
Building Reliable Software
with

Applied Formal Methods
A Brief Overview

Daniel M. Zimmerman
Institute of Technology

University of Washington Tacoma

Outline

• Applied Formal Methods

• Correctness and the Java Modeling Language

• Unit Testing with JMLUnit

• Current Work

Applied Formal Methods

• Formal methods are mathematical
techniques for building verifiably-correct
software systems.

• Applied formal methods is the
creation and evaluation of techniques and
tools that make formal methods accessible
and useful to developers who may not know
all the mathematics involved.

Correctness

• A correct software system is one that
does what it’s supposed to.

Correctness

• A correct software system is one that
does what it’s supposed to.

• Correctness is always relative!

Correctness

• A correct software system is one that
does what it’s supposed to.

• Correctness is always relative!

• You need a specification of what a system
is supposed to do before you can evaluate
its correctness.

Specifications

• Specifications of software range in formality:

• informal - English documentation (e.g.,
“normal” comments in code)

• semi-formal - structured English
documentation (e.g., Javadoc)

• formal - annotations and assertions (e.g.,
assert statements and contracts)

Informal Specs
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

Informal Specs
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• What happens when:

Informal Specs
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• What happens when:

• amount is negative?

Informal Specs
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• What happens when:

• amount is negative?

• amount is bigger than the account balance?

Informal Specs
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• What happens when:

• amount is negative?

• amount is bigger than the account balance?

• Is the balance changed when the call fails?

Semi-Formal Specs
/** Debit this account.
 * @param amount the amount to debit.
 * <code>amount</code> must be
 * non-negative.
 * @result the balance of this account
 * after the debit successfully occurs.
 */
 public int debit(int amount)

Semi-Formal Specs
/** Debit this account.
 * @param amount the amount to debit.
 * <code>amount</code> must be
 * non-negative.
 * @result the balance of this account
 * after the debit successfully occurs.
 */
 public int debit(int amount)

• Many of the same questions arise even
though the documentation is much clearer.

Formal Specs

/** Debit this account.
 * @param amount the amount to debit.
 * @result the resulting balance.
 */
/*@ requires 0 <= amount && amount <= balance;
 @ ensures balance == \old(balance - amount) &&
 @ \result == balance;
 @*/
 public int debit(int amount)

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 }

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 }

try {
 b = debit(a);
 if (b < 0) throw NBE();
} catch (Exception e) {
 System.exit(-1);
}

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 }

HORRIBLE!
try {
 b = debit(a);
 if (b < 0) throw NBE();
} catch (Exception e) {
 System.exit(-1);
}

Calling Methods Correctly
/*@ requires 0 <= amount && amount <= balance;
 @ ensures balance == \old(balance - amount) &&
 @ \result == balance;
 @*/
 public int debit(int amount) {
 ...all conditionals are gone!
 ...
 }

if (debit_amount < 0 || balance < debit_amount)
 handle_bad_debit(debit_amount);
else
 resulting_balance = debit(debit_amount);

Design by Contract

• Contracts are a key concept in robust
software design and construction.

• Precondition: an assertion that must be
true before a method can be called

• Postcondition: an assertion that is
guaranteed to be true when a method
returns.

• Invariant: an assertion that is true of an
object at observable states.

Design by Contract
Example

’
.

Partial Class Features

• queries

• spouse? single?

• commands

• marry! divorce!

• constraints

• at most one spouse is allowed

• spouse’s spouse must be this person

Partial Class Sketch
 Citizen my_spouse;
 /*@ invariant (spouse() != null) ==>
 @ spouse().spouse() == this;
 @*/
 Citizen spouse() { returns my_spouse; }
 boolean single() { returns my_spouse == null; }

 //@ requires single() && new_spouse != null;
 //@ ensures !single() && spouse() == new_spouse;
 //@ ensures spouse().spouse() == this;
 void marry(Citizen new_spouse)
 { my_spouse = new_spouse;
 new_spouse.my_spouse = this; }

 //@ requires !single();
 //@ ensures single() && \old(spouse()).single();
 void divorce()
 { my_spouse = null; my_spouse.my_spouse = null; }

Java Modeling Language

• The contracts we just saw were written in
the Java Modeling Language (JML).

• JML is a notation for formally specifying the
behavior and interface of Java classes and
methods.

• Originally developed by Gary T. Leavens
(Iowa State, now U. Central Florida) and
others, now worked on by researchers
worldwide (including me).

Java Modeling Language

• JML enables Design by Contract and
runtime assertion checking, but also
full logical models of Java classes.

• Why logical models? Often, class behavior
can be specified in one simple way, which has
many possible implementations.

Logical Models

• Consider a basic (unprioritized) queue data
structure.

• enqueue and dequeue operations mean the
same thing, regardless of the implementation
of the queue - this is the logical model.

• Model checking compares a logical
model to an implementation.

• JML enables the specification of logical
models that can be used by model checkers.

Tools That Use JML

• Many tools understand JML.

• Obviously I can’t talk about them all here,
but these are a few...

• ESC/Java2 (University College Dublin)

• Daikon (MIT)

• Sireum/Kiasan (Kansas State)

ESC/Java2
• ESC/Java2 is a static checker - it

performs analysis of source code without
running it.

• Other static checkers include FindBugs
and CheckStyle, which check for common
errors and style issues.

• ESC/Java2 uses an automated theorem
prover to (try to) demonstrate that a
particular piece of Java code is correct with
respect to its JML specification.

ESC/Java2

• ESC/Java2 will typically say “this piece of
code definitely fulfills its specification”, or
“this piece of code may violate its
specification”.

• Occasionally, it will say “I don’t know.”

• ESC/Java2 also detects some common
programming errors (null pointer
exceptions, array indices out of bounds).

Daikon

• Daikon is an invariant detector.

• It runs a program, observes what the
program does, and reports properties that
were true throughout the execution.

• Helpful for adding specifications to legacy
code that lacks them, or for discovering
potentially overlooked invariants!

Sireum/Kiasan

• Part of the Sireum set of tools.

• Kiasan is a JML-based automatic verification
and test case generation tool.

• It can detect various possible runtime
problems, like ESC/Java2.

• It uses symbolic execution to analyze
the possible behaviors of code and generate
tests to exercise them.

More Tools

• There are many more tools out there that
understand JML, and even more under
development.

• Many of these tools are used in developing
real-world systems.

• A new standard for a JML intermediate
representation to make tool development
easier in the future is also in the works.

Unit Testing

• Unit testing has been an important
validation technique in software
development for many years.

• A developer designs a set, or suite, of unit
tests.

• Each test gives some input to the system and
checks to see if it gets the correct output
from the system.

Unit Testing Issues

• Devising good tests is hard.

• It’s easy for developers to miss things that
need testing.

• Handwritten tests can also have bugs, so if a
test fails, it’s not necessarily telling you what
you think it is!

JMLUnit

• JMLUnit is a unit test generator for
code specified with JML, based on the JUnit
framework.

• Uses the preconditions and postconditions
of methods as test oracles.

• Requires the developer to come up with a
set of test data, but not to write any test
code.

JML and JMLUnit Demo

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

• Generated tests are only as good as the
specs. (not much to do about this one)

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

• Generated tests are only as good as the
specs. (not much to do about this one)

• Developer needs to create the test data,
and sometimes extra generator code—
not always in a straightforward way.

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

• Generated tests are only as good as the
specs. (not much to do about this one)

• Developer needs to create the test data,
and sometimes extra generator code—
not always in a straightforward way.

• Can use extreme amounts of memory.

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

• Generated tests are only as good as the
specs. (not much to do about this one)

• Developer needs to create the test data,
and sometimes extra generator code—
not always in a straightforward way.

• Can use extreme amounts of memory.

• Tests only single method calls, not method
call sequences

Current Projects

• Semantics- and Specification-Aware Unit Testing

• Distributed Unit Testing

• OpenJML

• Verified Gaming

Semantics- and Specification-
Aware Unit Testing

• Rewriting/extending JMLUnit to address the
shortcomings noted previously (test data
generation, memory usage, method call
sequences).

• Using the semantics of Java and the JML
specifications of the system under test to
determine test data and the parts of the
system to test with them.

JMLUnitNG

• The first step in the process toward a
robust successor to JMLUnit is JMLUnitNG,
based on TestNG.

• Addresses the data issue by using (very
basic) reflective test data generation.

• Addresses the memory issue by using a lazy
evaluation method to generate tests rather
than generating entire test suites in memory.

• Does not address the other issues.

JMLUnitNG

• Initial results are promising:

• JMLUnitNG can run millions of tests in
under 1 GB of Java heap space, in minutes
to hours.

• Significant progress over JMLUnit taking
weeks to attempt to run the same tests, in
16GB of Java heap space, and failing to
generate any results.

Distributed Unit Testing

• Comprehensive unit testing takes time,
especially if one is generating huge numbers
of tests (as might arise from the previous
project).

• Automatically distributing the unit tests
across multiple, networked machines allows
them to be run more efficiently.

• Currently, a number of machines at UWT,
Kansas State University, and University
College Dublin form such a network.

OpenJML

• Helping to develop the next generation of JML
tools - because the current generation only
handles the Java language as it existed up to
late 2004.

• OpenJML is a new JML compiler and
associated tool set built atop OpenJDK,
Sun’s open-source version of Java.

• There will of course be an OpenJMLUnit as
well (JMLUnitNG is only an intermediate
step).

Verified Gaming

• A teaching-related project, in conjunction
with University College Dublin.

• Developing Java versions of classic games
with verification-centric software
engineering methods and tools, as a way of
teaching formal methods.

• UWT undergrads have worked on Space
Invaders, Frogger, and Pac-Man; I have
worked on Tetris.

Questions?

