A New Approach to Multi-User Environments
Using Software Distributed Shared Memory *

Erich R. Schmidt, Cristian Téapus
and Daniel M. Zimmerman
Department of Computer Science 256-80
California Institute of Technology
Pasadena, California 91125
{riky, crt, dmz}@cs.caltech.edu

Abstract

This paper presents an overview of multi-user environ-
ments and the application of the Software Distributed
Shared Memory (SDSM) model to solve scalability prob-
lems in such environments. It also outlines a suggested
distributed architecture which addresses the drawbacks
of single-server architectures.

Games are a very compelling application within the
computer community. This led us to choose Multi-User
Dungeons (MUDs) to illustrate our distributed archi-
tecture. Such a distributed server system is necessary
to accomodate the fast-growing interest in interactive
networked games.

We have implemented our distributed server system
using the Java language with a customized communica-
tion protocol based on sockets. The result has proven to
be more efficient than existing environments written in
C or C++, partially due to the hardware and distribu-
tion transparency afforded by Java and our framework.

In this paper we discuss the reasoning behind our
system design and provide details about our implemen-
tation.

Keywords

Software distributed shared memory, distributed sys-
tems, scalability, networked multi-user environments,
multi-user dungeon (MUD), object-oriented design, cli-
ent-server model, Java

*This paper is based on work done for Caltech CS141bc, Dis-
tributed Computation Laboratory, Winter-Spring 1999. Support for
this work was provided by the Air Force Office of Scientific Research.

1 Overview

Human nature involves interaction. One of the tools
which helps people to communicate is the computer.
Therefore, it is not surprising that, very soon after their
introduction in the early 1980s, multi-player environ-
ments became very popular in the computer commu-
nity. The first Multi-User Dungeon (MUD), developed
in 1979 at Essex University by Roy Trubshaw, was just a
collection of inter-connected rooms where people could
“virtually” walk and communicate [1]. Given the distri-
bution of these environments, we can categorize them
as early SDSM systems.

Early MUDs were highly appealing to the computer
community. However, one major drawback of the MUDs
was their simple text-based interface. The first MUDs
were entirely based on text channels; users could in-
teract only by typing simple commands to manipulate
their characters and the environment.

Nowadays, MUDs offer persistent worlds, competi-
tion and/or cooperation between users, 3-D graphics,
sound effects and other features. The addition of these
features has increased the appeal of these games, caus-
ing the user base to grow extremely large. This has be-
gun to cause serious problems with traditional system
designs. Because of their lack of scalability, existing
servers can not increase the number of connections to
keep up with the increase in size of the user commu-
nity and still maintain the same quality of service. The
peer-to-peer architecture is not applicable to solve this
problem, because there is a single centralized virtual en-
vironment shared by all the users in such a system. Tra-
ditional client-server architectures are also proving to be
insufficient, even in the presence of high-bandwidth in-
terconnections. Thus, it is clear that scalability is more
important today than it has ever been before, and this
is the focus of our work.



2 System Design

The most popular distributed environments are the role-
playing games called MUDs. Since they are very well
known and quite easy to implement, we focused our
design work on this area.

One obvious “solution” to the scalability problem
is to dedicate powerful computers to be used solely as
game servers. Unfortunately, the hardware performance
we need is not scaling fast enough to the popularity of
such environments and, consequently, to the number of
users. Some current games allow 32 or more simultane-
ous connections, but even then, when a large number
of players are connected, the communication speed and
the game speed decrease dramatically. This sometimes
leads to servers crashing under load.

We chose to implement a solution based upon a com-
pletely different approach. We distributed the work
load among multiple game-servers, and tried to keep
this distribution as transparent as possible to the player.
The map/world where the game takes place is divided
into territories, each one being handled by a separate
game-server; this way, only a fraction of all the players
in a game are connected to the same game-server. As a
result, better scalability and extensibility are achieved.
We can add more players without having to change the
architecture, and also extend the map with new terri-
tories by connecting them to the existing environment.

As mentioned in Section 1, all distributed multi-user
environments basically follow the SDSM paradigm. In
our approach, the servers comprise a SDSM system.

2.1 Implementation Issues

In order to implement the system described above, we
had to take many factors into consideration. The imple-
mentation language, and the communication substrate
to be used, were two of these factors. The system, as
described, fits with an object oriented approach, and
this is why we decided to implement it in an object ori-
ented environment. The two main options for this were
C++ and Java, and we finally decided upon the latter.
Some of the main reasons for preferring Java to C++
were its portability, which allows the system to be used
on multiple physical platforms, and its friendlier inter-
face for socket-based communication and object serial-
ization. In addition, Java’s thread model, with its con-
venience and built-in synchronization mechanisms, was
more appropriate for our work than any of the thread
models available in C++.

Previous applications have proven that Java and SD-
SM are a very good combination, making hardware sup-
port and data and load distribution transparent. The
same Java program is executable without modifications
on any system, provided that a Java Virtual Machine is
present; by distributing the data and work load on mul-

tiple servers, the user perceives the entire server system
as a single data and computational unit [2].

As in all MUDs, the most important components of
our system are the servers, the clients and the map. The
servers we use are our game-servers, which manage the
game on regions of the map, and a meta-server, which
plays the role of a “nameserver” for the territories. Each
territory consists of rooms, and each room is a directed
graph of cells which are indivisible units of the map.
The division of the territory into rooms and cells makes
the system flexible in that it can be easily adapted to
more complex applications than just MUD games.

We adopted a multithreaded design, because previ-
ous studies had shown that parallelizing SDSM systems
can drastically improve application performance. Since
most of the information that the clients request from the
server involves read operations, these can be executed
simultaneously by multiple server threads on the shared
data. In the case of multiple write operations, the per-
formance is not diminished and the system behaves in
a manner similar to a single-threaded approach. Also,
this design allows us to write simpler and cleaner code;
each server thread handles one client connection at a
time, which eliminates the need for a request queue [3].

The architecture used in our system is completely
transparent to the user. The user can walk anywhere
on the map, interacting with the environment and with
other players, without being aware of the location of the
current room and cell on the game-servers. The system
solves the problem of server overload by a mechanism
of delegating responsibilities to new servers. We now
discuss the mechanisms for player movement and load
balancing in greater detail.

2.2 Player Movement

A basic requirement of any MUD is player mobility - the
users wants to walk around on the map, find other char-
acters, objects, and creatures, and interact with them.
On a single central server, this task is quite simple to
achieve - the server simply keeps track of the position
of the player on the map and takes care of the logistics.

Conceptually, the situation is similar in the distribut-
ed approach. Using a unique ID for each room and cell
on the map, we can simply keep track of the position of
the player on the map by keeping the IDs of the room
and cell where he/she resides. When a player moves
from one cell to another, we update the player’s loca-
tion. We also need to keep track of the positions of the
rooms, since we allow them to be moved to different
game-servers (see territory division in 2.3). In order to
do this, we use a meta-server which manages a database
containing the location of each room on the network.
The actual information associated with a room in the
database is the hostname of the game-server which man-
ages the territory containing the room. This informa-



tion is most important when a player wants to join the
game, as illustrated in Figure 1.

game
server
game meta inquiry
|-y
server server

new
connection

game
server

Figure 1: Joining a Game

First, the client sends a join-game inquiry to the
meta-server, specifying the last location of the player
(room, cell) from the previous game session. The cen-
tral server looks up the current location of the room
and returns this information to the client. After this,
the client connects to the specified game-server.

The information managed by the meta-server is also
used when the player moves on the map. If the new
position of the player is part of the same territory, we
simply update the position information on the game-
server and all the logistics are handled locally. If the
new position is not part of the current territory we find
ourselves in the case presented in Figure 2.

ame .

o~ g client
server

old
connection
inquiry meta ame .

oY g client
server server

connection
ame .
8 client
server

Figure 2: Player Mobility

The game-server redirects the player’s request to the
meta-server, and the meta-server follows the same pro-
cedure as in the case of a client joining the game, illus-
trated in Figure 1.

2.3 Territory Division

The load balancing mechanism mentioned earlier con-
sists of splitting the territory managed by a game-server
into two parts. One remains on the initial game-server,
while the other is sent to another game-server. The
players situated in the region which migrates to another

game-server are redirected to the new-host, through the
meta-server, in a manner similar to the one presented
in Figure 1. Before this happens, the game-server up-
dates the information contained in the meta-server’s
database. An example of this procedure is illustrated
in Figure 3.

. ame
client ¥ 8
. ] server

e inquiry~.

old
connection

meta
server

gl

game
server

Figure 3: Territory Division

All the clients were initially connected to the bot-
tom game-server. The load on the bottom game-server
becomes high, so the territory is divided into two new
territories. In the current implementation of the sys-
tem, rooms cannot be split; division is done only at the
territory level. The top game-server accepts one of the
new territories, while the old server keeps the other.
The players are not aware of the actual change, since
they see the entire system behaving as a single server.

3 Future Directions

Our work so far has focused mainly on the issue of dis-
tributing the computation seamlessly to the user; is-
sues like security, enhanced game logistics, performance
maximization, and complete decentralization have not
been of primary concern. However, we have considered
each of these issues, and plan to extend the system to
address them in the future.

As far as security is concerned, we believe it is nec-
essary to add password-based access, as well as object
grouping based on trust levels. Game information will
be kept consistent among a group of trusted objects (i.e.
servers) while untrusted objects will not be able to alter
it.

Another component of the system that could be im-
proved is game logistics. We are certain that one could
imagine a more challenging environment and a more
detailed command list, which could be implemented by
making minimal changes to the system.

In order to increase the performance of the system,



we could introduce territory overlapping: the rooms on
the “edges” of the territories could be managed both by
the local game-server and the game-server of the neigh-
boring territory. This would require very careful con-
sideration of consistency and persistence issues, but it
would provide more seamless distribution transparency
to the client.

The current system is built around a meta-server,
which has a key role in the system’s functionality. Al-
though it does not limit the scalability and extensibility
of the system in any way, it could be argued that the use
of a meta-server is not exactly in the spirit of pure dis-
tributed systems. One way to eliminate the meta-server
would be to store more data on the game-servers and
use IP multicast for queries. However, the elimination
of the meta-server brings consistency and persistence
issues to the forefront, as well as increasing the commu-
nication load in the system.

4 Conclusion

The use of multi-user environments has expanded dra-
matically over the last few years, and their ability to
meet the demands of large user bases is extremely im-
portant. There is high demand for reliable solutions to
this scalability problem, and the system described in
this paper meets most of the requirements. Our imple-
mentation demonstrates the viability of our approach to
the problem. This system opens new directions for the
enhancement of multi-user applications in distributed
environments and, as discussed in Section 3, its design
allows extensions with minimal changes to the core sys-
tem.

References

[1] Bartle, R.: Farly MUD History,
<http://www.apocalypse.org/pub/u/lpb/muddex/bartle.txt>

[2] Yu, Weimin and Cox, Alan : Java/DSM: A Platform
for Heterogenous Computing, ACM 1997 Workshop
on Java for Science and Engineering Computation,
June 1997.

[3] Thitikamol, Kritchalach and Keleher, Peter : Mul-
tithreading and Remote Latency in Software DSMs,
in The 17th International Conference on Distributed
Computing Systems, May 1997.



