
Verified Gaming

Joseph R. Kiniry
IT University of Copenhagen

Copenhagen, Denmark
kiniry@acm.org

Daniel M. Zimmerman
University of Washington Tacoma

Tacoma, Washington, USA
dmz@acm.org

ABSTRACT
In recent years, several Grand Challenges (GCs) of com-
puting have been identified and expounded upon by various
professional organizations in the U.S. and England. These
GCs are typically very difficult problems that will take many
hundreds, or perhaps thousands, of man-years to solve. Re-
searchers involved in identifying these problems are not go-
ing to solve them. That task will fall to our students, and
our students’ students. Unfortunately for GC6, the Grand
Challenge focusing on Dependable Systems Evolution, inter-
est in formal methods—both by students and within com-
puter science faculties—falls every year and any mention
of mathematics in the classroom seems to frighten students
away. So the question is: How do we attract new students
in computing to the area of dependable software systems?

Over the past several years at three universities we have
experimented with the use of computer games as a target
domain for software engineering project courses that focus
on reliable systems engineering. This position paper sum-
marizes our experiences in incorporating rigorous software
engineering into courses with computer game projects.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program
Verification—Formal Methods, Programming by contract;
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—Computer science education;
K.8.0 [Personal Computing]: General—Games

General Terms
Design, Verification

Keywords
Grand challenges, formal methods, games in education

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GAS ’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0578-5/11/05 ...$10.00.

1. INTRODUCTION
According to conventional wisdom, game development and

formal methods do not mix. Metaphors involving oil and
water come to mind. In our experience, much of the game
industry shuns classically-trained computer science students
and instead looks for young self-trained hackers, and the
standard examples in formal methods textbooks are either
semi-trivial data structures or toy safety-critical systems.

Given the cost of developing modern console and online
games, however, rigorous development techniques are quite
valuable to the game development industry. Shipping a non-
indy game today takes dozens of people and millions of dol-
lars. This effort is comparable to that of developing and
shipping a CPU in the early 1990s. A single serious bug
encountered by many reviewers, or an unfortunate “Easter
egg” leaked at the wrong time, effectively kills a game in the
marketplace or damages a studio’s reputation.

Conversely, experience has made it quite clear to us that
the use of games in software engineering classes is an excel-
lent motivator for students and an extremely effective vehicle
for demonstrating and exercising formal techniques.

We believe that integration between formal methods and
game development positively effects both areas of study. In
this abstract, we provide an overview of the “emulsifying
agent” that has let us successfully mix these two disparate
domains in our software engineering classes.

2. GAMING IN PROJECT COURSES
After teaching project-centric courses for fifteen years, we

have found that two things engage students more than any-
thing else: hardware and games.

When we give a student a device to interact with—a smart
card, a fingerprint reader, a Nintendo DS, an iPhone, or a
LEGO MindStorms kit—the student has a physical man-
ifestation of computing that turns the abstract nature of
programming into an activity that controls reality.

Similarly, when we let students play games in the lab in
the name of “performing domain analysis,” they transform
from gaming zombies into reflective learners. Students feel
like they are getting away with something when, in fact,
they are experiencing active engagement. This engagement
is the first necessary step to opening their minds to formal
methods, as deep analysis requires deep interest.

Moreover, when we give programming assignments that
involve designing and building games, students seem to care
significantly more about the quality of their work. This in-
vestment includes not only the basic functionality of a game,
but also more artistic attributes such as soundtracks and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GAS’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0578-5/11/05 ...$10.00

17

graphical assets. These facets permit students to express
themselves in ways that many programming assignments do
not. Many of our students have continued working on their
projects even after the end of a course, showing them off
to family and friends and occasionally even making them
publicly available on the Web or in app stores.

2.1 Secret Ninja Formal Methods
A key to our success in combining formal methods and

game development has been our use of secret ninja formal
methods [1], a set of techniques that enables students to
perform formal analysis, design, and development without
being told that what they are doing is “formal” or “mathe-
matical.” They perform their analysis and design in a nota-
tion that appears to be merely structured English, which is
then transformed (either by hand or automatically by our
tools) into implementation skeletons with assertions (pre-
conditions, postconditions, invariants, etc.). The resulting
implementations are statically checked throughout the de-
velopment process using multiple tools, and tested using
automatically-generated unit tests, without the students do-
ing anything more complex than saving their work in their
IDE or clicking a “build” button.

Only after the students have successfully implemented
one or more software projects do we reveal that, in fact,
they have been using formal methods throughout the soft-
ware development process. By then they have experienced
what modern formal methods can accomplish and almost
uniformly appreciate the value of the formal techniques.

2.2 Running Systems as Specifications
An important aspect of our approach is the use of existing

games as “specifications” for student projects. The students
pick, or are given, a game to replicate. They then play
the game extensively in the lab, sometimes using an emu-
lator such as MAME or VICE,1 to discover various aspects
of its design and functionality, generate their own analy-
sis based on their observations, and (using the methods de-
scribed above) implement their own version of the game in
a high-level programming language.

Students perform experimentation games in the lab, ex-
ploring usage scenarios for real, rather than on paper or
in their minds’ eyes. When they encounter bugs or Easter
eggs, such as a kill screen or the famous Konami Code,2

discussions ensue about the extent to which these bugs and
features should be replicated. Once they have thoroughly
explored a game, they produce a concept analysis in our
structured English notation. This analysis must be detailed
enough to replicate the important aspects of gameplay, which
includes all the game rules and constraints that ensure game
balance as well as detail about graphics, sound, controls, etc.

As an example, consider the classic arcade game Asteroids.
A reasonable concept analysis for Asteroids would contain
control and gameplay characteristics: the ship is controlled
by rotation and acceleration (rather than by moving linearly
on the playfield); momentum is not conserved; there is an
ominous background soundtrack that accelerates in tempo
as asteroids are cleared from the playfield; there are three
sizes of asteroid and all but the smallest breaks into two

1
Information about these emulators and the development tools that

we discuss subsequently, and downloadable versions of most of them,
can be found through http://www.verifiedgaming.org/.
2 K© K© L© L©�©�©�©�© b© a©, http://wikipedia.org/wiki/Konami Code

smaller pieces when shot; there are a small number of dif-
ferent asteroid shapes; asteroids can not collide with each
other but can collide with flying saucers; and more.

Such an analysis would also contain several constraints re-
lated to game balance: at most four shots can be on screen at
a time; the “hyperspace” action results in the ship’s instant
destruction on reentry approximately 25% of the time (as
students would determine experimentally); and that large
flying saucers fire randomly while small flying saucers target
the ship with deadly accuracy. A reimplementation missing
one of these constraints would not provide the same game-
play experience. Even a simple change, like allowing the
player to have eight shots at a time on screen, would make
the game significantly easier.

Having students replicate an existing game, rather than
implement a game described on paper, has two main bene-
fits. The most important of these is that the students are
able to focus on the software engineering process rather than
on the game design process. Formulating game mechanics
and balancing them to provide a fulfilling play experience
involves many issues that are tangential to the actual imple-
mentation and verification of the software, and our courses
are not designed to specifically teach game development.

The other main benefit arises because most of the games
the students use as specifications were originally implemen-
ted in dedicated arcade cabinets or on systems such as the
Commodore 64. The original hardware of these games was
far less capable than current target machines, and games
were written in lower-level languages than those used in our
courses. These differences help students directly connect
with and reflect upon issues of resource utilization and per-
formance, an understanding of which is invaluable in cre-
ating quality software. A reimplementation of a game that
was written in assembly, distributed on a 4K ROM, and
required 32K of RAM at runtime often takes thousands of
lines of Java code and uses dozens of megabytes of RAM
at runtime. Witnessing firsthand through emulation the in-
credible things that classic games do with such minimal re-
sources forces students to carefully consider their own design
and algorithm choices and to internalize the idea that high
level languages incur costs as well as conferring benefits.

3. TEACHING EXPERIENCES
In this section, we summarize the range of courses we have

taught using these methods, the evolution of our techniques,
the manner in which we assess students, and the technologies
we use.

3.1 Summary of Courses
The initial course that we co-taught with a gaming compo-

nent was a third-year distributed systems course at Caltech
in 1996. Students had to design and implement a distributed
poker system in Java, including AI. We required the students
to design a peer-to-peer architecture rather than a standard
boring client-server architecture. Consequently, reasoning
about the correctness of the distributed algorithms and the
security of the system to prevent cheating was paramount.
Students’ poker bots competed in an extensive automated
round-robin tournament at the end of the quarter to demon-
strate the correctness and quality of their poker systems.

This class represents one end of a spectrum of students
and goals. But, while Caltech students are second-to-none,
at the time we had few tools to support a formal devel-

18

opment process. Students hand-wrote and reasoned about
their systems, sketched their architectures using drawing
tools like xfig, and were only able to test their systems us-
ing manually written assertions and unit tests. Java did not
yet have an assert statement, no standard logging frame-
works existed, the JML tool suite did not yet have a working
runtime assertion checker, and ESC/Java did not yet exist.

More recently we have taught students with a broad range
of age and experience, from first-year students with only
one semester of programming to seasoned software profes-
sionals from industry pursuing MSc degrees. This breadth
in student background is evidence for our claim that these
techniques—and indeed modern applied formal methods in
general—do not require brilliant, experienced students.

The courses in which we use gaming as a “hook” also vary.
While all are mandatory courses in our curricula, their ti-
tles include: Software Engineering 1, 2, and 3 ; Analysis,
Design, and Software Architecture with Project ; Advanced
Models and Programs; Distributed Systems Laboratory ; Pro-
gramming Practicum. While injecting a game project into
any systems course requires some creativity, we have even
found ways of finding fun into courses as historically dry as
Foundations of Computing (!).

Technologies. In some courses, students must not use
Microsoft Windows, thereby gaining first-hand experience
with alternative platforms (Linux, Mac OS X, iOS, An-
droid) and their platform-specific (e.g., Core Video and Core
Audio) and platform-generic, possibly open source, libraries
(e.g., OpenGL, OSS, SDL, etc.) and development tools (e.g.,
Eclipse, XCode). In other courses, students must use Mi-
crosoft technologies (e.g., Visual Studio, XNA, etc.).3 The
choices of platforms, programming languages, and IDEs all
have a direct impact on the content of our courses. That
being said, every mainstream programming language today
has assertions and a Design by Contract library, and most
have some static analysis tool support.

For example, with Java we use the JML tool suite, Open-
JML, BONc, Beetlz, ESC/Java2, FindBugs, PMD, Check-
Style, Metrics, JUnit, log4j, and the JDK logging and con-
currency frameworks. With C# we use .NET’s assertion
and logging frameworks, Visual Studio’s static checkers, and
MSR’s Code Contracts compiler, static checker, and PEX.

Special Considerations for Group Work. For group
work, teams range in size from two to eight students. More
mature students are permitted or encouraged to attempt to
organize larger teams. Students take responsibility for spe-
cific subsystems of the project depending upon their interest
and expertise. Students typically self-identify roles and self-
organize into teams. We assist them to ensure that each
team contains appropriate broad coverage of the domains
necessary to accomplish the game development goals.

Summative and Formative Feedback. Typically, each
team works with a dedicated teaching assistant who meets
with and evaluates individual and group performance on a
weekly schedule. Regular feedback is given during analy-
sis, design, and development in two ways, online and offline.
Online feedback is automated and interactive and uses our
AutoGradeMe tool [2] and artifact reviews. Asynchronous
offline feedback is given by TAs and instructors, watching
RSS feeds of version control repositories and using collabo-
rative development environments like Trac. Consistency of

3
The former constraint is put in place by we instructors for the good

of our students; the latter is placed upon us by our administrations.

feedback is regulated and maintained by total or random
double-assessment by TAs and the instructor.4

Concepts, Tools, and Technologies Covered. The
topics covered include a subset of the following, depending
upon the nature and length of the course and the maturity
of the students:5 UNIX; build systems; version control sys-
tems; documentation; coding standards; metrics; assertions
and contracts; specifications; system, integration, and unit
testing ; collaboration/teamwork and collaborative develop-
ment; use of collaborative development environments; con-
cept analysis, design; patterns; software architecture; and
test generation.

3.2 Student Projects
Over the years, our students have chosen many differ-

ent games as projects. For the interested reader, we have
archives of version control repositories going back half a
dozen years that include hundreds of example projects.

Typical student projects are based on classic arcade ti-
tles (e.g., Asteroids, Defender, Missile Command, Space In-
vaders, Tetris), Commodore 64 games (e.g., Elite, Space
Taxi, Thrust), or current “casual” games (e.g., Flow, Plants
vs. Zombies) with which students are already familiar. Some
students design vehicle simulators (inspired by titles like Red
Baron and Super Sprint) or, if they are less interested in
video games in general, real-world games such as Monopoly
and poker. We have sometimes been surprised by the genres
and technologies that are unpopular in our classes.

Genres. With regard to genre, action games are king.
Adventure, role playing, simulation (construction and man-
agement, life, God games), real-time strategy, music, pure
puzzle (as compared to action puzzle games like Tetris),
and sports genres are nearly unrepresented. Likewise, and
perhaps most surprisingly given the historical impact of the
genre, platform games (e.g., Jumpman, Pitfall!, and of course
Super Mario Bros.) are also unpopular.

We are unsure why the non-action genres are so unpopu-
lar. One possible explanation is that most students are more
interested in the animation and rendering aspects of game
implementation (and the resulting instant gratification of
seeing their creations shoot bullets everywhere and explode
in creative ways) than in the level design, puzzle creation,
and story creation that are core components of non-action
games. Such content creation is time-consuming and often
viewed as unrewarding in programming-centric courses.

Technologies. Attempts at teaching the students to ren-
der with vector graphics (e.g., Gravitar, Star Wars, and
Tempest) are often stymied by students’ (and APIs’) focus
on bitmaps and sprites. Isometric games like Congo Bongo
and Zaxxon are also unpopular, perhaps because tiling and
character graphics are unfamiliar and under-appreciated.

When unconstrained, students often try in their näıveté to
use complex modern technologies rather than simple and ele-
gant classical techniques. For example, they are quite willing
to dive into programming multiplayer network games with
no background in distributed systems, using heavyweight
constructs like Java RMI where datagrams or TCP sockets
are all they need. Additionally, they typically attempt to
use unstructured concurrency—instead of the tried-and-true
event loop—to drive animation and process input.

4
Scaling these multiple assessments has only recently become

tractable with the introduction of AutoGradeMe.
5
The topics that include subtle formal content are emphasized.

19

Motivations for Project Choice. As mentioned ear-
lier, we usually ask students to mimic 8-bit games on modern
hardware with modern programming languages and environ-
ments. This task sounds trivial to most students until they
look closely at the behavior, pace, and depth of these classic
titles. They quickly learn that gigahertz and gigabytes are
far from necessary and sufficient to implement a great game.

Beyond challenging students’ preconceptions about mod-
ern computing power, we must also convince them to stretch
their proverbial legs. The project specifications we provide
often include requirements that force students to learn and
apply useful technologies. The following are examples of
such requirements: players must register with the game and
high scores must be persistent; a basic website for the game
must be created and the game client must communicate with
it to obtain updates; no multi-threading is permitted; all
communication between subsystems must use protocols con-
sisting solely of well-defined ASCII streams; the game’s core
event loop must be specified as a finite state machine.

System Decomposition. When performing co-analysis
with students in the classroom, we often highlight key func-
tional aspects of classic games that make for easier system
decomposition and teamwork. Consequently, the members
of a standard three person team typically tackle core data
structures, I/O, and graphics/sound.

As previously mentioned, we often cajole or force students
to define text-based communication protocols between sub-
systems. Defining and reasoning about such protocols opens
up opportunities for the introduction of tools such as the
UPPAAL model checker. Additionally, such interfaces lend
themselves to subsystem testing via mock systems construc-
ted using abstract state machine-based techniques. These
basic interfaces also let us argue that the front-end of a video
game—primarily its graphics and sound—is the easiest thing
to create and should be done last.

What to Validate? What to Verify? Even small com-
puter games are larger than most formal methods case stud-
ies in industry and academia. The smallest games our stu-
dents typically submit are over 2,000 statements long. Con-
sequently, teams must make critical decisions about where
and how to focus their attention, given the limited time they
can devote to the project.

What parts of the system should be validated? How
should validation be accomplished? Via code reviews? Hand-
written tests? Automatically generated tests? What parts
should be verified? How should they be verified? Model
checking? Abstract interpretation? Symbolic execution?
Extended static checking?

There is no one right answer to these questions, of course.
The important thing is that the students ask these ques-
tions, not necessarily answer them. Of course, through years
of experimentation we have a set of best practices that we
suggest to student teams, but these are descriptive rather
than proscriptive features of our methodology.

4. REFLECTIONS
Does this technique work? Do the challenges inherent in

getting a game right convince students that writing quality
software necessitates tools and practices that are uncommon
in industry? To our knowledge, no one has ever before at-
tempted to write a verified computer game, let alone to con-
vince several generations of students to attempt such. We
believe that our approach is promising, and that both formal

methods and game development can benefit from this sort
of integration. However, all is not roses. There are several
challenges in teaching this material, and in engaging with
students, that we have not yet overcome.

4.1 Open Challenges
First, students prefer polish over correctness. They would

much rather spend the final hours of a project on animating
zombies than on fixing class invariants. This preference is
unsurprising, as avoiding hard work for easy work is some-
thing virtually everyone does. We have some evidence that
this issue can be corrected through refinements in assessment
methods. For example, as is partially possible with Au-
toGradeMe, biasing good grades towards high specification
and test coverage and low numbers of moderate-to-serious
static analysis warnings is a reasonable approach.

Second, formally specifying some of the standard archi-
tectural styles inherent in game programming, particularly
sense-compute-control and implicit invocation (aka events
and callbacks), is an open research challenge. It is always
interesting to see what tricks students come up with to at-
tempt to reason about these parts of their implementations.

Third, many teams choose (not unwisely) to implement
their games using existing rich APIs like XNA or Java2D.
Unfortunately, these APIs have no formal specifications, so
formally reasoning about code that uses them is impossible.

Finally, students find testing games, beyond writing or
generating unit tests for core data structures, quite concep-
tually difficult. Our speculation is that this difficulty comes
from the introduction of input, rendering, and timing re-
quirements. Testing a core data structure is essentially in-
dependent of these; if you provide data X to operation O
you expect to get result Y, and while termination of the
operation is important, elapsed time is typically not. By
contrast, a test of a bullet flying across a screen may involve
both rendering requirements (is it being drawn properly?)
and timing requirements (is it moving with the correct veloc-
ity?). Likewise, a test of an on-screen character responding
to player input may involve rendering requirements, timing
requirements, and input requirements.

Perhaps if more class time were dedicated to exactly these
challenges and their potential solutions, students would take
validation more seriously than their standard answer, “ship
it to thousands of testers and let them give feedback.” Our
first experiments with validating and verifying game event
loops and rendering via a “Verified Pong” implementation
written by two MSc students are promising.

4.2 Pedagogical Resources
As mentioned earlier, we have archives of version control

repositories that include many example projects. We are
posting these projects, course slides, demo games, and sup-
porting materials, as well as information about the tools we
have discussed, to http://www.verifiedgaming.org/.

5. REFERENCES
[1] Joseph R. Kiniry and Daniel M. Zimmerman. Secret

ninja formal methods. In Fifteenth International
Symposium on Formal Methods (FM), 2008.

[2] Daniel M. Zimmerman, Joseph R. Kiniry, and Fintan
Fairmichael. Toward instant gradeification. In 24th
IEEE-CS Conference on Software Engineering
Education and Training (CSEE&T), to appear, 2011.

20

