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Applied Formal Methods

• formal methods are mathematical 
techniques for building verifiably-correct 
software systems

• applied formal methods is the creation 
and evaluation of techniques and tools that 
make formal methods accessible and useful 
to developers who may not know all the 
mathematics involved
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Correctness

• a correct software system is one that does 
what it’s supposed to

• correctness is always relative!

• you need a specification of what a system 
is supposed to do before you can evaluate 
its correctness



Specifications

• specifications of software range in formality:

• informal - English documentation (e.g., 
“normal” comments in code)

• semi-formal - structured English 
documentation (e.g., Javadoc)

• formal - annotations and assertions (e.g., 
assert statements and contracts)



Specifications

• specifications of software range in formality:

• informal - English documentation (e.g., 
“normal” comments in code)

• semi-formal - structured English 
documentation (e.g., Javadoc)

• formal - annotations and assertions (e.g., 
assert statements and contracts)

• most developers do the first, some do the 
second, not too many do the third



Formal Specs

/** Debit this account.
  * @param amount the amount to debit.
  * @result the resulting balance.
  */
/*@ requires 0 <= amount && amount <= balance;
  @ ensures balance == \old(balance - amount) &&
  @         \result == balance;
  @*/
  public int debit(int amount)



Design by Contract

• contracts are a key concept in robust 
software design and construction

• precondition: an assertion that must be 
true before a method can be called

• postcondition: an assertion that is 
guaranteed to be true when a method 
returns

• invariant: an assertion that is true of an 
object in observable states



Design by Contract

• in a Design by Contract process, the 
contracts for all the classes and methods are 
written first

• once all the contracts are written, the code 
is written to “fill in the blanks”

• the contracts serve as design documentation 
(hence the name)



Java Modeling Language

• the contracts we just saw were written in 
the Java Modeling Language (JML), a notation 
for formally specifying the behavior and 
interface of Java classes and methods

• originally developed by Gary T. Leavens 
(Iowa State, now U. Central Florida) and 
others, now worked on by researchers 
worldwide (including me)

• many tools understand JML, including 
runtime checkers and static verifiers



Runtime Checking

• runtime checking is the process of evaluating 
preconditions, postconditions, invariants, and 
other assertions at runtime

• if an assertion fails at any point, an 
exception/error occurs and execution halts 
(hopefully with a useful message about what 
happened)

• jml4c is a runtime checking compiler for JML 
that supports modern Java syntax



Static Verification

• static verification is the process of checking, 
using automated theorem proving and 
similar mechanisms, that specifications 
written in a language such as JML are 
satisfied by the corresponding code

• ESC/Java2 is a static verifier for JML that can 
handle a wide range of possible JML 
specifications



Using JML to Specify 
Java Programs

• we can use JML to specify many things about 
the behavior of Java programs, up to full 
logical models of program behavior 

• we can prove the correctness of these 
specifications with static verifiers

• we can check the correctness of the 
program at runtime with runtime checkers
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Using JML to Specify 
Java Programs

• this should enable us to write much more 
reliable Java programs

• the catch: Java has a huge (1000s of classes) 
standard library, and we need specs for these 
library classes before we can fully specify the 
behavior of programs that use them
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classes is relatively easy - you can write a 
correct, but trivial, specification for anything! 
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Generating Specs for 
Library Classes

• generating correct specs for the library 
classes is relatively easy - you can write a 
correct, but trivial, specification for anything! 

• precondition true, postcondition true, 
invariant true...

• generating good specs for the library classes 
that allow us to reason about programs - 
not too trivial, but also not too strict or too 
complex - is hard!



Generating Specs for 
Library Classes

• what we can work with:

• Javadoc for the standard library

• the suite of automated tests provided by 
Oracle in the Java Compatibility Kit (JCK), 
which must all pass in a “compliant” 
implementation of the standard library

• working directly with the library source 
code is unwise, since it changes every 
release and across Java implementations
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Better Specifications 
through Testing

• idea: why not use the comprehensive suite 
of tests for the standard library to check our 
specifications somehow?

• if we can statically verify that the tests pass 
with our new library specs, then for all 
practical purposes the specs are good

• effectively, we test our specifications by 
verifying the existing tests



Verifying Unit Tests
• we assume that our unit test framework 

uses an “assert” method to check Boolean 
conditions and a “fail” method to trigger a 
failure without a condition check

• in order to statically verify unit tests, we add 
very simple specifications to these methods: 

• assert(x) has precondition x and 
postcondition x

• fail() has precondition false and 
postcondition true



Verifying Unit Tests

• using these specifications, our unit tests can 
be statically verified as follows:

• calls to library methods are verified 
against the method specs we’ve written

• calls to assert(x) will verify properly if x is 
true, exactly the behavior we want

• calls to fail will never verify (precondition 
false), which is good since such calls should 
be unreachable in tests that pass



Formal Contract 
the Design

• the specification process based on this idea 
is “Formal Contract the Design” (FCTD)

• “Contract the Design” is the opposite of 
“Design by Contract” - writing the contracts 
for a program after the program has been 
written rather than before

• in this case, we are writing specs for library 
classes whose operation has already been 
informally documented
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the Javadoc for C and any classes on which 
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The FCTD Process for 
Class C

• write an initial JML spec for C, using only 
the Javadoc for C and any classes on which 
C depends (not C’s source code or tests)

• refine the spec for C until it statically 
verifies against C’s source code, without 
looking at the source code

• refine the spec for C until all the JCK tests 
for C statically verify (looking at the test 
code is OK here) – note that the tests are 
only checked and never run!



Current Status

• using this process, we have specified several 
classes in the Java standard library so far - 
concentrating on commonly-used classes 
such as the Collections Framework

• obviously it will take significant effort to  
(re)specify the entire standard library, but it’s 
a lot easier when we can leverage the JCK 
to check our specs
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Switching Gears...

• I’ve been talking about using existing unit 
tests to help generate JML specifications

• next, I’ll discuss using existing JML 
specifications to generate unit tests

• a version of this functionality has existed 
since early versions of JML, in the form of 
JMLUnit



JMLUnit: The Basic Idea

• JMLUnit works by using runtime assertion 
checking (RAC) code, generated from the 
JML specifications for methods and classes, 
as test oracles

• the test data needs to be defined by the test 
developer, but all the test code is generated 
automatically



JMLUnit: The Basic Idea

• each test calls one method with one set of 
data and has three possible outcomes:

• success, if there were no assertion failures

• failure, if there was a failure in an assertion 
other than the method’s precondition

• meaningless, if there was a failure in the 
method’s precondition – because methods 
can do anything if their preconditions are 
violated (so there’s no way to “fail”)



JMLUnit Shortcomings

• JMLUnit is easy to use and understand, but 
has some shortcomings:

• it requires developers to manually specify 
test data (at least instances to test), often 
in a less-than-obvious way

• it ignores context, using the same data set 
for each parameter of the same type

• it can easily consume extreme amounts of 
memory (run for weeks with no results!)



JMLUnitNG

• since JML is being modernized, we felt it was 
time to both modernize JMLUnit and 
address these shortcomings

• we wanted to keep the principle of 
operation easy for first-time JML users to 
understand, rather than to be the best 
testing tool in existence



New Groundwork: 
TestNG

• JUnit was the only testing framework for 
Java when JMLUnit was written - TestNG 
came later and added nice features

• parameterized tests can be specified in a 
way that allows lazy generation of test 
data sets at runtime

• the concept of a skipped test is built into 
the framework

• (bonus!) parallel testing is trivial to enable



Improvement:
 Memory Usage

• TestNG’s parameterized testing allows us to 
completely eliminate the excessive memory 
usage of JMLUnit

• instead of constructing all parameter lists at 
once and storing them in memory, we use 
special data generation iterators to generate 
parameter lists on-the-fly, as needed

• we can easily run millions of tests



Improvement: 
Test Data Specification

• JMLUnitNG allows developers to easily 
specify additional test data, including 
context-sensitive data



Example Class
public class Add
{
  //@ invariant x() + y() > 0;
  
  private int my_x;
  private int my_y;
  
  //@ requires the_x + the_y > 0;
  //@ ensures x() == the_x && y() == the_y;
  public Add(final int the_x, final int the_y)
  {
    my_x = the_x;
    my_y = the_y;
  }
  
  public /*@ pure @*/ int x() { return my_x; }
  public /*@ pure @*/ int y() { return my_y; }
  
  //@ ensures \result == x() + y() + the_operand;
  public /*@ pure @*/ int sum(final int the_operand)
  {
    return my_x + my_y + the_operand;
  }
}



Test Data Specification
The Old Way

• running JMLUnit creates 2 Java classes

• one is test fixtures and gets left alone

• the other is test data - it’s 162 lines long, 
and the two parts we need to edit to add 
new test data are on lines 122 and 157

• if we want specific data values to be used 
in specific places, we have to manually add 
new logic to the test data class



Test Data Specification
The New Way

• running JMLUnitNG creates 6 Java classes

• one is test fixtures and still gets left alone

• the others are context-sensitive test data - 
one for each method parameter (2 for the 
constructor, 1 for “sum”), one for each 
type (int), and one for Add itself

• to change the data used in a particular 
context, we change the appropriate class



Test Data Specification
The New Way

• each generated test data class looks like this:
/**
 * Test data strategy for Add. Provides test values for 
 * parameter "int the_operand" of method "int sum(int)". 
 * 
 * @author JMLUnitNG 1.0a2 (42)
 * @version 2011-01-06 00:18 +0800
 */
public class sum__int_the_operand__the_operand 
  extends GlobalStrategy_int {
  /**
   * @return custom values for parameter "int the_operand".
   */
  public RepeatedAccessIterator<?> getCustomValues() {
    return new ObjectArrayIterator<Integer>
    (new Integer[] { /* add custom int values here */ });
  }
}



Improvement: 
Test Object Generation
• JMLUnit tests constructors, but nothing 

else, if you just run its generated tests with 
no editing - test objects must be supplied 
manually

• JMLUnitNG uses Java reflection to 
instantiate test objects with the parameter 
lists from successful constructor tests

• We can test three Add objects with no 
developer intervention whatsoever



Example Class
public class Add
{
  //@ invariant x() + y() > 0;
  
  private int my_x;
  private int my_y;
  
  //@ requires the_x + the_y > 0;
  //@ ensures x() == the_x && y() == the_y;
  public Add(final int the_x, final int the_y)
  {
    my_x = the_x;
    my_y = the_y;
  }
  
  public /*@ pure @*/ int x() { return my_x; }
  public /*@ pure @*/ int y() { return my_y; }
  
  //@ ensures \result == x() + y() + the_operand;
  public /*@ pure @*/ int sum(final int the_operand)
  {
    return my_x + my_y + the_operand;
  }
}



Improvement: 
Test Object Generation

• we use reflection in a similar way to 
generate objects for use as parameters to 
test methods

• by manually adding a few well-chosen 
primitive values to the defaults, more objects 
are reflectively created



Results

• when run on some examples, we 
experienced significant increases in “hands-
off” test coverage over the original JMLUnit

• we experienced much larger increases when 
adding a few additional data values for use in 
specific contexts



Current Status

• JMLUnitNG is publicly available at 
http://formalmethods.insttech.washington.edu/ - 
current version is 1.0 alpha 2

• it works, but is not yet as user-friendly as it 
should be (no Eclipse plugin, for example)

• currently requires the use of the jml4c 
compiler to work with Java >= 1.5.

http://formalmethods.insttech.washington.edu
http://formalmethods.insttech.washington.edu
http://formalmethods.insttech.washington.edu
http://formalmethods.insttech.washington.edu


Quick Demo

• into Eclipse we go!



Summary

• two projects that combine unit testing and 
applied formal methods:

• Formal Contract the Design

• JMLUnitNG

• work is ongoing on both, with many 
improvements in the works for JMLUnitNG


