
dering of actions.

Reasoning about a temporal logic model such as
UNITY or TLA [11] is easier than reasoning about the con-
crete model proposed here. A UNITY program either sat-

isfies its specification or it does not; there is no concept of
inaccuracy, as there is between the abstract and concrete
specifications of a dynamic application.

Theories and notations for software control systems
consider time explicitly. The Computation and Control
Language [10], developed by Klavins, is an elegant nota-
tion for control systems that uses UNITY as a basis. Giotto
[8], a time-triggered language for embedded programming,
deals explicitly with sensors, actuators and mode switches.
A difference in emphasis between these works and the
models and implementation described here is the focus on
very dynamic applications with continuously changing pro-
cesses.

Luckham proposed the Rapide™ event pattern lan-
guage [12] for specifying event systems. The iQueue per-
vasive data composition framework [5], developed at IBM,
also has an event specification language. We do not pro-
pose a programming language for specifyingwhen-then
rules or for defining events; our process composition is by
name rather than by semantics. We assume that human
beings search directories of event streams and event pro-
cesses, understand the meanings of the results and compose
them by naming the streams sent to each process.

Cooper and Marzullo proposed several algorithms for
consistent detection of global predicates [6]. Chase and
Garg showed that the problem of detecting a generalized
global predicate (thewhen part of awhen-then rule) in a
distributed system is NP-complete, and proposed efficient
algorithms for detection of specific classes of global predi-
cates [4]. We have not explored using these algorithms for
detectingwhen predicates because the predicates of inter-
est in dynamic applications may hold for very short dura-
tions. For these applications, rapid and occasionally erro-
neous predicate detection is preferable to extremely slow
but completely accurate detection.

Harel introducedstatecharts[7], an extension of state
machines for dealing with real time. Our state machine
model handles time in a more restrictive way than state-
charts, by allowing only the specification of timeouts.

A great deal of work has been carried out on com-
mand and control systems. Our work differs in that we
explore on-the-fly modification of the system whereas con-
ventional systems are statically configured for a particular
situation. Research on sensor networks for military, envi-
ronmental and security applications has been catalyzed by
low power, very low cost sensors. Sensor networks deal
with the detection of complex events by using fixed sets of
sensors and processor types. We instead explore networks
with changing sets of processor types and instances.

Sense and respond systems such as the iSpheres
Halo™ [9] platform, which has a rich library of compo-
nents for sensing, actuation, and complex event detection,
can be used to address the same problems as dynamic ap-
plications. Our work on message-triggered state machines
follows work on the iSpheres platform. A point of de-
parture is that our states and state transitions are encoded
in formats that facilitate implementations on multiple pro-



gramming platforms and enable on-the-fly discovery and
modification of processes.

8 Conclusion

The individuals and organizations that deal with crises and
other rapidly changing situations can benefit significantly
from flexible information systems, where applications can
be frequently changed and rapidly deployed in a variety
of runtime environments. The dynamic application models
and implementation presented here can be used to create
such systems.

The models we have presented use the structuring
mechanism ofwhen-then rules to allow the program-
ming of dynamic applications without the need for a com-
plex software engineering process. Our implementation is
designed to be as independent of specific hardware and
programming environments as possible by using cross-
platform standards, with events and states specified as
XML documents and state transitions specified with XSLT.

Our dynamic application models are inappropriate for
most conventional applications, where the model of choice
is a business process represented as some form of flow
graph in which nodes represent requests for services and
responses from servers. The abstract model of dynamic ap-
plications finesses the most important part of conventional
applications—the flow of steps in a business process—to
an atomic action in thethen part of a rule. Similarly, the
concrete model of dynamic applications does not represent
business process flows, whether transactional or not. Busi-
ness processes represented by causal sequences of steps
may be deduced from traces of messages and states in our
concrete model, but they are not the means of specification.
This is a weakness of the models presented here. A model
in which the event-driven aspects are captured by thewhen
parts of rules and the service-oriented flow aspects are cap-
tured by the (possibly non-atomic)then parts of rules could
be more useful for such applications.

We are continuing to explore models, tools, and
methodologies for developing applications to deal with
crises and other evolving situations.

References

[1] The Apache XML Project. Xalan-Java.http://
xml.apache.org/xalan-j/ .

[2] K. Mani Chandy and Leslie Lamport. Distributed
snapshots: Determining the global states of dis-
tributed systems.ACM Transactions on Computing
Systems, 3(1):63–75, 1985.

[3] K. Mani Chandy and Jayadev Misra.Parallel Pro-
gram Design: A Foundation. Addison–Wesley Pub-
lishing Company, Reading, MA, 1988.

[4] Craig M. Chase and Vijay K. Garg. Detection of
global predicates: Techniques and their limitations.
Distributed Computing, 11(4):191–201, 1998.

[5] Norman H. Cohen, Apratim Purakayastha, Luke
Wong, and Danny L. Yeh. iQueue: A pervasive data
composition framework. InProceedings of the Third
International Conference on Mobile Data Manage-
ment, pages 146–153, January 2002.

[6] Robert Cooper and Keith Marzullo. Consistent detec-
tion of global predicates. InProceedings of the 1991
ACM/ONR Workshop on Parallel and Distributed De-
bugging, pages 167–174, May 1991.

[7] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming, 8(3):231–274, June 1987.

[8] Thomas A. Henzinger, Benjamin Horowitz, and
Christoph Meyer Kirsch. Giotto: A time-triggered
language for embedded programming. InProceed-
ings of EMSOFT 2001, volume 2211 ofLecture Notes
in Computer Science. Springer–Verlag, 2001.

[9] iSpheres Corporation. Halo™. http://www.
ispheres.com/ .

[10] Eric Klavins and Richard M. Murray. Dis-
tributed computation for cooperative control.
Submitted to IEEE Pervasive Computing, 2003.
http://www.cds.caltech.edu/˜murray/
papers/2003m_km03-ieeepc.html .

[11] Leslie Lamport. The temporal logic of actions.ACM
Transactions on Programming Languages and Sys-
tems, 16(3):872–923, May 1994.

[12] David Luckham.The Power of Events: An Introduc-
tion to Complex Event Processing in Distributed En-
terprise Systems. Addison–Wesley Publishing Com-
pany, Reading, MA, 2002.

[13] The Organization for the Advancement of Structured
Information Standards. Universal Description, Dis-
covery and Integration of Web Services.http:
//www.uddi.org/ .


