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Abstract. In this paper we describe the implementation of the UNITY
formalism as an extension of general-purpose languages and show its
translation to C abstract syntax using PHOBOS, our generic front-end
in the Mojave compiler. PHOBOS uses term rewriting to define the syn-
tax and semantics of programming languages, and automates their trans-
lation to an internal compiler representation. Furthermore, it provides
access to formal reasoning capabilities using the integrated MetaPRL
theorem prover, through which advanced optimizations and transforma-
tions can be implemented or formal proofs derived.

1 Introduction

UNITY [3] is a powerful formalism for the specification of nondeterministic con-
current programs. The UNITY language and execution model are simple, yet
there has been little effort directed toward the compilation of UNITY programs
to executable code. In this paper we present a method that uses Phobos [7],
the generic front-end of the Mojave [12] compiler, to translate UNITY programs
into C abstract syntax suitable for code generation. Our method has concrete ad-
vantages over previously known techniques for generating executable code from
UNITY programs: the implementation is quickly adaptable to different target
languages, we can easily change the scheduling algorithm used in the generated
code, and we can leverage the attached theorem prover to carry out transforma-
tions and proof derivations.

In our implementation we eliminate nondeterminism from UNITY programs
by using a simple sequential scheduling of statements, which may consist of
simple, conditional or quantified assignments as defined in the formalism. This
particular scheduling is not an inherent property of the translation method, and
can be easily modified as we describe later. The entire implementation is small,
and can be tailored to different target languages with minimal effort. We do not
address formal properties in this paper, but the implementation is designed to
lay the groundwork for formal analysis in the MetaPRL system.

1.1 Related Work

Few compilers have been developed for the UNITY language. DeRoure’s parallel
implementation of UNITY [5] compiles UNITY to a common backend language,
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BSP-occam; Huber’s MasPar UNITY [11] compiles UNITY to MPL for execution
on MasPar SIMD computers; and Radha and Muthukrishnan have developed
a portable implementation of UNITY for Von Neumann machines [17]. These
UNITY compilers are not as easily adaptable to multiple target languages or
multiple scheduling algorithms as the rewriting-based translator we describe, and
none of them have the formal reasoning capabilities provided by an integrated
theorem prover.

The construction of formal proofs for UNITY programs has been mechanized
using various theorem proving environments. Anderson’s HOL-UNITY [2] is an
implementation of UNITY using the HOL system [6], Heyd and Cregut’s Coq-
UNITY [8] uses Coq, and Paulson has implemented UNITY within the Isabelle
environment [15,16]. While these implementations provide assistance in proof
generation for UNITY programs, they do not generate executable code.

2 The UNITY Formalism

The UNITY formalism consists of both a programming language (with accom-
panying execution model) and a proof logic. In this paper we are primarily
concerned with the language and its execution model. For a discussion of the
proof logic the reader is referred to Chandy [3].

2.1 Language

In the UNITY programming language, a program begins with a program dec-
laration that specifies the program’s name. This is followed by several program
sections:

1. A declare section, which names the program variables and declares their
types.

2. An optional always section, which defines program variables as functions
of other variables. Variables defined in this section are essentially textual
macros representing these functions, rather than actual state variables of
the program.

3. An initially section, which specifies initial values for the variables from the
declare section. Uninitialized variables have arbitrary initial values.

4. An assign section, the program’s body, which consists of a set of assign-
ment statements. These statements may be single or multiple assignments,
and may be conditional through the use of an if construct. They may also
be quantified over predetermined ranges using the [] operator, which rep-
resents nondeterministic choice. In a multiple assignment statement, all the
expressions on the right side and any subscripts on the left side are evaluated
first, then the values of the expressions on the right side are assigned to the
corresponding variables on the left side.

An example UNITY program that sorts an array of N elements is shown
in Figure 1. The initialization sets the values for the elements of the array in
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program array-sort

declare
a: array [N] of integer

initially
〈‖ i : 0 ≤ i < N :: a[i] = N − i〉

assign
〈[] i : 0 ≤ i < N − 1 :: a[i], a[i + 1] := a[i + 1], a[i] if a[i] > a[i + 1]〉

end

Fig. 1. A UNITY program that sorts an array of N integers

parallel, and the quantified assignment is a nondeterministic choice among N−1
multiple assignment statements. In our implementation we do not deal with
parallelism, but instead replace it with nondeterminism.

2.2 Execution Model

Execution of a UNITY program proceeds in the following way. First, the ini-
tialization statements are executed, simultaneously, to set the state variables
to their initial values. Then, statements are repeatedly selected and executed
atomically. Statement selection is subject to a weak fairness constraint, which
requires that every statement is selected infinitely often in every infinite exe-
cution of the program. There are no other constraints on statement selection,
so some statements may be executed far more often than others in any finite
execution prefix.

It is possible for a UNITY program to reach a fixed point, where there is no
statement whose execution would change the value of any state variable. When
this occurs, we say that the program has terminated.

3 System Architecture

The Mojave compiler supports various front-end languages which are trans-
lated to a common functional intermediate representation. The typical code
path through these source languages is shown in Figure 2 as (I). In addition,
the integrated MetaPRL theorem prover can be used to perform transforma-
tion and formal reasoning of the programs under compilation. Phobos acts as a
bridge between source languages and the formal system by providing generic
parsing and transformation capabilities using the term rewriting mechanism
of MetaPRL. Programming language syntax can be specified with context-free
grammars where rewrite rules are used to describe parser actions, and the pro-
gram is represented as a term in the formal system. Program transformations
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Fig. 2. The Mojave compiler architecture

and domain-specific knowledge can be specified using formal (which avoid cap-
ture and are guaranteed not to change binding) and informal (which are used
for parsing and can create binding) rewrite rules that are passed to MetaPRL for
execution. The final term is then converted to a specified compiler representa-
tion (in Figure 2 this is the functional IR) and compilation proceeds to generate
executable code.

3.1 Term Language

The term rewriting engine we use belongs to the MetaPRL logical framework [10,14].
All logical terms, including goals and subgoals, are expressed in the language of
terms. The general syntax of all terms has three parts. Each term has 1) an
operator-name, which is a unique name identifying the term; 2) a list of parame-
ters representing constant values; and 3) a list of subterms with possible variable
binding occurrences. We use the following syntax to describe terms, based on
the NuPRL definition [1]:

opname
︸ ︷︷ ︸

operator name

[p1; · · · ; pn]
︸ ︷︷ ︸

parameters

{v1.t1; · · · ;vm.tm}
︸ ︷︷ ︸

subterms

Here are a few examples:

Shorthand Term
1 natural number["1"]{}

λx.b lambda[]{x. b}
f(a) apply[]{f; a}

v variable["v"]{}
x+ y sum[]{x; y}

Variables are terms with a string parameter giving their names; numbers
have an integer parameter with their value. The lambda term contains a binding
occurrence: the variable x is bound in the subterm b.
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The rewriting engine used in MetaPRL is described in Hickey [9]. Rewriting
rules are specified as a pair of terms t1 ←→ t2 using second-order substitu-
tion. The term t1, called the redex, contains second-order variables of the form
v[v1; · · · ; vn]; and the term t2, called the contractum, contains corresponding
second-order substitutions of the form v[t′1; · · · ; t′n], specifying the simultaneous
substitution v[t′1, . . . t

′
n/v1, . . . , vn]. The following table lists a few examples:

Rewrite apply{lambda{v.b[v]}; e}} ←→ b[e]
Shorthand (λv.b[v]) e←→ b[e]
Example (λx.x+ x) 1 −→ 1 + 1
Rewrite match{pair{u; v};x, y.b[x, y]} ←→ b[u, v]
Shorthand (match(u, v) with x, y → b[x, y])←→ b[u, v]
Example (match(1, 2) with x, y → x+ y) −→ (1 + 2)

4 Implementation

We now describe the conversion of terms representing UNITY abstract syntax to
C abstract syntax using source notation. The underlying actual term representa-
tion can be recovered in a straightforward manner. We also use the meta-syntax
(::) to denote element insertion into a list, as used in OCaml. Occasionally, we
show actual terms, in which case their names are underlined to distinguish them
from abstract ones.

op ::= + | − | ∗ | / | and | . . . |=|
=|<|≤|>|≥ binary operators
r ::= e op v op e range

| e op v op e & e range with condition

e ::= i | f | true | false numbers and Booleans
| v variables
| e op e binary operation
| e[e] subscripting
| e(e, . . . , e) function application

assign ::= e, . . . , e = e, . . . , e Simple assignment
| e, . . . , e = e, . . . , e if e Conditional assignment
| 〈[]v, . . . , v : r, . . . , r :: assign〉 Quantified assignment

Fig. 3. UNITY assignment grammar

4.1 The C Term Set

The C term set is a straightforward implementation of the Mojave C abstract
syntax type. Each OCaml constructor name is defined as a term; for instance
C declare of var ∗ ty is represented as c declare{var; ty}, or C if of cond
∗ true ∗ false is represented as c if{cond; true; false}. When we can, we use
C source syntax to denote these terms, for instance if (cond) true else false.
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4.2 Design

The syntax we adopt for assignment statements in our implementation is defined
in Figure 3. We achieve the independence of individual assignments in the same
statement by keeping two sets of state variables. For each variable declared in the
program we introduce an “alias,” which stores the value of the aliased variable
before entering a new statement. We use the alias for reading and the regular
variable for writing, preserving the semantics of multiple assignment statements.
The value of an alias may be different only when executing the statement that
contains its aliased variable; upon exiting the statement, the two variables are
synchronized. Throughout our discussion, we define the alias of variable v as
ALIAS[v], and that of UNITY expressions as shown below.

ALIAS[i | f | true | false]→ i | f | true | false ALIAS[v]→ v alias
ALIAS[e1 op e2] → ALIAS[e1] op ALIAS[e2]
ALIAS[e1[e2]] → ALIAS[e1][ALIAS[e2]]
ALIAS[ef (e1, . . . , en)]→ LV[ef ](ALIAS[e1], . . . ,ALIAS[en])

The lvalue expression LV[. . .] has all but the outmost variable replaced with
aliases, since we want to use regular variables for writing but aliases for reading.
For instance, LV[a[i]] → a[i alias].

LV[i | f | true | false]→ i | f | true | false LV[v]→ v
LV[e1 op e2] → LV[e1] op LV[e2]
LV[e1[e2]] → LV[e1][ALIAS[e2]]
LV[ef (e1, . . . , en)]→ LV[ef ](ALIAS[e1], . . . ,ALIAS[en])

We track any change in the global state by monitoring each assignment
through SYNCHRONIZE. We update the alias for variable v with v itself
if the two are different, in which case we set the global CHANGED variable
to true. This allows us to identify changes to the state variables.

SYNCHRONIZE[v :: vars]→ if (LV[v] 	= ALIAS[v]) {
CHANGED = true;
ALIAS[v] = LV[v];

} :: SYNCHRONIZE[vars]

The following illustrates how a simple statement with two conditional assign-
ments is translated.

x,y := y,x if x>y→

if (ALIAS[x] > ALIAS[y]) {
LV[x] = ALIAS[y];
LV[y] = ALIAS[x];
SYNCHRONIZE[x];
SYNCHRONIZE[y];

}
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4.3 Translation

After parsing, the original UNITY program is represented as a program term
(which we have pretty-printed in the rule below) whose subterms correspond to
the declarations, identities, initializations and assignments in the program. The
main step required to translate this term into C abstract syntax terms can be
expressed as:

program id
declare v : ty, . . .
always v = e, . . .
initially inits
assign assigns

end

→

int main(. . .) {
int CHANGED;
C1[v : ty, . . .]
C2[inits]
while (!CHANGED) {

CHANGED = false;
SUBST[v = e, . . . ;C3[assigns]] }

}
where C1, C2, C3 denote the translation process for declarations, initializa-

tions and assignments, respectively, as defined below:

C1[(v : ty) :: rest]→ c declare{var; ty} :: C1[rest]
C1[nil]→ nil

C2[init :: rest]→ ASSIGN[init] :: C2[rest]
C2[nil]→ nil

C3[assign :: rest]→ ASSIGN[assign] :: C3[rest]
C3[nil]→ nil

Note that we use the same translation for initializations and assignments to
simplify our discussion. In the actual implementation, we have omitted the code
that tracks state changes from the initializations.

Identities. Given a list of variables and their identity expressions as defined in
the always section of the source program, we simply substitute each expression
in place of the variable.

SUBST[(v = exp) :: rest; prog[v]]→ SUBST[rest; prog[exp]]
SUBST[nil; prog]→ prog

Assignments. The heart of our implementation is the translation of assignment
statements. Simple, conditional and quantified assignments are translated byA1,
A2, A3, respectively.

ASSIGN[lvalues = values]→ A1[lvalues = values; lvalues]

ASSIGN[lvalues = values if cond]→ A2[lvalues = values if cond; lvalues]

ASSIGN[〈[]cvars : quants :: assign〉]→ A3[cvars; quants; assign]
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Simple assignments are translated directly, followed by the synchronization
of all left-hand side expressions:

A1[(v = exp) :: rest; lvalues]→
(LV[v] = ALIAS[exp]) :: A1[rest; lvalues]

A1[nil; lvalues]→ SYNCHRONIZE[lvalues]

Conditional assignments are wrapped in an if statement:

A2[assigns if cond; lvalues]→ if (ALIAS[cond]) {
A1[assigns; lvalues]

}
Quantified assignments involve the use of control variables over which we

quantify expressions. We translate these by first declaring the control variables,
then recursively turning each quantifier (which is of the form e1 op1 v op2 e2)
into a for-loop. To compute the initial values and upper bound for the for-loop,
we use RANGE1 and RANGE2, respectively, which are defined as:

RANGE1[lv; e;<]→ lv = e+ 1
RANGE1[lv; e;≤]→ lv = e

RANGE2[lv; e;<]→ lv < e
RANGE2[lv; e;≤]→ lv ≤ e

A3[cvars; quants; assigns]→ C1[cvars]@A3,1[quants; assigns]

A3,1[(e1 op1 v op2 e2,none) :: quants; assigns]→
for ( RANGE1[ALIAS[v];ALIAS[e1]; op1];

RANGE2[ALIAS[v];ALIAS[e2]; op2];
ALIAS[v] + +) {

A3,1[quants; assigns]
}

A3,1[nil; assigns]→ ASSIGN[assigns]

If the quantifier includes extra conditions (such as in <| i: 0<=i<10 &
odd(i) :: a[i] = i >), we wrap the final assignment clause in a conditional
statement:

A3,1[(e1 op1 v op2 e2, cond) :: quants; assigns]→
for ( RANGE1[ALIAS[v];ALIAS[e1]; op1];

RANGE2[ALIAS[v];ALIAS[e2]; op2];
ALIAS[v] + +) {

if(cond) {
A3,1[quants; assigns]

}
}

When the translation terminates, Phobos attempts to convert the final term
to C abstract syntax, and the resulting OCaml structure is passed to Mojave for
optimization and code generation.
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4.4 Further Considerations

Our use of the CHANGED variable to track changes in the program state is
based on the assumption that executing all assignment statements must result
in a state change unless the program has reached a fixed point. Although this
only holds in the absence of randomness, we see the expected benefits in most
programs. For instance, the sorting program shown in Figure 1 terminates after
one iteration if the input array is initially sorted, while it takes N iterations for
arrays sorted in reverse order.

Although we have described a concrete implementation for assignment trans-
lation, we can easily modify our approach to be more abstract. By overriding
A1, A2, and A3 we may implement an alternative way of handling assignments.
A simple modification would be to encode each assignment statement as a local
function and store references to these functions in a global store. The main loop
could then be modified to schedule assignment statements nondeterministically,
by using a fair random number generator to determine the statement ordering
and tracking state changes in a more sophisticated way.

We could also replace the main program loop with a call to a generic sched-
uler. This could be implemented as a C function to be linked against when
compiling UNITY programs, providing full customization of the scheduler.

In addition, we can easily translate to any target abstract syntax supported
by the Mojave compiler by modifying the various A and C operators in our
implementation. Source-to-source translation from any target abstract syntax is
available using Mojave’s pretty-printing capabilities.

5 Conclusion

This paper has presented a method of translating UNITY programs into exe-
cutable code, using term rewriting as an integral part of the compilation process.
Our method has several advantages over other techniques for compiling UNITY
programs, including easy translation to multiple languages and the ability to
change the scheduler for UNITY statements. On the other hand, we have ig-
nored rewriting termination or Church-Rosser properties of our implementation.

We intend to exploit Mojave’s integrated MetaPRL theorem prover to carry
out the derivation of formal proofs for properties of UNITY programs, and to
apply our translation method to additional UNITY-based formalisms. Examples
of such formalisms are the Communications and Control Language (CCL) [13],
which we are using to specify and implement programs for multi-vehicle control
systems [4], and Dynamic UNITY [18], a specification language and logic for
message-passing systems that exhibit dynamic behavior (such as process creation
and deletion).

We believe that translations from these formalisms can be carried out using
methods similar to those we have applied to UNITY. The translation of Dynamic
UNITY, in particular, will require significantly more runtime machinery than
we have provided for UNITY programs; the presence of a weakly fair scheduler
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suffices to execute a UNITY program, but the execution of a Dynamic UNITY
system requires additional constructs such as process tables and message queues.
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