
A UNITY-based Formalism for Dynamic Distributed Systems

Daniel M. Zimmerman
Computer Science 256-80

California Institute of Technology
Pasadena, California 91125 USA

dmz@cs.caltech.edu

Abstract

We describe Dynamic UNITY, a new formalism for the
specification of dynamic distributed systems based on the
UNITY formalism. This formalism allows for the specifica-
tion and proof of systems where processes may be created
and destroyed, and where communication links among pro-
cesses may change. It also introduces asynchronous mes-
saging as a primitive construct, to facilitate the composition
of multiple programs into a larger system.

We also present an example Dynamic UNITY system that
illustrates the dynamic aspects of the new formalism, and
outline a correctness proof for the example.

Keywords: dynamic distributed systems, formal meth-
ods, program composition, UNITY

1. Introduction

Distributed systems, or systems that consist of multi-
ple communicating processes, are becoming both increas-
ingly common and increasingly important. A distributed
system may be either static, meaning that it is comprised
of a fixed set of processes with fixed communication links
among them, or dynamic, meaning that its component pro-
cesses may be created or destroyed during the system’s exe-
cution and that the communication links among its compo-
nent processes may change over time.

Several well-known and well-understood formal meth-
ods, such as Chandy and Misra’s UNITY formalism [2],
Lamport’s TLA [8] and TLA+ [9], and Lynch and Tuttle’s
I/O Automata [10, 11], exist for specifying static distributed
systems and proving their correctness. Dynamic aspects
have been introduced in multiple variants of the UNITY lan-
guage and logic: for example, Cunningham and Roman’s
Swarm [6], a UNITY-based formal method for shared datas-
paces, introduces dynamic transaction sets, while Roman’s

Mobile UNITY [14], an extension of UNITY to systems
of mobile agents, introduces dynamic communication pat-
terns among processes in a system. However, there are few
formal methods that specifically address the issues inherent
in dynamic distributed systems; Attie and Lynch’s Dynamic
I/O Automata [1], an extension of I/O Automata to dynamic
systems, is one of these.

This work describes a UNITY-based formalism, called
Dynamic UNITY, that can be used for the specification and
proof of dynamic distributed systems. The operators of the
UNITY logic are left essentially unchanged in Dynamic
UNITY, despite changes to the underlying execution model,
so that proof techniques developed for UNITY may be ap-
plied to Dynamic UNITY systems. The Dynamic UNITY
language, however, differs significantly from the UNITY
language.

In addition to describing the Dynamic UNITY formal-
ism, we present an example Dynamic UNITY system that
illustrates the dynamic aspects of the new formalism and
briefly outline a proof of the example system’s correctness.

Paper outline. The paper begins with a brief overview of
UNITY and its limitations with respect to dynamic systems
(Section 2). We then discuss the changes necessary to ex-
tend UNITY to handle dynamic systems, and provide an
overview of the Dynamic UNITY language and logic (Sec-
tion 3). Finally, we present an example system (Section 4)
and conclusions (Section 5).

2. The UNITY formalism

The UNITY formalism consists of both a programming
language (with accompanying execution model) and a proof
logic. We briefly describe both, as a basis for discussion of
our new formalism.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

program division

declare
x, y, z, k: integer

initially
x, y, z, k := 0, M, N, 1

assign
z, k := 2 × z, 2 × k if y ≥ 2 × z ∼

N , 1 if y < 2 × z
[] x, y := x + k, y − z if y ≥ z

end

Figure 1. A UNITY program that implements
integer division.

2.1. Language

In the UNITY programming language, a program con-
sists of a set of state variables, a set of initialization assign-
ment statements, and a set of guarded multiple assignment
statements (the transitions). The set of transitions always
includes skip, the transition that changes no part of the state.
An example UNITY program that divides M by N is shown
in Figure 1.

2.2. Execution model

Execution of a UNITY program proceeds in the follow-
ing way. First, the initialization statements are executed to
set the state variables to their initial values. Then, transi-
tions are repeatedly chosen and executed atomically. Tran-
sition selection is subject to a weak fairness constraint,
which insures that every transition is executed infinitely of-
ten in every infinite execution of the program.

2.3. Logic

The UNITY logic [2, 12, 13] is a temporal logic based on
three operators: next, transient, and initially. The funda-
mental operator for safety is next1: p next q means that all
transitions from states where p holds are to states where q
holds. The fundamental operator for progress is transient:
transient p means that there exists a transition that takes the
system from any state where p holds to a state in which ¬p
holds. An additional operator, initially, is also used: ini-
tially p means that predicate p holds in all initial states of
the system.

1Misra writes co, “constrains,” instead of next.

The fundamental operators are used to define other use-
ful operators, such as safety operators stable and invariant,
the progress operator ❀ (leads-to), and operators such as
Sivilotti’s follows [15] and Charpentier’s � (observation)
[5] that combine both safety and progress. There are two
forms of the fundamental operators: the weak form, de-
fined using initial system states and induction over the set of
transitions, considers only reachable states; the strong form
considers all possible states regardless of their reachability.

2.4. Modelling dynamic systems

UNITY is a useful formalism, primarily because of its
simple language and execution model. The weak fairness
constraint, the lack of a sequencing operator, and the fact
that multiple assignment statements are well understood
constructs help to make UNITY programs straightforward
to analyze.

However, because UNITY programs are static sets of
state variables and transitions, it is inconvenient to de-
scribe systems that exhibit dynamic behavior with UNITY.
If all the possible system behaviors are known at the time
a UNITY program is written (a situation where the system
behavior is arguably static), then transitions can be writ-
ten to encompass every one of those possibilities. If all the
possible behaviors of a system are not known in advance,
UNITY is inadequate to the task of describing the system.

UNITY programs are difficult to compose into multiple-
program systems, because UNITY does not have the con-
cept of processes. This difficulty is especially problematic
when describing dynamic systems. In order to reason about
a system that exhibits dynamic behavior with respect to pro-
cess creation, process destruction, and inter-process com-
munication, the programs underlying individual processes
must be considered as composable units because it is impos-
sible to construct a priori a large static program that models
the system’s behavior.

3. The Dynamic UNITY formalism

To adapt UNITY to the specification and proof of dy-
namic distributed systems, we introduce changes to the
programming language, the proof logic, and the execution
model. To minimize the extent of these changes, we re-
strict our attention to systems that satisfy the following con-
straints:

1. Each process has access only to its own state—that is,
there is no direct sharing of variables among the pro-
cesses.

2. Processes communicate only via asynchronous mes-
sage passing, using a model in which each process may

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

have multiple named inboxes and may address mes-
sages to any named inbox belonging to any process it
knows.

3. Any process can create new processes, and any process
can destroy itself, but no process can destroy other pro-
cesses.

While these constraints may prevent us from being able
to model certain types of dynamic behavior, they do al-
low for many behaviors that can not be modeled with
UNITY alone. In addition, they also help to simplify the
tasks of programming and proving the correctness of dy-
namic systems. The first constraint eliminates any possi-
bility that a process can directly interfere with the opera-
tion of another process, enabling both modular reasoning
(proof reuse) and modular system construction. The second
constraint restricts interprocess communication to a single
well-understood mechanism, which simplifies system de-
sign. The third constraint simplifies proof obligations by
eliminating the possibility that a running process will be de-
stroyed at an unexpected or inappropriate point of its execu-
tion. The combination of all three constraints allows us to
prove properties about individual programs independently
of the other programs in the system.

Each constraint mandates specific changes to the UNITY
formalism. We introduce processes, instantiations of pro-
grams that are able to create other processes and halt their
own executions, and we eliminate shared variables among
processes. We add reliable first-in first-out message passing
to the language via primitives that manipulate messages and
inboxes in various ways. We include the ability to create
transitions that are not subject to fairness constraints, which
enables more accurate modelling of distributed systems in
which particular events (such as requests in a resource allo-
cation system) may not occur in a fair manner. We also in-
troduce the ability to quantify transitions over process state,
which enables the set of transitions within a single process
to change as its state changes.

3.1. Language

The new primitives added to Dynamic UNITY for mes-
sage passing and process manipulation are as follows:

• send is used to send one or more messages.

• probe is used to determine whether there is an avail-
able message on a particular inbox.

• current is used to access the current message on a par-
ticular inbox.

• advance is used to advance to the next message on a
particular inbox.

• name is used to access, read-only, the name of a par-
ticular inbox.

• type is used to determine the type of a received mes-
sage.

• length is used to determine the length of an entity
(such as a string or a list).

• this is used to obtain a reference to the current process,
which can then be sent as a message to other processes
in order to establish communication links.

• new is used to create a new process.

• stop is used by a process to halt its own execution (de-
stroy itself).

Rather than trying to frame these new primitives as as-
signment statements we change the program notation to
one based on binary predicates, similar to the notation of
Hehner [7] and of Lamport’s TLA [8]. This makes Dy-
namic UNITY more expressive than UNITY; any UNITY
program can be transformed into a Dynamic UNITY sys-
tem without changing its semantics, but it is possible to con-
struct Dynamic UNITY systems, even without using any of
the new primitives, that cannot be transformed into UNITY
programs.

We do not describe the syntax of the Dynamic UNITY
language in detail here; a grammar for Dynamic UNITY, as
well as more precise definitions of the new primitives, can
be found in the author’s dissertation [16].

Figure 2 shows a Dynamic UNITY program that imple-
ments the same division algorithm as the UNITY program
of Figure 1; when instantiated it performs the calculation
for a specified M and N, sends the result as two messages
to a specified destination, and destroys itself. Each of the
three assignment statements from the original UNITY pro-
gram is translated directly into the new notation. The guard
for the transition that sends the result and destroys the pro-
cess is exactly the predicate that holds at all fixed points of
the original program.

3.2. Execution model

The execution model of Dynamic UNITY is similar to
that of UNITY, in that both atomically change the state of
the system by executing a single transition at a time from
a transition set; however, there are significant differences
between the two.

The most important difference relates to the transition
sets themselves: in a UNITY system the transition set is
statically determined by the program text, and all transitions
are subject to a fairness constraint; in a Dynamic UNITY
system the transition set is dynamically determined by the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

program DivisionModule(M: integer, N: integer, proc: process, mbox: string)

declare
x, y, z, k: integer

initially
x = 0 ∧ y = M ∧ z = N ∧ k = 1

fair-transition
y ≥ 2 × z −→ z′ = 2 × z ∧ k′ = 2 × z

[] y < 2 × z −→ z′ = N ∧ k′ = 1
[] y ≥ z −→ x′ = x + k ∧ y′ = y - z
[] x × N + y = M ∧ 0 ≤ y < N −→ send(proc, mbox, x, proc, mbox, y) ∧ stop

end

Figure 2. A Dynamic UNITY program that implements integer division.

system state, and only a subset of the transitions need be
subject to a fairness constraint. When a program is instan-
tiated as a process, its transitions are added to the system
transition set, and when the process terminates itself, its
transitions are removed from the system transition set.

A transition in a Dynamic UNITY system is an instan-
tiation of a transition statement within a Dynamic UNITY
program, distinguished by the process to which it belongs
and any quantifying terms used to generate it. Therefore,
different instantiations of the same Dynamic UNITY pro-
gram have different transition sets. Moreover, a quantified
transition is considered not as a single transition, but as a set
of transitions determined by the range of the quantification.

Transitions are classified as either weakly fair or unfair,
depending on where they occur within the program text.
We define weak fairness for Dynamic UNITY as follows:
In every computation of a Dynamic UNITY system, every
weakly fair transition is infinitely often either executed or
not present in the system. This definition implies that a tran-
sition that remains in the system forever will be executed
infinitely often, but it does not imply that a transition that
is merely present in the system infinitely often will execute
infinitely often.

There are no guarantees with respect to the execution
of unfair transitions; in an infinite execution, a single un-
fair transition may not be executed at all, may be executed
only a finite number of times, or may be executed an infinite
number of times.

The two execution models also differ in their treatment
of the state space. In UNITY, a program’s state is com-
prised of exactly the variables declared in the program text.
In Dynamic UNITY, a process’s state contains not only the
variables declared in its program text, but also the portion of

the message passing system state associated with that pro-
cess. The message passing state for a process contains a
sequence of messages for its outbox and sequences for each
of its inboxes, as well as additional information indicating
which messages in the outbox have been delivered and how
many messages have been read from each inbox. Some of
this state can be implicitly accessed and changed by exe-
cuting message passing primitives, but some of it can not
be modified by the process. The portion of the state that
can be modified by the process, either directly or through
message passing primitives, is called the non-volatile state;
the portion that can only be modified by the message pass-
ing system is called the volatile state. As will be described
in more detail later, this distinction is what enables us to
prove properties for every instance of a particular Dynamic
UNITY program regardless of its environment.

Every Dynamic UNITY system has an initial program,
which is always the first program instantiated when the sys-
tem is executed. At each system step, at most one transi-
tion is executed. The execution of a transition belonging
to a particular process may result in any or all of the fol-
lowing: changes to the non-volatile state of the process, the
creation of one or more new processes, and the destruction
of the process. The volatile state of the process may only be
changed “in between” transitions, by the message passing
system.

We do not include a formal definition of Dynamic
UNITY’s execution model here due to space constraints;
however, one is available in the author’s dissertation [16].

3.3. Logic

The Dynamic UNITY logic is a temporal logic capable
of expressing the same properties as the UNITY logic; how-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

ever, because of the introduction of dynamic transition sets
and the elimination of shared variables, the fundamental op-
erators are defined and used in a different way. The ini-
tially, next, and transient operators are defined in terms
of the formal Dynamic UNITY execution model. Just as
in UNITY, these properties form a basis for the rest of the
logic.

The next and transient properties cannot be proven di-
rectly for Dynamic UNITY systems; since they are defined
in terms of executions, doing so would require verifying the
properties for every possible execution. However, we can
prove stronger properties about systems, or subsets thereof
(including individual programs), similar to the existential
properties of Chandy and Sanders [3, 4]. A property p of a
subsystem X is an existential property if and only if p holds
for all systems containing X. In other words, an existential
property of subsystem X holds for a system consisting of
only X, as well as for a system consisting of X composed
with additional processes Y1, Y2, . . . , Yn, regardless of what
those processes are.

We can use existential properties of a subsystem to in-
fer next and transient properties of the subsystem. This
is straightforward if the properties only depend on non-
volatile state, because the non-volatile state of a subsystem
can only be changed by a transition within that subsystem.
For instance, if we have a subsystem X and predicates p and
q over the non-volatile state of X, and we can show that ev-
ery possible transition from a state satisfying p establishes a
state satisfying q, then we can infer (p next q).X. Similarly,
if we can show that there exists a single fair transition that
establishes a state satisfying ¬p from any state satisfying p,
then we can infer (transient p).X. If we choose our subsys-
tem X to be a single instance of program P, all the possible
transitions are contained within P’s program text. There-
fore, we can prove existential properties of P using only its
program text, if we restrict these properties to non-volatile
state.

To prove properties that depend on volatile state (that
is, those properties that involve communication among pro-
cesses), we reason about the behavior of message channels.
This behavior is governed by the Channel Theorem, which
states that the following safety and progress properties hold
for every process/inbox pair in a system: For all processes
p, q in a Dynamic UNITY system, and all inboxes b in q,
the sequence of messages delivered to q.b from process p
is a prefix of the sequence of messages sent by process p to
q.b, and every message sent by process p to q.b is eventually
delivered. The Channel Theorem is expressed with a single
follows property that combines these safety and progress
conditions. This effectively creates an existential property
for each process/inbox pair in a system, which can be com-
bined with properties on non-volatile state to prove proper-
ties about interprocess interactions.

4. An example system

To illustrate the use of Dynamic UNITY, we consider
the problem of guaranteeing mutually exclusive access to a
shared resource in a dynamic environment. We require that
only one client at a time has access to the resource, and that
no client that requests the resource is forced to wait forever
to access it. Clients are allowed to enter and leave the sys-
tem at any point, but the resource is guaranteed to remain in
the system forever. We present a Dynamic UNITY system
that solves this problem, and outline some details of a cor-
rectness proof (the full proof can be found in the author’s
dissertation).

There are two main process types in the system, repre-
senting the resource and its clients. A third process type,
which bootstraps the system by creating a resource process
and client processes, is also necessary for the model (in a
real system, client processes would be created by external
agents such as users).

We choose a simple mutual exclusion algorithm: there
is a single token in the system, and only a client that holds
the token may use the shared resource. We require that a
client that holds the token does not do so forever. Possible
states for a client are idle, waiting (having requested the re-
source), and busy (using the resource); possible states for
the resource are idle (holding the token, and therefore not
being accessed by a client) and busy (not holding the token,
and therefore potentially being accessed by a client). Valid
state transitions for clients are from idle to waiting, from
waiting to busy, and from busy to idle, and valid state tran-
sitions for the resource are from idle to busy and from busy
to idle.

Conceptually, three types of message are sent in the sys-
tem: requests, releases, and permissions. Requests are sent
from clients that want access to the resource, releases are
sent by clients that are either done using the resource or are
leaving the system (when a request is outstanding), and per-
missions are sent by the resource to clients.

4.1. Resource

A resource (Figure 3) starts in the idle state. It listens
for requests on one inbox (requestIn), and releases on an-
other inbox (releaseIn). Requests are handled in the order
in which they are received, which helps to fulfill our global
fairness constraint. Releases, which are tracked using a
multiset2, effectively cancel requests. When the resource
is idle and there is a request from a client at the head of the
request queue, it is handled in one of two ways: if the re-
source already holds a release from that client, the request is

2The multiset allows a resource to hold two identical releases simulta-
neously, as no information other than a client reference is conveyed in a
release.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

program Resource

declare
requestIn, releaseIn: inbox
releases: multiset {process}
current: process

always
idle � current = ⊥;
busy � ¬idle

initially
current = ⊥ ∧ releases =∅

fair-transition
(1) idle ∧ requestIn.probe −→ requestIn.advance ∧ current′ = requestIn.current.proc ∧

send(requestIn.current.proc, “tokenIn”,∅)
(2) [] busy ∧ current ∈ releases −→ current′ = ⊥ ∧ releases′ = releases \ {current}
(3) [] releaseIn.probe −→ releaseIn.advance ∧ releases′ = releases ∪ {releaseIn.current.proc}

end

Figure 3. The “Resource” program.

program Client(resource: process)

declare
idle, waiting, busy: boolean
tokenIn: inbox

always
gone � ¬idle ∧ ¬waiting ∧ ¬busy

initially
idle = true ∧ waiting = false ∧ busy = false

fair-transition
(1) waiting ∧ tokenIn.probe −→ waiting′ = false ∧ busy′ = true ∧ tokenIn.advance
(2) [] busy −→ busy′ = false ∧ idle′ = true ∧ send(resource, “releaseIn”,∅)

unfair-transition
(3) [] idle −→ idle′ = false ∧ waiting′ = true ∧ send(resource, “requestIn”,∅)
(4) [] idle −→ idle′ = false ∧ stop
(5) [] waiting −→ waiting′ = false ∧ send(resource, “releaseIn”,∅) ∧ stop
(6) [] busy −→ busy′ = false ∧ send(resource, “releaseIn”,∅) ∧ stop

end

Figure 4. The “Client” program.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

cancelled and the release is removed from the multiset; oth-
erwise, a permission is sent to the client and the resource
transitions to busy. A busy resource transitions to idle when
it holds a release from the client to which it most recently
sent a permission; at that point, the release is removed from
the multiset.

We can prove many existential properties about the be-
havior of a resource that hold independently of the behavior
of other processes. Some are counting properties, such as
that the number of permissions it has sent is equal to the
number of requests it has read. Others are state transition
properties, such as that a resource never sends two permis-
sions without becoming idle in between and that an idle re-
source will eventually become busy if there is a request on
its inbox.

4.2. Client

A client (Figure 4) starts in the idle state. It sends a re-
quest when it transitions from idle to waiting, transitions
from waiting to busy when it receives a permission, and
sends a release when it transitions from busy to idle; it also
sends a release when it leaves the system if it is in the wait-
ing or busy state.

As with the resource, we can prove many existential
properties about the behavior of a client that hold indepen-
dently of the behavior of other processes. Some are count-
ing properties, such as that the number of requests a client
has sent is always at most one greater than the number of
releases it has sent. Others are state transition properties,
such as that the client never transitions from the idle state to
the busy state directly and that the client never remains in
the busy state forever.

4.3. Generator

The generator is specified as part of the composed sys-
tem (Figure 5). It is the system’s initial program, and its role
is straightforward: it creates the resource, and then repeat-
edly creates clients that know how to contact the resource.
We can prove existential properties about it independently
of the behavior of other processes, such as that all the clients
it creates have references to the same resource process and
that it only creates a single resource process.

4.4. The composed system

Once we have proven properties about the processes in
isolation, we can use properties about the Dynamic UNITY
message passing system to prove the correctness of the
composed system. In this system the required safety con-
dition is that there is always exactly one token in the sys-
tem, and the required progress condition is that every wait-

system SingleResourceMutualExclusion

initial-program Generator

declare
resource: process

initially
resource = new Resource

unfair-transition
(1) p: p′ = new Client(resource)

end

program Resource

program Client(resource: process)

end

Figure 5. The “SingleResourceMutualExclu-
sion” system.

ing client eventually either transitions to busy or leaves the
system.

To prove the safety condition, we introduce the concept
of “live” tokens. The number of live tokens in the system is
defined as the sum of the number of tokens held by the re-
source, the number of tokens held by clients, and the num-
ber of live tokens in transit. A live token in transit from
a client to the resource is a release message with a corre-
sponding request that has been handled by the resource. A
live token in transit from the resource to a client is a per-
mission message with a destination client that has not left
the system. We can show that having exactly one live token
in the system satisfies the safety condition and then prove,
using the previously proven properties of the individual pro-
grams, that there is exactly one live token in the system at
all times.

To prove the progress condition, we observe that every
request message sent to the resource must eventually arrive,
and that once a request is enqueued in the resource’s inbox,
no other request can overtake it. Since no client may stay in
the busy state forever, and an idle resource must eventually
service a request if one arrives, this is sufficient to show
progress.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

5. Conclusion

Distributed systems are often modelled as static multi-
graphs, where the nodes represent processes and the edges
represent communication channels. Such a model is insuf-
ficient for dynamic distributed systems, such as electronic
marketplaces and artificial life systems. These systems can
be modelled as a set of rules that determines how processes
are created and destroyed, as well as how they discover each
other and interact; in some cases, this set of rules may be
allowed to evolve in response to system events. Often, dy-
namic systems are studied from an observational and behav-
ioral viewpoint. The work described in this paper is a small
step toward developing formal methods for reasoning about
such systems.

This paper has presented a formalism, based on the
familiar next, transient, and initially operators used in
UNITY, applicable to dynamic distributed systems. Al-
though our rules for the creation and interaction of pro-
cesses are not completely general—for example, we prohib-
ited processes from terminating other processes—we have
shown that proof methods for static distributed systems can
be employed for some dynamic distributed systems.

Acknowledgements

The author would like to thank K. Mani Chandy for his
valuable comments and suggestions.

This research was supported in part by grants from the
Air Force Office of Scientific Research, the CISE Direc-
torate of the National Science Foundation, the Center for
Research in Parallel Computing, Parasoft, and Novell Cor-
poration, and by an NSF Graduate Research Fellowship.

References

[1] P. C. Attie and N. A. Lynch. Dynamic input/output au-
tomata: A formal model for dynamic systems. In Inter-
national Conference on Concurrency Theory, volume 2154
of Lecture Notes in Computer Science, pages 137–151.
Springer–Verlag, Heidelberg, Germany, Aug. 2001.

[2] K. M. Chandy and J. Misra. Parallel Program Design: A
Foundation. Addison–Wesley Publishing Company, Read-
ing, MA, USA, 1988.

[3] K. M. Chandy and B. A. Sanders. Predicate transformers
for reasoning about concurrent computation. Sci. Comput.
Programming, 24(2):129–148, Apr. 1995.

[4] K. M. Chandy and B. A. Sanders. Reasoning about program
composition. CISE Technical Report 2000-003, University
of Florida, 2000.

[5] M. Charpentier, M. Filali, P. Mauran, G. Padiou, and
P. Quéinnec. The observation: an abstract communica-
tion mechanism. Parallel Processing Letters, 9(3):437–450,
1999.

[6] H. C. Cunningham and G.-C. Roman. A UNITY-style pro-
gramming logic for a shared dataspace language. IEEE
Transactions on Parallel and Distributed Systems, 1(3):365–
376, July 1990.

[7] E. C. R. Hehner. A Practical Theory of Programming.
Springer–Verlag, Heidelberg, Germany, 1993.

[8] L. Lamport. The temporal logic of actions. ACM Trans-
actions on Programming Languages and Systems, 16:872–
923, May 1994.

[9] L. Lamport. Specifying concurrent systems with TLA+. In
Calculational System Design. IOS Press, Amsterdam, The
Netherlands, 1999.

[10] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, San Francisco, CA, USA, 1996.

[11] N. A. Lynch and M. R. Tuttle. An introduction to in-
put/output automata. CWI-Quarterly, 2:219–246, Sept.
1989.

[12] J. Misra. A logic for concurrent programming: Progress.
Journal of Computer & Software Engineering, 3(2):273–
300, 1995.

[13] J. Misra. A logic for concurrent programming: Safety. Jour-
nal of Computer & Software Engineering, 3(2):239–272,
1995.

[14] G.-C. Roman, P. J. McCann, and J. Y. Plun. Mobile UNITY:
Reasoning and specification in mobile computing. ACM
Transactions on Software Engineering and Methodology,
6(3):250–282, July 1997.

[15] P. A. G. Sivilotti. A Method for the Specification, Compo-
sition, and Testing of Distributed Object Systems. PhD the-
sis, Department of Computer Science, California Institute of
Technology, 1997.

[16] D. M. Zimmerman. Dynamic UNITY. PhD thesis, Depart-
ment of Computer Science, California Institute of Technol-
ogy, 2001.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

