
Automatic Web Services Generation

Ernest Cho
Computing & Software Systems

Institute of Technology
Univ. of Washington, Tacoma

xxx@u.washington.edu

Sam Chung
Computing & Software Systems

Institute of Technology
Univ. of Washington, Tacoma
 chungsa@u.washington.edu

Daniel Zimmerman
Computing & Software Systems

Institute of Technology
Univ. of Washington, Tacoma
dmzimm@u.washington.edu

Abstract
This paper discusses the design and implementation

of a Service Generator Toolkit (SGT) that allows web
services researchers to easily create large numbers of
web services. When developing a web services tool,
such as a service broker, it is necessary to obtain a
large collection of web services for testing and
benchmarking purposes. Since it is difficult to
manually create or collect a large number of web
services, we chose to implement a system that can
automatically generate web services from a service
graph model, the SGT. The SGT automatically
generates web services by creating an abstract graph
model of the services and then converting that model
into implementation files. By converting the services
graph model into deployable and executable web
services, the SGT provides support for a greater range
of tests than previous efforts that use service models to
facilitate testing.

1. Introduction

This paper discusses the design and implementation
of a Service Generator Toolkit (SGT). This toolkit
automatically generates a large collection of web
services for use in the testing and development of web
services tools, in particular service brokers. A service
broker is a system that allows service consumers to
discover web services published by service producers.

With traditional web services, a service broker is
little more than a basic directory service and thus
requires significant human interaction to work. With
semantic web services, the service broker takes on
more responsibility and automates service discovery
and service composition [2]. This is accomplished by
using ontologies, sets of concepts within a domain and
the relationships between them, to provide a basis for
common understanding between different web

services. These ontologies allow service brokers to
automatically perform tasks that would otherwise
require extensive human interaction [4, 2, 6].

In order to experimentally explore and validate the
many designs and algorithms used to implement
service brokers, it is necessary to have an extensive
collection of web services. There are a few ways for
researchers to obtain large number of services either by
creating services using existing tools or generating
services from a services model.

The first option is to collect existing web services
from real world service repositories. Unfortunately
this approach is plagued by availability and
compatibility problems. Fan et al found that half of all
entries in public service repositories contained
significant syntactical errors and many were simply
offline [9]. Also, there is the issue of finding
relationships between services that use different
terminology. Since semantic web services and
supporting ontologies are not widely used, the web
services are manually connected.

Another option is to use existing tools, such as
Apache Tomcat/Axis or Microsoft .NET, to create the
necessary test services. This approach is often used to
create proof of concept demonstrations. Unfortunately,
for more than a handful of services it becomes an
impractical and laborious process.

The final option is to automatically generating the
necessary web services based upon an abstract model
of the services. This approach expands upon the ideas
presented by Constantinescu et al and Oh et al.
Constantinescu et al discusses service modeling and
model generation [3]. Oh and et al. goes a bit further
and uses service modeling to automatically produce
service descriptions [12]. The SGT goes a step further
and exports web services implementation files. This
allows the generated web services to be deployed onto

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

servers and executed, thus allowing a greater range of
potential tests and experimentation.

2. Background

2.1. Software as a Service (SAAS)

A Service is an implementation of some high-level
application functionality that has a well-defined,
abstract interface. Most often these are Web-based
software applications intended for use by customers
over the Internet. This often refers to either
Representational State Transfer (REST) based services
or Web Services. Generally, REST systems are
targeted towards end users, while Web Services are
more business-oriented. This project focuses on Web
Services [14].

2.2. Service-Oriented Architecture (SOA)

SOA is a design strategy where applications are
dynamically built from loosely coupled Services using
a Publish-Find-Bind model, which is shown in Figure 1.
First, service providers publish descriptions of their
service to a service broker. Service consumers then
find a suitable service by querying the service broker.
Once a service is found and selected, the consumer
binds to that service for use. Services can be
composed of other services. Note that the find step can
include any matchmaking and composition necessary
to meet the Service requester�s needs [10, 14].

2.3. Web Services

Web Services are a middleware technology used to
allow machine-machine interaction over a network. It

is one technology used to implement SOA. The basic
technologies include WSDL, SOAP, UDDI and BPEL.
WSDL is a XML format used to describe the input and
output interface of a service. SOAP is a XML format
used to encode the messages between services. UDDI
defines a metadata aggregation service and is used to
build web service registries. BPEL is a composition
language used to describe business processes and the
use of services to implement that process. As a
relatively new technology, Web Services are still in the
process of being refined and standardized [13].

2.4. Semantic Web

The World Wide Web (WWW) was originally
intended to facilitate the interchange of web documents
between humans. Consequently, computers have a
particularly difficult time extracting and making use of
the data within web documents. The Semantic Web
uses ontologies and markup languages to attach
meaning to the data within web documents. This
makes it easier for computers to work with web
documents without human assistance. Currently,
Resource Description Framework (RDF), Web
Ontology Language (OWL), and Web Service
Modeling Language (WSML) are the markup
languages most often used in Semantic Web projects [6,
15].

2.5. Semantic Web Services (SWS)

Semantic Web Services combines the ideas behind
the Semantic Web with Web Services in order to
deliver greater automation of Web Services related
tasks, such as service discovery and service
composition. This allows the development of Service
Brokers that can perform tasks with significantly less
human interaction. Several frameworks have been
proposed to facilitate the use of Semantic Web
technology with Web Services including OWL-S,
METEOR-S and WSDL-S [4].

2.6. Service Composition

Any Service can be used to build more complex
Services through composition. For example, given
simple Services that provide a square function, an
addition function and a square root function it is
possible to create a Composite Service that solves for
the hypotenuse of a triangle when given the two shorter
sides of the triangle. This is illustrated in Figure 2.

For traditional Web Services, building a
composition is a manual process most often done using
the Business Process Execution Language (BPEL).

Figure 1. Service Oriented Architecture (SOA)
diagram.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

2

With Semantic Web Services the composition process
can be largely automated. It should be noted that
automatic composition has been shown to be NP-
complete if partial matches of input and output
parameters are allowed [3].

When looking at graph representations of Services
it is easy to forget that reachability does not guarantee
composibility. This is illustrated in figure 3. Service
S2 is reachable from Service S1, however without
Parameter P4, S1 cannot be composed with S2. In this
case, S1 is a partial match for S2.

3. Related Works

The SGT allows researchers to create large
numbers of web services. It does so by building an
abstract model of the web services, then converting
that model into implementation files. This approach is
similar to a couple previous research efforts that use a
service model to facilitate testing and experimentation
with services: Constantinescu et al.�s large-scale test
bed of services and Oh et al.�s tool for benchmarking
planning composition algorithms.

 Constantinescu and et al developed a large-scale
test bed of services for the purposes of testing type
compatible service composition [3]. They model a
service as transformer that transforms a set of input
parameters from one domain into a set of output
parameters from another domain. The input set and
output set of any service should come from different
domains. Using this model they randomly generate a
large number of services. This collection of test
services is entirely abstract and is not suitable for any
tests that require either a concrete interface description
or an implementation.

Oh and et al developed a tool for benchmarking
planning composition algorithms called WSBen [12].
They model services as a directed, bipartite graph
consisting of service nodes, operation nodes and
parameter nodes. A service node consists of one or
more operation nodes. The operation nodes form a
bipartite graph with the parameter nodes. Like
Constantinescu et al., they also separate the parameters
into domains and require that the input parameters and
output parameters come from different domains.
Unlike Constantinescu et al., they use their generated
model to create web service interface descriptions in
the WSDL format. They also provide means to
visualize the graph model. Since WSBen provides
interface information without an implementation, it is
unsuitable for testing scenarios that involve service
execution.

4. Services Generator Toolkit

The overall goal was to create a Service Generator
Toolkit capable of automatically generating a large
number of web services suitable for testing web
services tools, such as Service Brokers. The generated
web services should be syntactically correct,
deployable and executable.

To accomplish this goal, the Service Generator
Toolkit, which is shown in Figure 4, provides main
components: a graph model generator called Random
Graph generator, a representation of the graph model

Figure 2. Composite service which solves
for the hypotenuse of a triangle, z, given the
two shorter sides of the triangle, x and y

Figure 3. An example illustrating that
reachability is not equivalent with
composability. Service S2 is reachable from
Service S1, however without Parameter P4,
S1 cannot be composed with S2. In this
case, S1 is a partial match for S2.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

3

called Graph Model, and several graph model
exporters such as Java Remote Procedure Call (RPC)
Service Unit Test Exporter, Java RPC Service Exporter,
Ontology Web language � Services (OWL-S) Semantic
Web Service Exporter, and Graph Visualization
Exporter.

The Graph Model is a specialized graph
implementation used to represent web services and
their relationships. It is essentially a data container
that provides little additional functionality. The graph
model generator called Random Graph Generator
generates an instance of the graph model. This graph
model instance is then passed to several graph model

exporters. Each graph model exporter exports the
graph model in a specific file format. For instance, the
Graphviz Visualization Exporter will export the graph
model as DOT formatted text files for use in the
Graphviz visualization tool [7].

5. Graph Model

A service graph is a collection of services along with
the relationships between the services. Often service
graphs are depicted as a simple directed graph, as
shown in Figure 5. Each vertex represents a service.

Figure 4. Service Generator Toolkit (SGT) Overview. This diagram shows the data flow between
components of the SGT and a few 3rd party tools. Items within the blue box represent the SGT.
Items within the yellow box represent the output files of the SGT. Items at the bottom of the
diagram represent tasks the user can do with the output of the SGT. Detailed information about
each manual step and the 3rd party tools can be found in the SGT tutorial.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

4

Two services are connected by a directed edge if the
output of one service can be used as the input of the
other service. This simple model is insufficient to
model real world services.

In order to capture the necessary detail we use an
alternative graph representation similar to that used by
Oh et al., shown in Figure 6. Operations and
parameters are now vertices. A directed edge exists
from an operation to a parameter if the operation
returns that parameter. Similarly, a directed edge
exists from a parameter to an operation if the parameter
can be used as input for that operation. Note that this is
a directed, bipartite graph. Unlike Oh et al., we do not
consider Services to be vertices but rather containers
for operations. Also parameters can be tagged as
optional, allowing them to represent a greater range of
input and output conditions such as quality of service
conditions. [3, 12]

Our implementation of this graph model enforces
very few restrictions on the structure of the graph.
This design choice allows graph generators a great deal
of freedom and control over graph creation. It also
allows graph generators to creation contradictory and
invalid graph models.

6. Graph Generation

Ideally a graph generation algorithm will produce a
randomized instance of a service graph with
characteristics similar to that of real world services.
To this end, we collected information about the
characteristics of web services and service graphs from
the existing literature.

In general, the number of operations per service is
rather low, with the majority having less than five
operations. Also, the number of input or output
parameters per operation is also expected to be rather

low. Services are unlikely to self-loop. In addition,
graph density is very sparse and connectivity is very
disjoint for real world services. However this last
consideration may change as more services are
deployed [9].

Based on this information, we devised a graph
generation algorithm with some user modifiable
constraints. The user modifiable constraints are as
follows:
a. The number of services created.
b. The maximum number of operations per service.
c. The maximum number of input and output

parameters per operation.
d. The number of domains.

In this paper, domain means simply a cluster of
related parameters. If there is more than a single
domain, the creation of some graph structures such as
self-loops is not possible. Since some researchers feel
domains provide a more accurate representation of web
services, we support them at the graph generation
level. This is an implementation choice as it could be
done at the graph model level [3, 12].

The random graph is generated by following the
random graph generation algorithm:
1. Create a pool of parameters and assign the

parameters to domains.
2. Create a pool of operations and randomly assign

them input and output parameters. If possible, the
input and output parameters should come from
different domains.

3. Create services and randomly assign operations to
the services.
As more information about service graphs becomes

available, new graph generators can be implemented
and added to the Service Generator Toolkit without
modification to the rest of the SGT.

Figure 5. A simple service graph model.
Services are vertices that are connected by
directed edges if the output of the source
Service can serve as input to the destination
Service.

Figure 6. Detailed service graph model. In this
model, Parameters and Operations are vertices
that form a directed, bipartite graph. Services
are containers for Operations.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

5

7. Graph Exporters

The Graph Exporters are a collection of classes
responsible for building output files from a Service
Graph. All of these exporters work by filling out a
template with the information from the Service Graph.
The current implementation has four exporters: Java
RPC JUnit Test Exporter, Java RPC Service Exporter,
OWL-S Semantic Web Service Exporter and Graph
Visualization Exporter.

7.1. Graph Visualization Exporter

Often understanding is enhanced with the use of a
visual aid. Therefore the Graph Visualization Exporter
exports the generated service graph in dot format. Dot
is a plain text format for describing small to medium
sized graphs. This file format is used by the open
source graph visualization application Graphviz [7].
Figure 7 shows a small Service Graph in Graphviz.

7.2. Java RPC Services Exporter

The Java RPC Services Exporter provides the means
to convert a service graph into executable web services
by exporting Java implementation source files. These
source files can be deployed onto an Apache
Axis/Tomcat server for invocation. The Apache
Axis/Tomcat server will also generate WSDL web
services description files.

 In our graph model, each service takes list of inputs
and returns a list of outputs. For the purposes of our
concrete implementation we add the additional
constraint that all inputs and outputs are lists of
Strings. When a service operation is invoked, it checks
whether the input String array matches the expected
String array. If matched, it will return the output String
array. The current implementation only supports RPC
style encoding.

7.3. Java RPC JUnit Test Exporter

The Java RPC JUnit Test Exporter generates

Figure 7. Visual representation of a generated Service Graph Model.
This particular example shows the connections between services and parameters.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6

functional unit tests to help verify that the generated
services are deployed and working correctly. These
tests can be run using JUnit.

7.4. OWL-S Semantic Web Exporter

OWL-S, WSDL for Semantics (WSDL-S) and Web
Service Modeling Ontology (WSMO) are a few of the
competing formats for Semantic Web Services. We
chose to work with OWL-S mainly due to available
tools and API support.

An OWL-S Semantic Web Service interface
description consists of a Service owl, Grounding owl,
Profile owl and Process owl. The Service owl is the
top level Service definition. The Grounding owl
describes how to access the Service. The Profile owl
describes what the Service does. The Process owl
describes the Service process model. The Java web
service must also be deployed as OWL-S only
describes the interface [4].

The OWL-S template used in the SGT is derived
from the template in the WSDL2OWLS tool that is
included with the OWLS API [8].

9. Demonstration of the Toolkit

We demonstrate how a web services researcher can
automatically generate web services using the SGT: A
web services researcher wishes to create ten Java Web
Services with OWL-S descriptions for use in testing a
service composition engine.

Prior to using the SGT, the following tools must be
installed: 1) Java 5, 2) Apache Tomcat 5.5, 3) Apache
Axis 1.4, 4) Apache Ant 1.6.5, 6) JUnit 4, 7) Graphviz,
and 8) any Web Server.

Once the tools are installed, verify that everything is
in a clean starting state. The output folders for unit
tests, web services and owls should be empty. It is also
a good idea to reset Axis using the �ant remove� and
�ant clean� commands from the root Axis directory.

For most test scenarios, including the case study, the
default graph generation settings are sufficient. The
default settings will create a dense, randomized graph
model. It is possible to change these settings in the
configuration file, �serviceTestKit.properties.� This
configuration file is a standard Java properties file, for
more information on Java properties files please see
the Java documentation.

The SGT can be run from the command line or from
within the Eclipse IDE. In both cases run the class
�ServiceTestKit� to generate the graph and output files.
The SGT will output progress messages while it
creates a graph model and converts it to the output
files. The �ServiceTestKit� does not take any
command line arguments.

To visualize the Service Graph, open the exported
DOT file in Graphviz. It is also possible to export the
visualization file into a more common file format such
as JPEG or PDF from Graphviz. Figure 7 shows an
example of the graph visualization.

To deploy the Java RPC Web Services, copy the
generated Web Service class files to the appropriate
Axis directory. On Unix-like systems a �symlink� is
recommended. Next, build and install the Web
Services onto Axis by using the �ant all� and �ant
install� commands. Deploy the web services using the
Deploy tool. WSDL files are automatically generated
by Axis. Use the JUnit unit tests to verify that the Web
Services work properly. A screenshot of the deployed
the Web Services is in Figure 8.

Deploy the OWL-S Semantic Web Services
description files to the Web Server.

11. Discussion & Future Research

In comparison to collecting or manually building
web services, the Services Generator Toolkit provides
researchers with a simple, easy and reliable way to
generate web services for use in testing. Also it takes
the idea of using service models to generate test

Table I.
Comparison of Service Generator Toolkit to Other Model-Based Service Testing Tools

Approach Service

Graph
Model

WSDL
Web Services
Description

Semantic
Web

Services
Description

Java RPC
Implementation

Unit
Tests

Visualization
Support

Services Generator
Toolkit (SGT)

Yes Yes
Generated when Java

implementation is deployed.

Yes Yes Yes Yes

WSBen Yes Yes

No No No Yes

Large-Scale Test Bed

Yes No No No No No

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7

services further than previous efforts by providing the
means to invoke the created services. Table 1
summarizes our comparisons of the SGT to other
approaches. Among the three approaches, the SGT
provides more features for web service researchers.

Future research could add support for Java Doc-
Style Web Services and WSDL-S Semantic Web
Services. Doc-Style Web Services have different
performance characteristics than RPC-Style Web
Services therefore also providing Doc-Style would be
helpful when testing Service Broker designs [11].
Major industry players, such as IBM, are moving
towards WSDL-S based Semantic Web Services over
OWL-S based Semantic Web Services [1]. Given this
industry trend, it would be helpful to provide support
for WSDL-S.

12. References

[1] Akkiraju et al. �Web Service Semantics � WSDL-S.�

www.w3.org. November 7, 2005. Access September 15, 2008.
http://www.w3.org/Submission/WSDL-S/

[2] Burstein, M. Bussler, C. Finin, T. Huhns, M.N. Paolucci, M.

Sheth, A.P. Williams, S. and Zaremba, M. A Semantic Web
Services Architecture. IEEE Internet Computing, Vol. 9, No.
5. pp. 72- 8. (10 pages)

[3] Constantinescu, B. Faltings, and W. Binder. Large Scale

Testbed for Type Compatible Service Composition. ICAPS
2004 Workshop on Planning and Scheduling for Web and Grid
Services, Whistler, Canada, June 2004.

[4] D. Martin et al. OWL-S: Semantic Markup for Web Services.

Access September 15. http://www.daml.org/services/owl-
s/1.1/overview/

[5] D. Martin et al. �OWL-S: Semantic Markup for Web Services.�

www.w3.org. November 22, 2004. Access September 15.
2008. http://www.w3.org/Submission/OWL-S/

[6] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D.

McDermott, D. McGuinness, B. Parsia, T. R. Payne, M. Sabou,

M. Solanki, N. Srinivasan, K. Sycara (SRI, CMU, Univ.
Toronto) "Bringing Semantics to Web Services: The OWL-S
Approach." First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004) 6-9,
2004, San Diego, California, USA.

[7] Ellson, J. and Ganser, E. Graphviz � Graph Visualization

Software. Access September 15, 2008.
http://www.graphviz.org/

[8] Mindswap. �OWL-S API.� www.mindswap.org. Access

September 15, 2008. http://www.mindswap.org/2004/owl-
s/api/index.shtml

[9] Fan, J. and Kambhampati, S. A Snapshot of Public Web

Services. ASU CSE TR 04-004. August 2004.

[10] IBM Services Architecture Team. �Web Services architecture

overview.� www.ibm.com. September 6, 2000. Access
September 15, 2008.
http://www.ibm.com/developerworks/web/library/w-ovr/

[11] IBM Services Architecture Team. �Which style of WSDL

should I use?� www.ibm.com. October 31, 2003. Access
September 15, 2008.
http://www.ibm.com/developerworks/webservices/library/ws-
whichwsdl/

[12] Oh, S.C., Kil, H.Y., Lee, D.W., and Kumara, S. WSBen: A

Web Services Discovery and Composition Benchmark. In
IEEE Int'l Conf. on Web Services (ICWS), page 239-246,
Chicago, IL, USA, September 2006

[13] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., and

Ferguson, D. F. 2 Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Upper Saddle River, NJ: Prentice Hall
PTR. 2005. ISBN 0131488740. pp 3-59.

[14] �W3C Semantic Web Activity.� 2004. World Wide Web

Consortium. June 1, 2006. Access September 15, 2008.
http://www.w3.org/2001/sw/

[15] Web Service Modeling Language (WSML). Access September

15, 2008. http://www.wsmo.org/wsml/

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

8

