
At the Intersection of
Applied Formal Methods

and Unit Testing
Daniel M. Zimmerman
Institute of Technology

University of Washington Tacoma

NTU Graduate Seminar, 台北 - 7 January 2011

Outline

• Applied Formal Methods

• Java and the Java Modeling Language

• Formal Contract the Design

• JMLUnitNG

Applied Formal Methods

• formal methods are mathematical
techniques for building verifiably-correct
software systems

• applied formal methods is the creation
and evaluation of techniques and tools that
make formal methods accessible and useful
to developers who may not know all the
mathematics involved

Correctness

• a correct software system is one that does
what it’s supposed to

Correctness

• a correct software system is one that does
what it’s supposed to

• correctness is always relative!

Correctness

• a correct software system is one that does
what it’s supposed to

• correctness is always relative!

• you need a specification of what a system
is supposed to do before you can evaluate
its correctness

Specifications

• specifications of software range in formality:

• informal - English documentation (e.g.,
“normal” comments in code)

• semi-formal - structured English
documentation (e.g., Javadoc)

• formal - annotations and assertions (e.g.,
assert statements and contracts)

Specifications

• specifications of software range in formality:

• informal - English documentation (e.g.,
“normal” comments in code)

• semi-formal - structured English
documentation (e.g., Javadoc)

• formal - annotations and assertions (e.g.,
assert statements and contracts)

• most developers do the first, some do the
second, not too many do the third

Formal Specs

/** Debit this account.
 * @param amount the amount to debit.
 * @result the resulting balance.
 */
/*@ requires 0 <= amount && amount <= balance;
 @ ensures balance == \old(balance - amount) &&
 @ \result == balance;
 @*/
 public int debit(int amount)

Design by Contract

• contracts are a key concept in robust
software design and construction

• precondition: an assertion that must be
true before a method can be called

• postcondition: an assertion that is
guaranteed to be true when a method
returns

• invariant: an assertion that is true of an
object in observable states

Design by Contract

• in a Design by Contract process, the
contracts for all the classes and methods are
written first

• once all the contracts are written, the code
is written to “fill in the blanks”

• the contracts serve as design documentation
(hence the name)

Java Modeling Language

• the contracts we just saw were written in
the Java Modeling Language (JML), a notation
for formally specifying the behavior and
interface of Java classes and methods

• originally developed by Gary T. Leavens
(Iowa State, now U. Central Florida) and
others, now worked on by researchers
worldwide (including me)

• many tools understand JML, including
runtime checkers and static verifiers

Runtime Checking

• runtime checking is the process of evaluating
preconditions, postconditions, invariants, and
other assertions at runtime

• if an assertion fails at any point, an
exception/error occurs and execution halts
(hopefully with a useful message about what
happened)

• jml4c is a runtime checking compiler for JML
that supports modern Java syntax

Static Verification

• static verification is the process of checking,
using automated theorem proving and
similar mechanisms, that specifications
written in a language such as JML are
satisfied by the corresponding code

• ESC/Java2 is a static verifier for JML that can
handle a wide range of possible JML
specifications

Using JML to Specify
Java Programs

• we can use JML to specify many things about
the behavior of Java programs, up to full
logical models of program behavior

• we can prove the correctness of these
specifications with static verifiers

• we can check the correctness of the
program at runtime with runtime checkers

Using JML to Specify
Java Programs

• this should enable us to write much more
reliable Java programs

Using JML to Specify
Java Programs

• this should enable us to write much more
reliable Java programs

• the catch: Java has a huge (1000s of classes)
standard library, and we need specs for these
library classes before we can fully specify the
behavior of programs that use them

Generating Specs for
Library Classes

• generating correct specs for the library
classes is relatively easy - you can write a
correct, but trivial, specification for anything!

Generating Specs for
Library Classes

• generating correct specs for the library
classes is relatively easy - you can write a
correct, but trivial, specification for anything!

• precondition true, postcondition true,
invariant true...

Generating Specs for
Library Classes

• generating correct specs for the library
classes is relatively easy - you can write a
correct, but trivial, specification for anything!

• precondition true, postcondition true,
invariant true...

• generating good specs for the library classes
that allow us to reason about programs -
not too trivial, but also not too strict or too
complex - is hard!

Generating Specs for
Library Classes

• what we can work with:

• Javadoc for the standard library

• the suite of automated tests provided by
Oracle in the Java Compatibility Kit (JCK),
which must all pass in a “compliant”
implementation of the standard library

• working directly with the library source
code is unwise, since it changes every
release and across Java implementations

Better Specifications
through Testing

• idea: why not use the comprehensive suite
of tests for the standard library to check our
specifications somehow?

Better Specifications
through Testing

• idea: why not use the comprehensive suite
of tests for the standard library to check our
specifications somehow?

• if we can statically verify that the tests pass
with our new library specs, then for all
practical purposes the specs are good

Better Specifications
through Testing

• idea: why not use the comprehensive suite
of tests for the standard library to check our
specifications somehow?

• if we can statically verify that the tests pass
with our new library specs, then for all
practical purposes the specs are good

• effectively, we test our specifications by
verifying the existing tests

Verifying Unit Tests
• we assume that our unit test framework

uses an “assert” method to check Boolean
conditions and a “fail” method to trigger a
failure without a condition check

• in order to statically verify unit tests, we add
very simple specifications to these methods:

• assert(x) has precondition x and
postcondition x

• fail() has precondition false and
postcondition true

Verifying Unit Tests

• using these specifications, our unit tests can
be statically verified as follows:

• calls to library methods are verified
against the method specs we’ve written

• calls to assert(x) will verify properly if x is
true, exactly the behavior we want

• calls to fail will never verify (precondition
false), which is good since such calls should
be unreachable in tests that pass

Formal Contract
the Design

• the specification process based on this idea
is “Formal Contract the Design” (FCTD)

• “Contract the Design” is the opposite of
“Design by Contract” - writing the contracts
for a program after the program has been
written rather than before

• in this case, we are writing specs for library
classes whose operation has already been
informally documented

The FCTD Process for
Class C

• write an initial JML spec for C, using only
the Javadoc for C and any classes on which
C depends (not C’s source code or tests)

The FCTD Process for
Class C

• write an initial JML spec for C, using only
the Javadoc for C and any classes on which
C depends (not C’s source code or tests)

• refine the spec for C until it statically
verifies against C’s source code, without
looking at the source code

The FCTD Process for
Class C

• write an initial JML spec for C, using only
the Javadoc for C and any classes on which
C depends (not C’s source code or tests)

• refine the spec for C until it statically
verifies against C’s source code, without
looking at the source code

• refine the spec for C until all the JCK tests
for C statically verify (looking at the test
code is OK here) – note that the tests are
only checked and never run!

Current Status

• using this process, we have specified several
classes in the Java standard library so far -
concentrating on commonly-used classes
such as the Collections Framework

• obviously it will take significant effort to
(re)specify the entire standard library, but it’s
a lot easier when we can leverage the JCK
to check our specs

Switching Gears...

• I’ve been talking about using existing unit
tests to help generate JML specifications

Switching Gears...

• I’ve been talking about using existing unit
tests to help generate JML specifications

• next, I’ll discuss using existing JML
specifications to generate unit tests

• a version of this functionality has existed
since early versions of JML, in the form of
JMLUnit

JMLUnit: The Basic Idea

• JMLUnit works by using runtime assertion
checking (RAC) code, generated from the
JML specifications for methods and classes,
as test oracles

• the test data needs to be defined by the test
developer, but all the test code is generated
automatically

JMLUnit: The Basic Idea

• each test calls one method with one set of
data and has three possible outcomes:

• success, if there were no assertion failures

• failure, if there was a failure in an assertion
other than the method’s precondition

• meaningless, if there was a failure in the
method’s precondition – because methods
can do anything if their preconditions are
violated (so there’s no way to “fail”)

JMLUnit Shortcomings

• JMLUnit is easy to use and understand, but
has some shortcomings:

• it requires developers to manually specify
test data (at least instances to test), often
in a less-than-obvious way

• it ignores context, using the same data set
for each parameter of the same type

• it can easily consume extreme amounts of
memory (run for weeks with no results!)

JMLUnitNG

• since JML is being modernized, we felt it was
time to both modernize JMLUnit and
address these shortcomings

• we wanted to keep the principle of
operation easy for first-time JML users to
understand, rather than to be the best
testing tool in existence

New Groundwork:
TestNG

• JUnit was the only testing framework for
Java when JMLUnit was written - TestNG
came later and added nice features

• parameterized tests can be specified in a
way that allows lazy generation of test
data sets at runtime

• the concept of a skipped test is built into
the framework

• (bonus!) parallel testing is trivial to enable

Improvement:
 Memory Usage

• TestNG’s parameterized testing allows us to
completely eliminate the excessive memory
usage of JMLUnit

• instead of constructing all parameter lists at
once and storing them in memory, we use
special data generation iterators to generate
parameter lists on-the-fly, as needed

• we can easily run millions of tests

Improvement:
Test Data Specification

• JMLUnitNG allows developers to easily
specify additional test data, including
context-sensitive data

Example Class
public class Add
{
 //@ invariant x() + y() > 0;

 private int my_x;
 private int my_y;

 //@ requires the_x + the_y > 0;
 //@ ensures x() == the_x && y() == the_y;
 public Add(final int the_x, final int the_y)
 {
 my_x = the_x;
 my_y = the_y;
 }

 public /*@ pure @*/ int x() { return my_x; }
 public /*@ pure @*/ int y() { return my_y; }

 //@ ensures \result == x() + y() + the_operand;
 public /*@ pure @*/ int sum(final int the_operand)
 {
 return my_x + my_y + the_operand;
 }
}

Test Data Specification
The Old Way

• running JMLUnit creates 2 Java classes

• one is test fixtures and gets left alone

• the other is test data - it’s 162 lines long,
and the two parts we need to edit to add
new test data are on lines 122 and 157

• if we want specific data values to be used
in specific places, we have to manually add
new logic to the test data class

Test Data Specification
The New Way

• running JMLUnitNG creates 6 Java classes

• one is test fixtures and still gets left alone

• the others are context-sensitive test data -
one for each method parameter (2 for the
constructor, 1 for “sum”), one for each
type (int), and one for Add itself

• to change the data used in a particular
context, we change the appropriate class

Test Data Specification
The New Way

• each generated test data class looks like this:
/**
 * Test data strategy for Add. Provides test values for
 * parameter "int the_operand" of method "int sum(int)".
 *
 * @author JMLUnitNG 1.0a2 (42)
 * @version 2011-01-06 00:18 +0800
 */
public class sum__int_the_operand__the_operand
 extends GlobalStrategy_int {
 /**
 * @return custom values for parameter "int the_operand".
 */
 public RepeatedAccessIterator<?> getCustomValues() {
 return new ObjectArrayIterator<Integer>
 (new Integer[] { /* add custom int values here */ });
 }
}

Improvement:
Test Object Generation
• JMLUnit tests constructors, but nothing

else, if you just run its generated tests with
no editing - test objects must be supplied
manually

• JMLUnitNG uses Java reflection to
instantiate test objects with the parameter
lists from successful constructor tests

• We can test three Add objects with no
developer intervention whatsoever

Example Class
public class Add
{
 //@ invariant x() + y() > 0;

 private int my_x;
 private int my_y;

 //@ requires the_x + the_y > 0;
 //@ ensures x() == the_x && y() == the_y;
 public Add(final int the_x, final int the_y)
 {
 my_x = the_x;
 my_y = the_y;
 }

 public /*@ pure @*/ int x() { return my_x; }
 public /*@ pure @*/ int y() { return my_y; }

 //@ ensures \result == x() + y() + the_operand;
 public /*@ pure @*/ int sum(final int the_operand)
 {
 return my_x + my_y + the_operand;
 }
}

Improvement:
Test Object Generation

• we use reflection in a similar way to
generate objects for use as parameters to
test methods

• by manually adding a few well-chosen
primitive values to the defaults, more objects
are reflectively created

Results

• when run on some examples, we
experienced significant increases in “hands-
off” test coverage over the original JMLUnit

• we experienced much larger increases when
adding a few additional data values for use in
specific contexts

Current Status

• JMLUnitNG is publicly available at
http://formalmethods.insttech.washington.edu/ -
current version is 1.0 alpha 2

• it works, but is not yet as user-friendly as it
should be (no Eclipse plugin, for example)

• currently requires the use of the jml4c
compiler to work with Java >= 1.5.

http://formalmethods.insttech.washington.edu
http://formalmethods.insttech.washington.edu
http://formalmethods.insttech.washington.edu
http://formalmethods.insttech.washington.edu

Quick Demo

• into Eclipse we go!

Summary

• two projects that combine unit testing and
applied formal methods:

• Formal Contract the Design

• JMLUnitNG

• work is ongoing on both, with many
improvements in the works for JMLUnitNG

