
Event Webs for Crisis Management
K. Mani Chandy, Brian Emre Aydemir, Elliott Michael Karpilovsky and Daniel M. Zimmerman

Computer Science 256-80
California Institute of Technology

Pasadena, California, USA
{mani, emre, elliottk, dmz}@cs.caltech.edu

ABSTRACT
Crises are frequent and varied, and may have profound ef-
fects on individuals and organizations. Effectively manag-
ing crises, regardless of their scope, requires the ability to
quickly process potentially large amounts of information
about a rapidly changing world.

This paper presents a software architecture, theevent
web, that can be used to help effectively manage crises.
An event web allows for the specification, deployment, ob-
servation and management of large numbers of persistent
software objects that generate, process or consume streams
of events. The system is designed to be independent of any
particular programming language or hardware architecture.

KEY WORDS
information systems and the Internet, information infras-
tructure, software agents

1 Introduction

Crises are frequent and varied, and may have profound ef-
fects on individuals and organizations. Disasters such as
earthquakes and bioterror attacks threaten people’s lives.
Market events such as large stock price fluctuations and
corporate scandals threaten the stability of corporations. A
personal crisis may merely threaten an individual’s peace
of mind. Effectively managing crises, regardless of their
scope, requires the ability to quickly process potentially
large amounts of information about a rapidly changing
world.

A task force that manages a crisis is a fluid coalition of
individuals and institutions including government agencies,
non-governmental organizations and corporations. The
public, increasingly equipped with communications tech-
nology such as email and web-enabled phones, can play a
valuable role in dealing with crises by participating in such
a task force. Since the membership of a task force is of-
ten not known until a crisis strikes, the underlying comput-
ing and communication systems available to the task force
may not be known until the task force is formed. Moreover,
since membership in a task force can change over time, the
availability and structure of such computing and communi-
cation systems may change during the life of a task force.

In this paper we present a software architecture, the
event web, that can be used to help task forces effectively

manage crises. An event web allows for the specification,
deployment, observation and management of large num-
bers of persistent software objects that generate, process
or consume streams of events. This architecture can pro-
vide task forces with the ability to dynamically sense and
respond to conditions that arise as crises unfold.

The event web architecture is designed to be as in-
dependent of programming languages and computing plat-
forms as possible, making extensive use of platform-neutral
technologies such as XML. Using this architecture, a crisis-
management infrastructure can be implemented across
multiple runtime systems, such as Java and .NET, so that
each component can take advantage of appropriate under-
lying technology while still interoperating with the rest of
the components in the event web.

We first describe the event web architecture, provid-
ing an overview of its various parts and discussing the ar-
chitectures of these parts individually. We then detail the
execution model for software components within an event
web and describe the application of event webs to crisis
management. Finally, we compare event webs to some re-
lated architectures and concepts.

2 Event Web Architecture

An event webis an infrastructure that enables the dynamic
creation, modification and management of large numbers
of persistent reactive objects that process events. Anevent
is a message generated by an object, describing an aspect
of the system’s state or history. Examples of events are
the current temperature at a specific geographic location
and the current price of a particular stock on the Nasdaq.
Each event in an event web is an XML document, which
allows implementations of the event web architecture to be
written in any language for which an XML parser is readily
available.

An event streamis a sequence of events generated by
an object, describing the evolution of a particular aspect of
the system’s state over time. Examples of event streams
are the sequence of daily rainfalls at a single geographic
location and the changes to a stock’s price throughout a
trading day. Each event stream is specified by a function
from system histories to event sequences. In practice, im-
plementations of event streams may be approximations to
these functions because determining accurate histories of



distributed systems is difficult.
The event web architecture consists of four parts: the

set of persistent reactive objects, calledevent processors,
that process event streams; the dissemination network that
distributes events among these objects; a directory that de-
scribes event streams and requests for them; and a service
layer that provides various services to the objects in the sys-
tem. We now describe the four parts of the architecture in
detail.

2.1 Event Processors

An event processoris an object in the event web that may
receive and process event streams and may generate new
event streams. Each processor is described by an XML
document in a persistent store. The description of an event
processor includes information about its implementation
and its current state (described in Section 3.1). Event pro-
cessors are classified according to their behaviors with re-
spect to event streams.

An event generatoris an event processor that gener-
ates event streams. Each event generator monitors the en-
vironment in which the event web operates and generates
an event stream that describes some aspect of that environ-
ment. This can be done in various ways: an event generator
may have a sensor that feeds it information about the phys-
ical world, may be a passive recipient of information sent
over a network (such as electronic mail) or may actively
poll information sources to obtain current data about the
environment. One example of an event generator is a sen-
sor in a building security system that generates events when
it detects movement in a restricted corridor; another exam-
ple is an object that periodically polls a competitor’s online
store and generates events when price changes occur.

An event consumeris an event processor that receives
event streams from event generators. An event consumer
performs actions based on the events it receives, such as
executing specific applications or sending SMS alerts to
specific people when certain events arrive. One example of
an event consumer is an object that sends email to a man-
ager when it receives events that indicate significant differ-
ences between planned and actual expenditures by one of
the employees she supervises; another example is an object
that sounds an alarm when it receives events that indicate a
dangerous level of radiation in a particular room.

Many event processors act as both event generators
and event consumers, generating new event streams by in-
tegrating and processing event streams from other objects
in the event web. An example of an event processor that
behaves in this way is an object in a commodity trading
system that receives some time-series prices of commodi-
ties and some currency exchange rates and uses that infor-
mation to generate a new event stream indicating changes
among buy, hold and sell recommendations.

Event processors can be added to and removed from
the event web while the system is running, changing both
the set of available event streams in the web and the set of

recipients for each event stream. The distribution of event
streams to event processors is handled by the dissemina-
tion network, discussed in the next section. The operation
of event processors also depends on the service layer, dis-
cussed in Section 2.4. The execution model for event pro-
cessors is described in Section 3.

2.2 Dissemination Network

The event dissemination network sends a copy of each
event published by the event generators to every event con-
sumer interested in that event. A consumer expresses its
interest bysubscribingfor events with particular character-
istics; the consumer specifies criteria, in the form of pred-
icates, that must be satisfied by the events. These pred-
icates are specified within an XML document, using ex-
pressions in XPath or some other appropriate XML query
language; these expressions can then be matched against
generated events in a platform-independent way. The dis-
semination network, which is essentially a content-based
publish/subscribe system [7], uses the subscriptions to de-
liver events to appropriate consumers.

For each event consumer, the dissemination network
has an associated set of named input event queues. Ev-
ery subscription is associated with exactly one of these
queues. The dissemination network appends a copy of a
published event to an input event queue if and only if the
event matches a subscription associated with that queue.
The event consumer can assign a priority level to each of
its associated event queues to determine the order in which
it receives incoming events. A special priority level,off,
indicates that the event consumer does not want to receive
events from a particular queue; events continue to accumu-
late in a queue while it is turned off and are delivered to the
consumer when (if) it turns that queue back on.

In order to make it easier to reason about the correct-
ness of computations in an event web, the formal model for
the dissemination network is kept extremely simple. The
planned implementation, which will perform various fil-
tering and routing optimizations to avoid wasting network
bandwidth and router processing power, is far more com-
plex and is not discussed here.

In the formal model, there is one event channel con-
necting each event generator to each input queue in the
web. Each input queue has an associated set of subscrip-
tions, which are predicates on the contents of events. The
state of the network at any given time is comprised of the
contents of the input queues, the set of subscriptions associ-
ated with each input queue and the states of the event chan-
nels between the event generators and the input queues.

The following four operations can cause changes to
the state of the dissemination network: a new input queue
can be created and registered with the network; the set of
subscriptions associated with an existing input queue can
be changed (by adding or removing subscriptions); an in-
put queue can be deregistered from the network, which also
causes its set of subscriptions to be removed from the net-



work; and an event generator can send an event, which
atomically adds one copy of the event to each event channel
associated with that event generator.

An event placed in an event channel takes arbitrary
finite time to arrive at its destination input queue. Once it
arrives at the destination queue, it is either inserted at the
tail of the queue or discarded, depending on whether or
not it satisfies any of the subscriptions associated with the
queue.

The state of an event channel is a queue containing
the events in the channel, with the least recently sent event
at the head and the most recently sent event at the tail. All
changes to the state of an event channel are atomic; for
instance, the enqueuing of an event on an event consumer’s
input queue and its removal from the channel occur in one
atomic operation.

2.3 Event Directory

The directory in an event web enables individuals and event
processors to advertise characteristics of event streams that
they generate or need. Individuals browsing the directory
may find descriptions of event streams that enable them to
provide additional information, by creating new event pro-
cessors to perform some computation using those existing
streams. Similarly, they may find requests for event streams
with specific characteristics in the directory and respond to
such requests by creating new sensors or event processors
to satisfy them. Thus, the set of event streams in the event
web becomes better suited to the needs of users over time.

2.4 Service Layer

The service layer in an event web provides various services
to event processors. In the current architecture, these ser-
vices are limited to the creation of new event processors
and the handling of timeouts. The state of the service layer
is given by a set of pending service requests. Whenever
the set of pending service requests is non-empty, the layer
removes one request from the set of pending requests and
handles it; this is an atomic operation.

The service layer is modular, which allows new ser-
vices to be created and added to the architecture as they be-
come necessary. The use of services is discussed in more
detail in the next section, as part of the description of the
execution model for event processors.

3 Event Processor Execution Model

An event processor is an event driven object that executes
a sequence oftransitionsover its lifetime. We first discuss
the internal structure of an event processor, then detail ex-
actly what is meant by execution of a transition and briefly
describe some implementation considerations.

3.1 Internal Structure

The state of an event processor is specified by the values of
its variables, which include the priorities assigned to its in-
put queues and a timeout value. Each event processor has a
state transition function, an event generation function and a
service request function. These map an incoming event and
the current state of the event processor to the next state of
the processor, a (possibly empty) sequence of events gen-
erated in response to the incoming event and a (possibly
empty) set of service requests, respectively.

Event processors interact with each other only by pub-
lishing events and receiving events for which they have
subscribed. At any given time, the next event to be pro-
cessed by an event processor comes from the input queue
with the highest (non-off) priority in the processor’s current
state. The event processor may always receive events from
the service layer, regardless of the priorities the processor
has assigned to its input queues.

An event processor’s timeout value is used by the ser-
vice layer. The event processor can request that the service
layer send it a timeout event when no other events have ar-
rived for it within the timeout period.

3.2 Transition Execution

An event processor begins a transition by receiving an
event. It applies its state transition function, event genera-
tion function and service request function to this event and
its current state to determine its new state, the sequence of
events that are published as a result of the transition and the
set of service requests it makes. It then updates its state and
sends the resulting events and service requests.

Each transition occurs as an atomic operation. The
executions of the state transition, event generation and ser-
vice request functions are expected to terminate. If any of
them do not terminate within a reasonable period (deter-
mined by the event web), the processor may be removed
from the system.

3.3 Implementation Considerations

In practice, the event web may contain a multitude of event
processors distributed across multiple computing systems.
The event web runtime on each system may choose to load
an event processor into memory from its description in per-
sistent storage only when the processor can execute a tran-
sition, then write the processor’s description back to per-
sistent storage upon the transition’s completion. To accom-
plish this, manager processes on each system monitor the
input queues and service layer events associated with event
processors and determine when it is necessary to load them
from and save them to persistent storage. There is a perfor-
mance penalty incurred by writing to persistent storage for
every state transition, but the advantage is that a single run-
time can support a much larger number of event processors
than it can load into memory at one time.



A key aspect of the event web is that users provide
specifications, but not implementations, of event proces-
sors. A program in Java or C# is an implementation, while
a description of a state-transition machine is a specifica-
tion. Event processors are specified using XML and their
transitions may be implemented by any means supported
by the event web runtime; currently, XSLT transitions and
Java transitions are supported.

An XSLT transition specifies a state transformation
from a combined XML representation of an incoming event
and an event processor’s current state to a combined XML
representation of the event processor’s next state, generated
events and service requests. XSLT transitions can be exe-
cuted on any platform with an XSLT engine.

A Java transition specifies a state transformation as
a method of a Java class named in the XML specification
of the event processor, which takes as parameters the in-
coming event and the current state and returns the next
state, generated events and service requests. Java transi-
tions can be executed on any platform with a sufficiently
modern Java virtual machine.

XSLT transitions are substantially more difficult to
implement than Java transitions, because it is hard to spec-
ify generalized state transformations in terms of textual
modifications. They are also generally slower to execute
than equivalent Java transitions. However, they have the
advantages of being more platform-independent and of re-
lying only on textual transformations to manipulate the
state of an event processor and interact with the event web.

4 Application to Crisis Management

Crises occur unexpectedly, and task forces that deal with
them must mobilize quickly. Task force members who are
not information technology specialists must be able to cre-
ate systems that allow them to quickly process incoming
data about the crisis situation.

The event web allows task force members to specify
conditions on the history of the system and actions to be
taken when those conditions hold. The pair consisting of
a condition and its corresponding action is called awhen-
then rule. For the purposes of this work, the actions are
limited to the publishing of appropriate events. Two exam-
ple when-then rules are, “when the history of temperature
readings for the reactor core indicates that the temperature
has increased more than 20◦C in the last 15 minutes, then
send an alert event,” and, “when the number of units of
type O blood in the hospital drops below 50, then request
more type O blood from the county blood bank.” More for-
mally, the condition of a when-then rule is a predicate on
the history of the system and the action is a description of
the event that will be sent when the predicate holds.

A when-then rule is implemented by one or more
event processors. When a rule is submitted to the event
web, a rule construction object decomposes the rule’s pred-
icate into its component clauses. For each clause, a spec-
ification for an object that can evaluate the clause is lo-

cated and used to construct an event processor, which is
then added to the event web. Input queues with appropri-
ate subscriptions are created for each new event processor.
For instance, the “when” condition of the second example
when-then rule could be expressed as “number of units of
type O blood< 50.” This would be implemented by a sin-
gle event processor that compares a number received in its
input events to 50. It would have a single input queue, sub-
scribed to events reporting the number of units of type O
blood in the hospital, and would send an appropriate out-
put event when it received an input event with a number of
units less than 50.

Implementing when-then rules for conditions in a dis-
tributed system is difficult, because determining the state of
a distributed system is like taking an instantaneous global
snapshot [5] of a machine with many moving parts. A
system’s history cannot be determined precisely because,
without perfect synchronization of their clocks, all com-
ponents cannot agree upon a universally accepted time.
Therefore, the event web only implements an approxima-
tion to when-then rules.

5 Related Work

Content-based publish/subscribe systems use intelligent
routers to direct messages to destinations based on their
content. Examples of such systems are IBM’s Gryphon
[1, 2], the University of Colorado’s SIENA [3] and Eure-
com’s XNet [4]. In some content-based systems, messages
are routed based on associated headers containing proper-
ties and values; in others, they are routed based on direct
examination of their content. The latter method of rout-
ing is similar to the dissemination system of an event web,
which matches events to subscriptions throughout the sys-
tem. Of the publish/subscribe systems mentioned, the dis-
semination system of an event web is closest to XNet, be-
cause both are designed to handle XML-based messages
with subscriptions specified as XPath expressions. We in-
tend to leverage the work done on XNet to optimize the
implementation of the event web architecture.

Rules engines [6, 8, 9] enable efficient executions of
chains of rules to determine whether complex predicates
hold on a system. An event web could be considered a dis-
tributed rule engine, where event processors evaluate pred-
icates on incoming events and generate new events based
on those evaluations. However, event webs do not target
the same application space as rules engines; while rules
engines typically deal with static rules evaluated on possi-
bly dynamic data sets, event webs are intended to evalu-
ate rapidly changing sets of subscriptions in a distributed
system where the set of event generators and the types of
events generated may also exhibit frequent changes.

Web services, which also use XML as their core tech-
nology, typically involve synchronous request-respond in-
teractions, using protocols such as SOAP over transports
such as HTTP, between a client requesting a service and a
server responding to the request. An example Web service



is a pricing database offered by an electronic bookseller
that responds to a request for pricing information about
a particular book by providing the current price. Interac-
tions within an event web, by comparison, are based on
asynchronous event streams. A bookseller connected to
an event web would publish streams of events describing
changes to pricing information, and these events would be
received by all interested subscribers. The usage of direc-
tories in Web services and event webs is also substantially
different: directories in Web services tell clients how to
request particular services and what types of responses to
expect, while directories in an event web describe the char-
acteristics of available event streams.

Commercial sense and respond systems, such as
iSpheres Halo™ [10], are designed to detect changes in the
state of distributed data and alert users and applications to
these changes. An event web is essentially a sense and re-
spond system, but with a more dynamic architecture than
existing commercial applications; while commercial sense
and respond systems are designed to operate as part of rel-
atively static enterprise computing systems, event webs are
designed to support a large and rapidly changing set of
users and systems.

6 Conclusion

Crises are inherently unplanned, which implies that infor-
mation systems that assist in crisis management must be
created quickly when the need arises and modified as re-
quirements change. The event web architecture is appro-
priate for such systems: event processors can be added to
and removed from an event web as necessary to accommo-
date the size and scope of the task force and the crisis be-
ing managed; the dissemination network ensures that event
consumers receive only the events they need and that event
generators need not explicitly send their events to particu-
lar consumers; and the event directory allows for quick dis-
covery of the types of information available in the system.
The structuring mechanism of when-then rules allows task
force members, who are not generally information technol-
ogy specialists, to easily specify conditions of interest and
actions to take when those conditions occur.

The event web architecture is designed to be as in-
dependent of specific hardware and programming environ-
ments as possible, through the utilization of cross-platform
standards such as XML and XSLT. We expect the archi-
tecture to be amenable to the application of standard tech-
niques for ensuring reliability and fault tolerance in dis-
tributed systems.

Conventional techniques are superior to event webs
for unchanging applications deployed within a single orga-
nization, such as an insurance company whose procedures
for administering claims remain unchanged over many
years. However, event webs are superior to conventional
techniques in dynamic situations, such as crises, where a
system must be created rapidly, reconfigured continuously
and distributed across multiple organizations.

References

[1] Marcos K. Aguilera, Robert E. Strom, Daniel C. Stur-
man, Mark Astley, and Tushar D. Chandra. Match-
ing events in a content-based subscription system. In
Proceedings of the Eighteenth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages
53–61. ACM Press, May 1999.

[2] Guruduth Banavar, Tushar Chandra, Bodhi Mukher-
jee, Jay Nagarajarao, Robert E. Strom, and Daniel C.
Sturman. An efficient multicast protocol for content-
based publish-subscribe systems. InProceedings
of the 19th IEEE International Conference on Dis-
tributed Computing Systems, pages 262–272. IEEE
Press, June 1999.

[3] Antonio Carzaniga, David S. Rosenblum, and
Alexander L. Wolf. Design and evaluation of a wide-
area event notification service.ACM Transactions on
Computer Systems, 19(3):332–383, August 2001.

[4] R. Chand and P. A. Felber. A scalable protocol for
content-based routing in overlay networks. InSec-
ond IEEE International Symposium on Network Com-
puting and Applications, pages 123–130. IEEE Press,
April 2003.

[5] K. Mani Chandy and Leslie Lamport. Distributed
snapshots: Determining the global states of dis-
tributed systems.ACM Transactions on Computing
Systems, 3(1):63–75, 1985.

[6] Fair Isaac Corporation. Fair Isaac decision tools.
http://www.blazesoft.com/ .

[7] Patrick Th. Eugster, Pascal A. Felber, Rachid Guer-
raoui, and Anne-Marie Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys,
35(2):114–131, June 2003.

[8] Charles L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.Artificial
Intelligence, 19(1):17–37, 1982.

[9] ILOG. http://www.ilog.com/ .

[10] iSpheres Corporation. Halo™. http://www.
ispheres.com/ .


