
Testing Library Specifications by
Verifying Conformance Tests

Joseph R. Kiniry1, Daniel M. Zimmerman2, and Ralph Hyland3

1 IT University of Copenhagen, Denmark, kiniry@acm.org
2 University of Washington Tacoma, USA, dmz@acm.org

3 University College Dublin, Ireland, ralph.hyland@gmail.com

Abstract. Formal specifications of standard libraries are necessary when
statically verifying software that uses those libraries. Library specifica-
tions must be both correct, accurately reflecting library behavior, and
useful, describing library behavior in sufficient detail to allow static veri-
fication of client programs. Specification and verification researchers reg-
ularly face the question of whether the library specifications we use are
correct and useful, and we have collectively provided no good answers.
Over the past few years we have created and refined a software engineer-
ing process, which we call the Formal CTD Process (FCTD), to address
this problem. Although FCTD is primarily targeted toward those who
write Java libraries (or specifications for existing Java libraries) using the
Java Modeling Language (JML), its techniques are broadly applicable.
The key to FCTD is its novel usage of library conformance test suites.
Rather than executing the conformance tests, FCTD uses them to mea-
sure the correctness and utility of specifications through static verifica-
tion. FCTD is beginning to see significant use within the JML community
and is the cornerstone process of the JML Spec-a-thons, meetings that
bring JML researchers and practitioners together for intensive specifica-
tion writing sessions. This article describes the Formal CTD Process, its
use in small case studies, and its broad application to the standard Java
class library.

1 Introduction

In an ideal world, all software systems would be 100% reliable and have verifiable
formal specifications. These specifications would be both correct, accurately re-
flecting the runtime behavior of the implementations they claim to describe, and
useful, providing sufficient information to allow developers to use and extend the
implementations in safe, behaviorally predictable ways.

Clearly, we do not—and will likely never—live in this ideal world. The vast
majority of today’s software has defects, and some is completely unreliable. Of
the software that is considered robust and reliable, most has not undergone
formal verification. A commonly discussed way in which the reliability of such
software is determined is through exhaustive automated unit testing, both of
individual components and of full systems. Very little of today’s software has

formal specifications of any kind and, in our experience, many of the formal
specifications that do exist are either incorrect or not useful.

While it is clearly impossible to achieve an ideal, 100% reliable, fully-specified
world, it is certainly possible to improve the current state of software specifi-
cation and reliability. One approach to doing this for Java applications, taken
by the Java Modeling Language (JML) community, has been to retroactively
provide formal specifications for the behavior of the standard Java class library.
Since the standard library is the foundation for all Java software, this enables
Java programs to be formally specified and verified using the standard library
specifications as building blocks. A set of specifications for much of the Java
1.4 class library was included as part of the release of the Common JML tool
suite [2], and has since been used to formally specify and verify multiple large
Java systems [13,14]. In addition, a set of specifications for Java 1.5 through 1.7
is under development as part of the OpenJML project.

We call such retroactive specification of classes Contract the Design (CTD).
To perform CTD, the specification writer takes an implementation that already
exists, such as the Java class library, and writes contracts (formal specifications)
to describe the existing behavior. This approach is effectively the logical dual
of Design by Contract (DBC) [17], where contracts are written first and the
software is subsequently implemented in a way that fulfills the contracts.

Unfortunately, two critical difficulties arise when using CTD to specify ex-
isting systems. The first is that retroactively devising good specifications for
existing systems is quite difficult, even with full access to source code, and is es-
pecially problematic when documentation is incomplete, absent, or vague (a not
infrequent occurrence). The second is that, once a specification has been written
for a non-trivial piece of software, it is hard to determine whether the specifi-
cation is correct and useful. Imagining all the situations in which the software
might be used is infeasible, and it is impossible to just “try out” the specifica-
tion with the multitude of tools that will consume and use it. These difficulties
are also faced by developers writing conformance tests for libraries (and, more
generally, unit tests for nontrivial software systems), who must devise sets of
tests that thoroughly exercise the functionality of their systems.

As a result of these difficulties, the Java class library specifications currently
packaged with JML were written over several years in essentially ad hoc fashion.
Efforts were made to ensure their correctness, and they are all (to the best of
our knowledge) at least type-correct; however, there was no systematic way to
measure their utility and, until now, no attempt to devise such. Deficiencies
in the specifications have primarily been discovered by application developers
attempting to verify their code and by tool developers attempting to make their
tools understand the specifications, and the specifications have been patched in
various ways over time in response to these discoveries.

This work addresses the difficulties in using CTD for library specification,
taking advantage of the substantial body of knowledge related to the creation
of high quality unit test suites by combining existing testing techniques with
runtime and static verification techniques. The resulting process, which we call

the Formal CTD Process (FCTD), allows us to effectively test specifications for
correctness and measure their utility.

The Formal in Formal CTD Process refers to the fact that we use verification
tools to determine the correctness and utility of specifications. We consider the
correctness of a specification to be a binary property: a specification is correct
if it is never violated by the implementation it claims to specify and incorrect
otherwise. This can be determined statically or, in cases where the source code
of the system being specified is unavailable, evidence for such can be observed
dynamically. We measure the utility of a specification as the percentage of the
unit tests for the specified implementation that can be statically verified using
the specification.

The “secret sauce” of this process is the realization that unit tests and verifi-
cation “fit” together well. Unit tests operationally express the correct behavior of
a system under test (SUT), while specifications denotationally express the cor-
rect behavior of a SUT. Thus, unit test outcomes should be statically verifiable
using SUT specifications. Just as test coverage criteria tell us something about
the quality of our implementations, verification coverage criteria (correctness
and utility) tell us something about the quality of our specifications.

FCTD has been used in several case studies, and we have devised a method
to apply it to the entire standard Java class library. The resulting ability to test
the specifications of the Java class library is playing a critical role in the effort
to update JML to support current and future versions of Java. The end result of
this effort will be a correct and useful JML specification of the Java class library
to complement the (often poor) existing Javadoc “specification”, which will both
clarify the behavior of the library for application developers and allow them to
confidently use the many verification and validation tools that understand JML.
In the remainder of this article we provide background information about the
components of the FCTD process, describe the principles underlying FCTD, and
discuss concrete realizations of FCTD for JML and Java code.

2 Background

FCTD combines unit testing and verification to evaluate specifications. In this
section, we provide background information on the tools and techniques used in
our concrete realizations of FCTD: JML, unit testing, and static checking. More
detailed descriptions are available in the cited works and in the documentation
accompanying the tools.

2.1 The Java Modeling Language

The Java Modeling Language [16] is a specification language for Java programs.
It allows developers to specify class and method contracts (i.e., preconditions,
postconditions, invariants) as well as more sophisticated properties, up to and
including mathematical models of program behavior. Many tools are compatible

with JML, including compilers, static checkers, runtime assertion checkers, unit
test generators, and automated specification generators [2].

Runtime assertion checking (RAC) is one of the most common applications
of JML. A special RAC compiler is used to transform JML-annotated Java
code, adding runtime checks for method preconditions and postconditions, class
invariants and constraints, and other JML contracts such as loop invariants and
variant functions. The transformed code, when run in any Java virtual machine,
signals assertion failures at runtime via special JML runtime errors.

JML and its associated tools are used in many contexts. Many formal meth-
ods researchers have adopted JML, and many JML-compatible tools have full
JML specifications; in some cases, these tools have even been statically verified.
JML is also used in educational contexts at several universities [15], as well as in
production systems such as the KOA Internet-based remote voting system [13].

Currently, most stable and supported publicly available JML tools only sup-
port Java versions prior to 5.0. The OpenJML project [5] and the JMLEclipse
project [3] are efforts to build JML tools atop modern compiler code bases (Open-
JDK [19] and the Eclipse JDT [22], respectively), so that JML will be able to
better keep pace with future changes to Java. This modernization effort is a pri-
mary motivator for the work presented here, as a multitude of new specifications
must be written for new and changed classes in the standard Java class library
before a new set of JML tools can be effectively used.

2.2 Unit Testing

Unit testing has long been an important validation technique in many software
development processes. It is essentially the execution of individual components
of a system (the units) in specific contexts to determine whether the components
generate expected results. A single unit test has two main parts: test data and
a test oracle. The test data are input values—for example, method parameter
values—used to establish the state of the unit under test. The test oracle is a
(typically small) program that determines whether the behavior of the unit is
correct when it is executed with the test data.

Testing a non-trivial software system typically requires many unit tests,
which are collectively called a test suite. The quality, usually called coverage,
of a test suite is measured in several ways [23]; for example, given a particular
SUT, statement coverage (sometimes called code coverage) is the percentage of
the executable code in that system that is executed during testing, while path
coverage is the percentage of the possible execution paths through that system
that is executed during testing.

As will become evident in Section 3, effective use of FCTD requires the avail-
ability of a high-coverage test suite for the system being specified, preferably a
conformance test suite that defines the full functionality of the system. Signif-
icant research has been done on techniques for automatically generating test
suites, and many of those techniques are quite promising. However, the develop-
ment of test suites is still predominantly done without automation. Developers
sit down with the system to be tested, decide what test data should be used

and how to determine whether each test has passed or failed, and encode this
information manually.

Test suites are usually executed within a test framework that runs and records
the result of each test and summarizes the results of the suite to the developer.
This allows the test suite to be run easily, repeatably, and without constant
developer supervision; it also allows test runs to be incorporated into the au-
tomatic build processes that exist in many software development environments.
Such frameworks exist for nearly every programming language; the predominant
ones for Java are JUnit [10] and TestNG [1]. For the purposes of FCTD there
is no clear reason to choose one over the other; we have typically used JUnit
because it ships as an integrated part of the open-source Eclipse Development
Platform [22], which we use for most of our development work.

One particular way of automating the development and execution of test
suites that applies specifically to JML-annotated Java programs is embodied in
the JMLUnit [4] and JMLUnitNG [24] tools. These tools automatically generate
test oracles using JML runtime assertion checks. For each method under test,
the tools construct JUnit or TestNG (respectively) tests to call that method
with multiple test data values taken from a default or developer-provided set.
Each test passes if the method call completes with no assertion failures and fails
if the method call completes with an assertion failure other than a violation
of the method’s precondition. If a test violates the method’s precondition it is
considered meaningless, because the behavior of a method is undefined when its
precondition is violated and can therefore not be evaluated.

FCTD does not work with unit tests generated by tools like JMLUnit and
JMLUnitNG, because such tools generate operational “specifications” (in the
form of unit tests) directly from denotational specifications (in the form of JML).
Since the resulting tests pass exactly when the specifications are satisfied, re-
gardless of how trivial the specifications are, they can provide no information
about specification utility. To guarantee “objective” evaluation of specification
utility, unit tests must be written independently (i.e., without reference to the
specifications being evaluated).

2.3 Static Verification

Static verification is a process whereby a body of formally specified source or
object code is analyzed to determine whether it satisfies its specification. This
analysis is typically carried out by transforming the code and specification into
verification conditions, which are then evaluated using one or more automated
theorem provers. An extended static checker is a tool that performs static veri-
fication as well as checking for and flagging common programming errors.

In our initial experiments with FCTD we have primarily used ESC/Java2 [14],
an evolution of the original Digital SRC ESC/Java [8], to perform static verifica-
tion on JML-annotated Java code. We have also experimented with the prototype
ESCs being developed as part of the OpenJML and JMLEclipse projects, but
these are not currently robust enough to reason about the rich specifications
under discussion here.

ESC/Java2 detects typical Java programming errors such as null pointer
dereferences, invalid class casts, and out-of-bounds array indexing. It also per-
forms several kinds of automated verification to attempt to ensure that the code
is correct with respect to its associated JML specifications and, in conjunction
with a specification consistency checker, to ensure that the specifications them-
selves are sound. The consistency check is important, especially for specification
writers who are just learning CTD/DBC, because it is easy for inexperienced
developers to write inconsistent specifications (e.g., invariants that collapse to
true) that are always satisfied regardless of the system’s actual behavior.

The verification performed by ESC/Java2 is modular ; it verifies each method
m by transforming the Java code of only method m into verification conditions
and relies on the JML specifications of all the other methods and classes to which
m refers to create the remainder of the verification conditions it needs. Thus,
ESC/Java2 verifies each method in relative isolation, which is far less resource-
intensive (and far more feasible given the state of automated theorem prover
technology) than processing an entire system, or even an entire class, at once.

Support for modern Java syntax and constructs in ESC, as in JML itself, is
still a work in progress. We expect that the new ESC tools being developed as
part of the OpenJML and JMLEclipse projects will address this issue.

3 The Formal CTD Process

The Formal CTD Process is a combination of unit testing techniques and verifi-
cation techniques. FCTD is general enough to be applied to systems and speci-
fications written in any language and unit tests running in any framework; the
only requirement is the availability of at least one static verification tool capable
of reasoning about off-the-shelf unit tests.

It is important to note that executing unit tests is a completely optional
part of the process. Executing unit tests within a RAC environment to deter-
mine whether CTD specifications are violated by the tests is certainly feasible;
however, there are two serious issues with using runtime checks to evaluate spec-
ification quality. First, it is quite easy to write correct, but clearly non-useful,
specifications that pass their runtime assertion checks regardless of what the
underlying implementation does. Second, it is possible for all the runtime checks
to pass when running a test suite that does not thoroughly exercise the imple-
mentation, leaving incorrect specifications undiscovered.

A conformance test suite (or other high-coverage test suite) can provide some
persuasive evidence for the correctness of a set of specifications through run-
time checking, because it thoroughly exercises all the intended functionality of
the implementation. However, even runtime checks of conformance tests cannot
conclusively establish correctness because there is always the possibility of unde-
sirable “easter eggs” (e.g., “when a specific, undocumented set of parameters is
passed to this method, exit the virtual machine”) in any given implementation.
To truly establish correctness, the specification must be statically verified against
the implementation; if source code is not available, the best we can do is to per-

form runtime checking of a conformance test suite and hope (or, when possible,
measure with coverage tools) that it completely covers the implementation.

On the other hand, it is impossible to determine the utility of a specification
through runtime checking regardless of the test suite used. Runtime checking
provides no basis for determining whether a specification will enable us to prove
the correctness of programs that use the specified system.

In this section, we describe how FCTD allows us to determine the utility of
specifications; in the next section, we describe our specific implementations of
FCTD for testing JML specifications of Java systems.

3.1 Unit Tests as Operational Behavioral Specifications

As noted above, CTD specifications written for an existing system are correct if
they can be statically verified. The use of static verification to determine specifi-
cation correctness is one aspect of FCTD, but the critical hypothesis underlying
the process is the following: if correct CTD specifications for a system are suffi-
cient to allow an existing high-quality and high-coverage test suite for the system
to be statically verified, then for all practical purposes the specifications are use-
ful. By statically verifying a full test suite, we effectively “test” the ability of the
specifications to capture the intended behavior of the system. The existing test
suite is an operational behavioral specification of the system, against which we
compare our formal specifications.

To illustrate this idea, consider the method java.lang.String.getChars

from the Java class library. Its signature and Javadoc documentation (Figure 1)
are fairly straightforward. A careful reading of this documentation (plus the
knowledge that, in Java, performing array operations on a null array causes
a NullPointerException) yields a 23-line JML specification (Figure 2) with
three behavior clauses, one normal and two exceptional. This specification refers
to charArray, a model field representing the character sequence encapsulated
by the String, and equal, a model method that compares ranges of charac-
ters in two arrays for equivalence; both of these are inherited from java.lang.

CharSequence, an interface implemented by String.4

Surprisingly, the reference implementation of getChars is only 7 statements
long. Three if statements check the legitimacy of parameters and, if necessary,
throw various instances of StringIndexOutOfBoundsException. Once the pa-
rameters are found to be legitimate, a single call to System.arraycopy copies
the characters from the string into the destination array.

Verifying the correctness of this specification with respect to the reference im-
plementation is a straightforward proposition—after all, the body of the method
is short and, while it has a relatively high cyclomatic complexity given its size,
its “shape” matches that of the specification. Moreover, the specification of
System.arraycopy is strong and well-used.

4 The specification would, of course, be significantly longer if it did not use the inher-
ited model field and model method.

public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Copies characters from this string into the destination character array. The first
character to be copied is at index srcBegin; the last character to be copied is at index
srcEnd-1 (thus the total number of characters to be copied is srcEnd-srcBegin). The
characters are copied into the subarray of dst starting at index dstBegin and ending
at index dstbegin+(srcEnd-srcBegin)-1.

(parameter descriptions omitted; they contain no restrictions on parameter values)

Throws IndexOutOfBoundsException if any of the following is true: srcBegin is nega-
tive; srcBegin is greater than srcEnd; srcEnd is greater than the length of this string;
dstBegin is negative; dstBegin+(srcEnd-srcBegin) is larger than dst.length.

Fig. 1. Javadoc documentation for library method java.lang.String.getChars.

public normal_behavior
requires srcBegin >= 0

&& srcBegin <= srcEnd
&& srcEnd <= charArray.length
&& dst != null
&& dstBegin >= 0
&& dst.length >= dstBegin + (srcEnd - srcBegin);

modifies dst[dstBegin .. dstBegin+srcEnd -srcBegin -1];
ensures equal(charArray , srcBegin , dst , dstBegin , srcEnd - srcBegin);

also
public exceptional_behavior

requires srcBegin < 0
|| srcBegin > srcEnd
|| srcEnd > charArray.length
|| dstBegin < 0
|| (dst != null && dst.length < dstBegin + (srcEnd - srcBegin));

modifies \nothing;
signals_only IndexOutOfBoundsException;

also
public exceptional_behavior

requires dst == null;
modifies \nothing;
signals_only NullPointerException;

Fig. 2. JML specification for library method java.lang.String.getChars.

But how do we measure the utility of our 23-line getChars specification?
To accomplish this, we turn our attention to the conformance test suite for the
Java class library, the Java Compatibility Kit (JCK), which includes tests for
getChars in the class GetCharsTest. This class is around 450 lines in length
and contains nine comprehensive tests that call getChars a total of 36 times.

If we execute this test suite against the reference implementation of getChars,
we exercise the implementation against the idea of correctness that the test writ-
ers had in mind when writing the tests. If, on the other hand, we attempt to
prove that the unit tests always pass, we exercise our specification of getChars
against that same idea of correctness.

One potential issue with this technique is overspecification—generating speci-
fications detailed enough to prove that all the unit tests pass but too cumbersome

or too highly specific to the particular tested situations for developers to use in
general applications. We attempt to avoid overspecification in two ways: first,
we develop specifications only from publicly-available documentation (including
test suites when necessary to clarify ambiguous documentation) and not directly
from source code; second, we use conformance tests or other high-coverage, high-
quality test suites in an effort to cover enough functionality that “specifying to
the tests”, if it is done at all, actually results in useful specifications.

We return to the JCK and getChars in Section 4.2; first, however, we explain
how we combine unit testing and static verification to prove that the unit tests
always pass.

3.2 Unit Test Specifications

In order to statically verify a test T , we must have specifications for both T itself
and the test framework F against which T is written. Otherwise, T would be
trivially verifiable as it need not maintain or establish any particular properties.

The specification for each test T is simple, and happens to match the default
specification that ESC/Java2 assigns to any method that has no specification.
Its precondition is true, as there are no constraints on when the unit test can be
run;5 its postcondition is also true, as we expect the test to terminate normally.
Additionally, no exceptions should be thrown, so its exceptional postcondition
is false. In essence, such a specification says that all unit tests should pass, no
unit tests should fail and the test suite should not halt unexpectedly.

While test frameworks typically have a very rich set of methods to assert
test conditions, we presume that test framework F contains only two methods—
Assert(boolean P) and Fail()—and that all other assertion methods in F
are defined in terms of these two methods. The Assert method does nothing
if P is true and reports a test failure if P is false, while the Fail method
unconditionally reports a test failure.

Framework F records a passing result for test T if T terminates normally. T
may call the Assert method an arbitrary number of times to check the validity
of an arbitrary number of predicates; if any of these assertions fail, F records a
failing result for T . F also, of course, records a failing result for T if T calls the
Fail method.

The specification of Assert(P) is {P} Assert(P) {P}. This specification
forces the verifier to check that P holds, as it is the precondition of Assert.
This is logically equivalent to simply asserting P. In case the test calls other
methods of the framework API in the same method body, we also require that
P holds as the postcondition.

The specification of Fail is {false} Fail {true}. This specification forces
the verifier to attempt to prove an unprovable verification condition, and thus
will always fail verification. The idea here is that the verification systems we use

5 Unit tests that depend on the results of other unit tests, which can be written in
certain testing frameworks, have somewhat more complex preconditions; however,
such frameworks typically handle the ordering of such tests automatically.

have the ability to reason about unreachable code, and one way of checking for
such is to attempt to assert false in unreachable blocks [12]. Since unit tests
should never fail, all calls to Fail should be unreachable during static analysis.

With this combination of automatic default specification for the unit test and
novel specification of test framework assertions, successful verification of a given
unit test means that the unit test always passes: neither Assert(false) nor Fail
is ever called. Therefore, it demonstrates that the CTD specification is sufficient
to guarantee the success of the unit test. We measure specification utility as the
percentage of unit tests in a test suite that can be statically verified; clearly, the
correspondence between this measure of utility and actual “real-world” utility
for developers is highly dependent on the quality of the test suite we verify.
In particular, successful verification of a library conformance test—effectively,
a complete definition of the required library behavior—against a library spec-
ification means that generalized client programs of the library should also be
verifiable against the library specification (though they may still, of course, be
unverifiable for reasons having nothing to do with the library specification).

Now that we have described the general idea of using verification to test
the correctness and utility of specifications, we will discuss our concrete appli-
cations of this general idea using Java, JML, ESC/Java2, and Java unit testing
frameworks.

4 The Concrete Process

We have been using the FCTD process for several years when writing new, or re-
working existing, specifications of the Java API. An early variant of the concrete
process was proposed by David Cok during the development of ESC/Java2. That
process, which only used hand-written unit tests, the ESC/Java2 static checker
and the JUnit framework, was used to write specifications of several classes.
More recently one of the authors focused on refining the process, incorporat-
ing support for both static and runtime checking and using tests from the Java
Compatibility Kit (JCK) [11].

In this section, we describe the modifications we have made to use JUnit and
the JCK with the FCTD process, as well as giving background information on
the organization of the JCK and its companion JavaTest framework.

4.1 JUnit

The FCTD process was originally designed for use with JUnit-like frameworks;
therefore, the JML specifications added to the JUnit testing framework in order
to successfully carry out FCTD are essentially those discussed in Section 3.2.

The JUnit API’s key class, org.junit.Assert, has many methods that al-
low the test writer to assert various conditions. The most important two such
methods are assertTrue(String message, boolean condition), which as-
serts that condition is true, and fail(String message), which causes an
unconditional test failure. Figure 3 shows the JML specifications added to those

/** Asserts that a condition is true. */
//@ public normal_behavior
//@ requires condition;
//@ ensures condition;
public static void assertTrue(/*@ nullable @*/ String message ,

boolean condition);

/** Fails a test with no message. */
//@ public normal_behavior
//@ requires false;
//@ ensures true;
public static void fail(/*@ nullable @*/ String message);

Fig. 3. The specification of key methods in JUnit’s Assert class

methods for FCTD. A number of other methods, including assertFalse and
assertNull, are implemented in terms of assertTrue; still others, such as
assertEquals (for object equivalence) have their own implementations and we
do not show the JML specifications for these here.

With these modifications to the JUnit API, we can perform FCTD with any
existing set of JUnit tests for a JML-annotated SUT. We have sets of hand-
written JUnit tests for a small selection of classes in the Java class library, as
described later in Section 5; however, the conformance tests in the Java Com-
patibility Kit are preferable to our JUnit tests for testing the Java class library.

4.2 The Java Compatibility Kit

An implementation of the Java class library typically consists of a combination
of Java code and native libraries. There are many such implementations, even
on the same hardware and OS platform; Sun themselves implemented the class
library for three platforms (Solaris, Windows, Linux), Apple implemented it for
Mac OS and Mac OS X, and other implementations have been developed by
companies such as IBM and Hewlett-Packard and open-source groups such as
the Apache Harmony [21] and GNU Classpath [9] projects. In addition, Open-
JDK [19], an open-source (GNU GPLv2+Classpath) version of Java first made
available by Sun in 2007 and currently maintained by Oracle, runs on many
different hardware and operating system platforms.

To ensure that the multitude of Java class library implementations would
be mutually compatible and conform to the Java standard, Sun developed an
extensive conformance test suite called the Java Compatibility Kit (JCK). Java
licensees are required to ensure that their implementations pass the JCK tests
before they can use the Java trademark.

Initially, Sun released the JCK to the public with a read-only license; the
source code for the JCK was publicly available, but developers were explicitly
permitted only to read the source code and not to compile or execute it.6 The

6 Sun’s (now Oracle’s) licensees, of course, have always had full access to the JCK
under more liberal license terms.

//@ public normal_behavior
//@ ensures \fresh (\ result);
//@ ensures \result.isPassed ();
//@ ensures stringEquals (\ result.getReason (), reason);
public static /*@ pure non_null @*/ Status passed
(/*@ nullable @*/ String reason);

//@ public normal_behavior
//@ requires false;
//@ ensures \fresh (\ result);
//@ ensures \result.isFailed ();
//@ ensures stringEquals (\ result.getReason (), reason);
public static /*@ pure non_null @*/ Status failed
(/*@ nullable @*/ String reason);

Fig. 4. The specification of key methods in JavaTest’s Status class

read-only license was one of the inspirations for the FCTD process, as it led us
to consider ways in which we could make use of this conformance test suite while
neither compiling nor executing it. Since the release of OpenJDK, however, Sun
(now Oracle) has licensed the JCK for use by developers who are running it in
conjunction with OpenJDK development or with projects that derive substan-
tially from OpenJDK (such as the OpenJML project) [20].

JavaTest The JCK test suite is designed to be executed within a framework
called JavaTest, which was also developed by Sun. The source for the JavaTest
framework is available separately from the JCK distribution [18] and is (primar-
ily) released under the same open-source license as OpenJDK. Thus, we are able
to modify the JavaTest framework in a way that allows us to attempt static
verification of all the unit tests in the JCK (and, for that matter, any other test
suites written for the JavaTest framework).

The JavaTest API differs significantly from most standard test APIs in that it
does not enable test code to directly assert predicates. Instead, “status” objects
are constructed to indicate whether a given test branch passed or failed in some
fashion. Thus, there is no direct analogue to the Assert method in the JavaTest
API. When a test branch determines that it has succeeded, it always constructs
and returns a status object representing a “success”. Similarly, when a test
branch determines that it has failed, it always constructs and returns a status
object representing a “failure”.

Our modifications to the framework are primarily to the class com.sun.

javatest.Status, which implements the “status” object and therefore encap-
sulates the result of a single test. Status contains factory methods for creating
objects that indicate that a test has passed, failed, or caused an error, and these
methods are used by the JCK tests to report their outcomes.

To use FCTD with the JCK, we added JML specifications to these factory
methods in the manner described in Section 3.2; these appear in Figure 4.7 Note

7 stringEquals is shorthand for “the two strings are equivalent or are both null.”

public Status String0061 () {
String testCaseID = "String0061";
String s = "getChar Test"; //step Create a String
char[] dst = null; //step Create a null reference
try {

s.getChars (1,3,dst ,0); //step Try to get chars
}
catch (NullPointerException e) { //step Catch an exception

return Status.passed("OKAY");
}
return Status.failed(testCaseID + " getChars failed");

}

Fig. 5. The first JCK test method for String.getChars

that the failed factory has a precondition of false, while the passed factory
need not have pre- or postconditions relating to an asserted predicate because
it always indicates a passed test. We also added minimal specifications to some
related classes to ensure that we did not cause any NullPointerExceptions or
similar runtime issues.

JCK Example An example will help to clarify the usage of the JavaTest frame-
work for running automated tests. Recall that we discussed the method java.

lang.String.getChars in Section 3.1. The first JCK test method for getChars
(also the 61st JCK test method for the String class), String0061, is repli-
cated in Figure 5. In this test, the success case is the return in the catch

block where a “passed” instance of Status is constructed; this particular test
is checking to see that passing a null array to getChars correctly causes a
NullPointerException. The failure case is the final return where a “failed”
Status is constructed.

The JML specification of getChars, therefore, needs to be strong enough
to guarantee that a NullPointerException is always thrown when getChars

is called on a String and given a null destination array. If the specification
is sufficient, String0061 will pass its static verification. The JML specification
in Figure 2 correctly guarantees a NullPointerException in this instance and
allows String0061 to be statically verified. Interestingly, the specification for
getChars shipped with some versions of the JML tools (including the most
recent version of the Common JML tools released in 2009) does not include the
exceptional behavior clause with the NullPointerException; FCTD would have
detected that deficiency by failing to statically verify String0061 and reporting
less than 100% utility for the String specification.

5 Case Studies

For our first case study, we wrote or rewrote specifications for 26 commonly-used
classes in the Java class library: AbstractList, ArrayList, Arrays, BitSet,

Boolean, ByteArrayInputStream, Character, Class, Collection, Compara-

ble, Exception, File, InputStream, Integer, List, Long, Map, Math, Object,
Properties, Set, String, StringBuffer, System, Throwable, and Vector.8 We
used FCTD with hand-written JUnit tests to help ensure that the specifications
were both correct and useful.

The second case study was conducted as a part of Hyland’s MSc work [11].
Specifications for three classes that had no existing JML specifications were writ-
ten and verified using the JCK tests. These classes—ResourceBundle, Print-
Stream, and Stack—were chosen because they are the most frequently used
classes in the Java API (as measured by two static analysis tools) that were
missing specifications.

In both case studies, JML specifications for a class C were written using
Javadoc documentation for C and any classes of which C is a client. Reading
publicly available unit tests was permitted, but not encouraged, and served only
to resolve ambiguity in the documentation. In an effort to avoid overspecification,
viewing C’s source code was not permitted under any circumstances.

The struggles and outcomes of this process highlight the fact that natural
language specifications, as seen in Javadoc documentation, are often imprecise
and incomplete. This was witnessed both during attempts to verify the classes in
question against their newly-written specifications and during attempts to test
the specifications by verifying the JCK tests and other tests against them. Hy-
land’s MSc report discusses in detail some of the challenges posed and solutions
found while writing usable and correct specifications for these three classes.

During both case studies, a specification was deemed correct only if (a) a
manual review by multiple parties of the informal documentation and the formal
specification had a positive outcome, (b) hand-written unit tests all passed when
executed with runtime assertion checking of the JML specifications turned on,
and (c) ESC/Java2 verified all unit tests successfully. If unit tests could not
be executed, as in the case of the JCK, then part (b) was not performed. The
utility of a class specification was measured in these case studies as the ratio
of the number of verified unit tests for the class to the total number of unit
tests run for the class, and no class specification was declared “finished” until its
utility was measured at 100%. All class specifications were declared “finished”
by the end of the case studies.

As a result of these case studies, we have much higher confidence in the cor-
rectness and utility of the tested specifications than we did for specifications that
were written in the past using more ad hoc techniques. Consequently, the JML
community is continuing to use this process to write (and rewrite) specifications
for Java 1.7 as development on the new JML tool suite, OpenJML, continues.

8 See http://kindsoftware.com/trac/mobius/browser/src/mobius.esc/escjava/

trunk/ESCTools/Escjava/test/jdktests for details.

http://kindsoftware.com/trac/mobius/browser/src/mobius.esc/escjava/trunk/ESCTools/Escjava/test/jdktests
http://kindsoftware.com/trac/mobius/browser/src/mobius.esc/escjava/trunk/ESCTools/Escjava/test/jdktests

6 Conclusion

We have described a new process, the Formal CTD Process (FCTD), for de-
termining whether formal specifications written for an existing software system
are correct and useful. FCTD effectively uses the existing unit test suite for the
software system as a behavioral specification and validates the formal specifica-
tions against the unit test suite by performing modular static verification. By
doing so it ensures that the formal specifications capture enough of the system’s
behavior to pass the unit tests, demonstrating the utility of the specifications.

FCTD is best suited to testing library specifications using conformance tests,
since conformance tests by definition describe exactly the required functionality
of a library. We have described a method for applying FCTD to the standard Java
class library using the Java Compatibility Kit and a version of its accompanying
JavaTest infrastructure augmented with formal specifications for key classes.
This will allow us to evaluate new specifications written for Java library classes
against the library conformance tests used by all Java licensees, and thus to
ensure that our library class specifications are of high quality.

While the concrete processes we have described here are specific to Java,
JML, and their associated tools and tests, the general technique of using static
verification of unit tests to validate specifications written for existing software
systems is widely applicable. Our process can be easily adapted to any program-
ming language and specification language for which both unit testing frameworks
and static verification tools are available. We believe, therefore, that our process
has the potential to significantly improve the quality of specifications written for
existing software systems, and thereby also to significantly increase the utility
of formal verification techniques that rely on such specifications.

There are several open research challenges and opportunities associated with
this work. We speculate that unit tests generated by tools that are unaware of
specifications (e.g., those that perform symbolic execution, shape analysis, etc.)
may have some utility in terms of testing specifications, but we have not yet
explored this avenue. We also speculate that the output of specification inference
tools such as Daikon [6] and Houdini [7], which attempt to infer preconditions,
postconditions and invariants from a body of code, may provide good starting
points for the generation of correct and useful specifications. Finally, we believe
it is possible to provide a more precise measurement of code and specification
coverage than the “number of tests” ratio we currently use as a measure of utility.

References

1. Beust, C., Suleiman, H.: Next Generation Java Testing. Addison–Wesley Publish-
ing Company (2007)

2. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., T.˜Leavens, G., M.˜Leino,
K.R., Poll, E.: An Overview of {JML} Tools and Applications. International Jour-
nal on Software Tools for Technology Transfer (Feb 2005)

3. Chalin, P., Robby, et al.: JMLEclipse: An Eclipse-based JML specification and
verification environment. http://jmleclipse.projects.cis.ksu.edu/ (2011)

http://jmleclipse.projects.cis.ksu.edu/

4. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: Magnusson, B. (ed.) Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP) 2002. Lecture Notes in Com-
puter Science, vol. 2374, pp. 231–255. Springer-Verlag (Jun 2002)

5. Cok, D.R., et al.: OpenJML. http://sourceforge.net/apps/trac/jmlspecs/wiki/
OpenJml (2011)

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The {Daikon} System for Dynamic Detection of Likely Invariants. Science
of Computer Programming 69(1-3), 35–45 (Dec 2007)

7. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
International Symposium of Formal Methods Europe (FME). Berlin, Germany
(March 2001)

8. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended Static Checking for {J}ava. ACM SIGPLAN Notices 37(5), 234–245
(2002)

9. Free Software Foundation, Inc.: GNU Classpath.
http://www.gnu.org/software/classpath/ (2011)

10. Gamma, E., Beck, K.: JUnit: A regression testing framework.
http://www.junit.org/ (2011)

11. Hyland, R.: A Process for the Specification of Core JDK Classes. Master’s thesis,
University College Dublin (Apr 2010)

12. Janota, M., Grigore, R., Moskal, M.: Reachability analysis for annotated code. In:
6th International Workshop on the Specification and Verification of Component-
based Systems (SAVCBS 2007). Dubrovnik, Croatia (Sep 2007)

13. Kiniry, J.R., Cochran, D., Tierney, P.: A verification-centric realization of e-voting.
In: International Workshop on Electronic Voting Technologies (EVT) 2007. Boston,
Massachusetts (2007)

14. Kiniry, J.R., Cok, D.R.: ESC/Java2: Uniting ESC/Java and JML. In: Proceedings
of CASSIS 2004. Lecture Notes in Computer Science, vol. 3362. Springer-Verlag
(Jan 2005)

15. Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Proceedings of
the Fifteenth International Symposium on Formal Methods (FM). Lecture Notes
in Computer Science, vol. 5014 (2008)

16. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of
JML accommodates both runtime assertion checking and formal verification. In:
Proceedings of FMCO 2002. Lecture Notes in Computer Science, vol. 2852, pp.
262–284. Springer-Verlag (2003)

17. Meyer, B.: Object-Oriented Software Construction. Prentice–Hall, Inc., second edn.
(1988)

18. Oracle Corporation: JT Harness project. http://jtharness.java.net/ (2011)
19. Oracle Corporation: OpenJDK. http://openjdk.java.net/ (2011)
20. Oracle Corporation: OpenJDK community TCK license agreement.

http://openjdk.java.net/legal/openjdk-tck-license.pdf (2011)
21. The Apache Software Foundation: Apache Harmony - Open Source Java SE.

http://harmony.apache.org/ (2011)
22. The Eclipse Foundation: The Eclipse project. http://www.eclipse.org/ (2011)
23. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.

ACM Computing Surveys 29(4), 366–427 (Dec 1997)
24. Zimmerman, D.M., Nagmoti, R.: JMLUnit: The next generation. In: International

Conference on Formal Verification of Object-Oriented Software (FoVeOOS 2010).
Paris, France (Jun 2010)

http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml
http://www.gnu.org/software/classpath/
http://www.junit.org/
http://jtharness.java.net/
http://openjdk.java.net/
http://openjdk.java.net/legal/openjdk-tck-license.pdf
http://harmony.apache.org/
http://www.eclipse.org/

